The renormalization group:
from the foundations to modern
applications
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1.) Historical introduction: what is the RG?
2.) The basic idea of the Wilsonian RG

3.) Modern formulation: functional RG

4.) Application: BCS-BEC crossover



What is the renormalization group?

“... the renormalization group is merely a
framework, a set of ideas, which has to be
adapted to the problem at hand...

All renormalization group studies have in
common the idea of re-expressing the
parameters which define a problem in
terms of some other, perhaps simpler set,
while keeping unchanged those

physical aspects of a problem which are of

interest.”
(J. Cardy, 1996)

Scaling and
Renormalization
in Statistical Physics

JOHN CARDY




e problem: perturbation theory in :
guantum electrodynamics gives ! v . ”
rise to infinite terms:

e solution: (Bethe, Feynman, Schwinger, Dyson, 1940s)

« all infinities can be absorbed in redefinition (=renormalization) of
a finite number of parameters (masses, coupling constants)

e physical quantities can be expressed in terms of finite
renormalized couplings (bare couplings are infinite)



« understand high-energy behavior of renormalized QED

 arbitrariness in definition of renormalized couplings can be used
to relate physical correlation functions at different energies
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* 19583 paper: finite renormalization transformations form
a Lie group, for which differential equations
hold. (almost unnoticed, because in French)
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G el I M ann Quantum Electrodynamics at Small Distances™

a n d LOW, 1 954 | M. Grir-Maxxi axp F. E. Low

Pivysies Department, University of Hbinois, Urbana, Iineis
(Recelved April 1, 1954}

The renormalized propagation functions Py¢ and See for photons and electrons, respectively, are in-
vestigated for momenta much greater than the mass of the electron. It is found that in this region the indi-
vidual terms of the perturbation scries to all orders in the coupling constant take on very simple asymptotic
forms, An attempt to sum the entire series is only partially successful. Tt is found that the series satisty
certain functional equations by vietue of the renormalizability of the theory, If photon self-energy parts are
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* problem in statistical physics:
universality of critical exponents:

specific heat: Ct) o [H™ .
spontaneons magnetization: mit) (—H)% , t<0,
magnetic susceptibility: () o [H77 .
critical isotherm:  m(h) o [h[Y9signh . ¢t =0
T—-1.
t= T.
new formulation of the RG idea et o i
“Wilsonian RG”
(more general than field theoretical RG) Cormell University
* Nobel Prize in Physics 1982: b, 193
“...for his theory of critical phenomena in ]

connection with phase transitions...”
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* Wilson, Phys.
Rev., 1971

 Wilson, Fisher,

PRL 28, 240
(1972)

Renormalization Group and Critical Phenomena.
I. Renormalization Group and the Kadanoff Scaling Picture®

Eenneth G, Wilson
Labovatory of Nuclear Studies, Cornell University, lthaca, New York 14850
(Received 2 June 1971)

The Kadanoff theory of scaling near the eritical point for an Ising ferramagnet is cast in
differential form, The resulting differential equations are an example of the differential
equations of the renormalization group, It is shown that the Widom-Kadanoff scaling laws
arise naturally from these differential equations if the coefficients in the equations are ana-
Iytic at the critical point, A generalization of the Kadanoff scaling picture involving an “ir-
relevant” variable is considered; in this case the scaling laws result from the renormaliza-
ton-group equations only if the solution of the equations goes asymptotically fo a fized point.

Critical Exponeunts in 3.99 Dimensions®

Kenneth G. Wilson and Michael E. Fisher
Labiuvafory of Nucleor Sfudies and Buker Lahovatory, Cornell Duiversity, Bhoce, New York I4850
(Received 11 October 1871)

Critleal oxponents s re calealated for dimension d =4 =« with ¢ small, uging renorma-
lzation=group technigues, To order & the cxpononl v i 1-F¢ for an Ising-like model
and |4 for an XY model.



exponent I=ingz Isings XYz Heisenbergs
e 0 (log) 0.110(1) -0.015 -0.10
3 L/8 0.3265(3) 0.35 0.36
¥ 7/4 1.2372(5) 1.32 1.39
A 15 4.789(2) 4.78 5.11
I/ 1 0.6301(4) 0.67 0.70
7] L/4 0.0364(5) 0.038 0.027

values of critical exponents cannot be
obtained from dimensional analysis!
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e idea: derive exact PHYSICAL REVIEW A VOLUME 8, SUMBER 1 JULY 1873
functional differential
equation describing
Wilsonian mode
elimination
(Wegner and
Houghton, 1972)

most convenient formulation:
“Wetterich equation”
(Wetterich, 1993)
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Renormalization Group Equation for Critical Phenomena

Frang 4. Wegner
Frstitut fily Festhiiperfovschung, KFA Jilich, D517 Jitlick, Germany

Anthony Houghton*
Department of Physics, Brown Universily, Providence, Rhode Islend 02012
{Received 27 October 18721

An eéxact ronortnalizalion equation is derived by making an infinttesimal change in the
cutoff i momentum space, From this equation the expansion for critieal exponents gromd
dimetsionality 4 and the limit= - = of the ¥ -vector model are ealeulaied. We obtain
agreement with the resulta of Wilson snd Fisher, and with the spharical modal,

Physics Letters B 301 (1993 ) H-94
North-Holland ( ) PHYSICS LETTERS B

Exact evolution equation for the effective potential

Christof Wetterich .
Institut fiir Theoretische Physik, Cniversitit Heidelberg, Phifosophenweg 16, W-6200 Heidelberg, FRG

Received |5 November 1992; revised manuseript received 17 Decomber 1992

We derive a new exacl evolution equation For the scale dependence of an effective action. The comesponding equation for the
effective potential permits & useful wruncation, This allows one 1o deal with the infrared problems of theories with massless modes
17t less tham four dimensions which are relevant for the high temperature phase iransition in parhicle physics or the computation
of critical exponents. in statistical mechanics.
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Introduction to the Functional Renormalization
Group

This book, based on a graduate course given by the authors, is a pedagogic and self-
contained introduction to the renormalization group with special emphasis on the
functional renormalization group. The functional renormalization group is a modern
formulation of the Wilsonian renormalization group in terms of formally exact func-
tional differential equations for generating functionals. In Part I the reader is intro-
duced to the basic concepts of the renormalization group idea, requiring only basic
knowledge of equilibrium statistical mechanics. More advanced methods, such as dia-
grammatic perturbation theory, are introduced step by step. Part 11 then gives a self-con-
tained introduction to the functional renormalization group. After a careful definition
of various types of generating functionals, the renormalization group flow equations

for these functionals are derived. This procedure is shown to encompass the traditional
method of the mode elimination steps of the Wilsonian renormalization group proce-
dure. Then, approximate solutions of these flow equations using expansions in pow-

ers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the
exact hierarchy of functional renormalization group flow equations... more on http://
springer.com/978-3-642-05093-0 11



explain concepts for Ising model on D-dimensional lattice,
nearest neighbor coupllng J, magnetlc field h:

H_—JEH —hz

want: partition function:

ZMh) =Y =3 3 .Y exp tﬂzhs}hﬂ'hz ‘

{a;} s1=11 sz=+11 sy =*1

exact results only in D=1, and D=2 for h=0 (Onsager, 1944)

first try: mean-field approximation
§; = m-+0s; S5;8; = M —|—m551—|—583 —I—%

. N
Zar(T, h) = g—BNzIm? /2 [E cosh|3(h + z.fm]]}

mean-field critical exponents wrong for D < 4 12



 effective field theory for Ising model: ¢*-theory:

Sa,lel = Vo — hoplk = 0) + %f [0 + cok®|o(—k)p( k)
ke

—I—z_? ./m ]I;z j;:; v[h:q (2m) 7 8(ky + ko + ks + k) (ky ) olka) o(ks)p(ky) .

, N FJe—nh 1 1
¢ bare COUpllngS:fIJZ—FlIIE h.[]: ﬁ i = ;ZE
T - TE
o= a2T. ug = 2a”H BT

e ultraviolet cutoff: |k| < Ay < o™t

 partition function becomes functional integral: 2= f Dlple~54al]

e derivation: multi-dimensional Gaussian integral

N e - N -
l f dr; g—i Astz e _ [n:l«:tJ'fh]_L"fzrﬂg’?”'ﬁ‘“_lEr 13
iy e V2T




° Strategy: perform integration iteratively in small steps:

o Step1: Mode elimination (decimation):

Integrate over fields describing short wavelength
or high energy fluctuations.

p(k) = o= (k) + ¢7 (k) = O(A — || ) (k) + O(|k| — A)(k)

Sale™ +¢7] = St fo.ro.couo] + 83 4,107 ] + Sumix[e™. 7]
<= f@[i.i‘{]e‘S}ﬂ?":f‘if"-f“:ﬂ‘:]

I:,__:—S:i.:[i,i":;fc: i ]_II'_S [-:I_:- tfo.7o- (]ﬂ(]]/-ﬂ[[f:}]t 'I'IIZI[['J ] Sm [':r-’h '!,-‘-7'::']

f

carry out integration perturbatively 14



 effect of mode elimination: modified couplings

to leading (one-loop order):

Ao Ao

- ug [ dPk 1 - 3uy [ dVk 1
roo=rpt+ — o 3 W= tp— D 32
2 J (27)F rg+ epk? 2 (2m)P [rg + epk?]
A A
Qp} hl
kE -k k2 _kTE -k, K

o Step2: Rescaling:rescale wavevectors and fields such that
action after mode elimination has same form as before:

A

- D
k'=bk b= Ay/A éj (;i ;ED (r= 4+ k%)= (—k)p= (k)
w
) ! —1 _« ) A
O'(K') = ¢, ¢ (K /b) - Y DL
’ I - éb_ﬂf éfr;cﬂ (r= + = b kPP Zy (— )" (k)

f;b _ b1+D"IIIE\/z_b A
(g 1

d” k! 2yt IS
Ly = — = j [27)D (b* Zyr= + k) (k") (k') .

y
I
B |



» effect of mode elimination+rescaling:

Ap
. . 0. :
I’enOI’ma“ZGd rl = !'JEZ[,T{ = bEZE-,. [T[] + fo a7k ! “

. 2 2m)P g+ epk?
couplings: (2n)7 o+ e

A

Ao
Fu? dPk 1 —|
;.sz&l—ﬂgi {=b4—ﬂ‘z’2[ . []/
7l Pl 5 Ijﬂ] 2 [EW]D [r[] n r‘-ukE]EJ
A

e iteration in infinitesimal steps: differential equations:
3'121'1[]{*._!

T _ - iy

ry = Uy =.FLD— ), b}F
! co A3 f:ﬁflﬁ_ﬂ \ \D>4 &u
| T
hirp = 2r + — .
1T T 3T+ e \:l; G \:-E
T W F

hity = (4 — D)y — — E i

=D S Ty =




0 ) j
T "I

0 I 10 20 1,
; /
Ginzburg/ inverse correlation
scale Ape ' = k. length  Age—ts = ¢

* RG trajectory remains for long time in vicinity of fixed point
e microscopic origin of universality

17



* RG fixed points describe scale-invariant system
e critical fixed points:

 two relevant directions

* infinite correlation length

. critical manifold describes Z =L
system at critical point -

* critical exponents: (10, ho. §)

« are determined by eigenvalues of
linearized RG flow in vicinity of critical fixed points

e origin of universality

18



e main idea: Wilsonian mode elimination can be expressed

in terms of formally exact functional differential
equation for generating functionals

» generating functional of Green functions

[ D@, ...8,,

ions: (m)
Green functions: G, = @Pa, .. Pay) [ D@5

: : _ [ D[@]e—S#+(12) ) 0"G[T]
generating functional:  |g[7] = D@ @ | Calan = 57 5 .

example: two-point function of Ising model at critical point:

(2 1 . 1
Grie = (p(P)e(r') % ooy G (k) 1

n=0.036 anomalous dimension in D=3. "



e strategy: derive RG equation for generating functionals

information for RG flow of all Green functions

 introduce cutoff: modlfy Gaussian propagator

1
Sole| = ./h-, (ro+ecok?) / Gy ' ( Golk) = "

O.(|k| - A)
A

1 4+

G{}fk] - G{},ﬁfk] — @=:f|k| - MG{}[-&]

. [ 1 for k| = A
Ocllkl - A) = { 0 for |k| < A.

| L
’ A I

» take derivative of generating functional with
respect to cutoff === FRG flow equation 20



* different types of Green/vertex functlons

 connected Green functions GE[I]—ln Q[J] -
(Wegner-Houghton equation, 1972)

« amputated connected Green functions .
(Polchinski equation, 1984) @m
technical complication: delta-function*step function:
0(z)8(x) = 30(z)  6(2)0(x) = 56(x)

* one-line irreducible vertices .
(Wetterich equation, 1993) o

A3

DAV [B) — %Tr {[a,.IR_,l] (ﬁ %F“"‘[@]-I—ZR) 1] “ay ‘ o

cutoff function second functional derivative




* functional Taylor expansion ri =§i,/ S A NN

===p \Vetterich equation reduces to infinite hierarchy of integro-
differential equations for irreducible vertices

» exact flow equation for irreducible self-energy




» exact flow equation for effective interaction

o o three-body

' . A& . .~ renormalizes
:( - 0 two-body
d s <\, interaction

b=

+Sﬂ1 Q2,03 g

* urgently needed: trunction strategies!

23



» electron gas with attractive interaction:
crossover from weakly coupled Cooper pairs

to strongly bound fermion pairs:

Temperatur

by
o)
H

f
Fermi- ' :5 /
Fliissigkeit / _é‘_,i' / hen
;‘f f/’/ Fliissigkeit
| &
..................... I fff 1.
i _.f'/Supl afliissige Phase

achwach

Kopplungsstarke

stark

schwache Kopplung
kpf 1

)
9.

o o

Dgaq
Q

o (s ]

Uhergangsbereich

“erossover”
-

kg€ ~ 1

starke Kopplung
kpf < 1

00

e qualitative phase diagram: mean field theory ok (Eagles, 1969)

» quantitative calculations in crossover regime difficult

« experimentally accessible with ultracold atoms (also in Innsbruck




e model: fermions with short range two-body attraction

: _Z i Yo Z i i
k.o k.k'.p

 regularized BCS gap equation:
E_iz[mh(ﬂ&fﬂ) B ] | Bo=\J@+23 &= s

i vV 2E 26k

ke 1 1 1 1
— =+ = _—
g g ¥ ggfk

 mean-field equation for chemical potential:

p= 11; E [1 — é—tmh ,i:i'Ehfﬂ)} :

* dimensionless coupling: i=ws = ~2ka./x 25



e gap: * chemical potential:

1/(kras)

-

» at unitary point (1/(kra,)=0): ji=05906 , A=0.6864
26



(Lorenz Bartosch, P.K., Alvaro Ferraz, PRB, 2009)
e truncated FRG flow equations for self-eneraies:

4*:1__@___&_
DG WS ¢ BEE o
* flow of order parameter: . 1 g 3_]_2@

» close system of flow equations using
Ward identities and skeleton equations 27




*\Ward identity: relation between vertex functions
of different order due symmetry:

() TPT9X (K, —K:0) = A(K)

superfluid f . 1 . . .
order parameter  Interaction single-particle
vertex gap

*skeleton equation: relation between vertex
functions (not implied by symmetry):
Ax

- interaction vertex
order parameter

correlation function —> J[XX = —

fermion propagators 78

*x



* wave-function » gap, order parameter,
renormalization, chemical potential
vertex correction
15 - 0.8

1 R ] 0.6 i Xx/€F
y ; 04f  i/er

0.5 ' ool

o o
A}"EF,{'I ﬂ';"EF,ﬂ

o atunitary point: p/er =032, Afep =061, (x)/ep =059

agrees with Bartenstein et al (PRL 2004) 29



* the renormalization group is a powerful method
to analyze interacting many-body systems

» functional RG gives formally exact equations
describing the Wilsonian mode elimination step

« application to BCS-BEC crossover: quantitative
results, comparison with experiments

e outlook:

* better truncation strategies needed
» applications to systems out of equilibrium

30
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