Kinetics of Charm in Medium

Hendrik van Hees

Texas A&M University

May 31, 2006

Outline

Heavy-quark rescattering in QGP Non-photonic e^{\pm} Observables: v_2 and R_{AA} <u>Co</u>nclusions and Outlook

Outline

Heavy-quark rescattering in QGP

Non-photonic e^{\pm} Observables: v_2 and R_{AA}

Conclusions and Outlook

 $\begin{array}{c} & {\rm Outline} \\ {\rm Heavy-quark\ rescattering\ in\ QGP} \\ {\rm Non-photonic\ } e^{\pm} & {\rm Observables:\ } v_2 {\rm \ and\ } R_{AA} \\ & {\rm Conclusions\ and\ Outlook} \end{array}$

Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium

Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- ► What is the underlying microscopic mechanism for thermalization?
 - pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]
 - Gluon-radiative energy loss: need to enhance transport coefficient
 q̂ by large factor [Armesto et al '05] or enhanced gluon density
 [Djordjevic, Gyulassi et al '05]
 - including pQCD elastic scattering: still not enough equilibration of heavy quarks [Wicks et al '05]

Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
 - pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]
 - Gluon-radiative energy loss: need to enhance transport coefficient
 q̂ by large factor [Armesto et al '05] or enhanced gluon density
 [Djordjevic, Gyulassi et al '05]
 - including pQCD elastic scattering: still not enough equilibration of heavy quarks [Wicks et al '05]
- ► Assumption: survival of *D* and *B*-meson resonances in the sQGP
- facilitates elastic heavy-quark rescattering

 $\begin{array}{c} {\rm Outline} \\ {\rm Heavy-quark\ rescattering\ in\ QGP} \\ {\rm Non-photonic\ } e^{\pm} \ {\rm Observables:\ } v_2 \ {\rm and\ } R_{AA} \\ {\rm Conclusions\ and\ Outlook} \end{array}$

Free Lagrangian: Particle Content

• Chiral symmetry $SU_V(2) \otimes SU_A(2)$ in light-quark sector of QCD

$$\mathscr{L}_D^{(0)} = \sum_{i=1}^2 [(\partial_\mu \Phi_i^\dagger)(\partial^\mu \Phi_i) - m_D^2 \Phi_i^\dagger \Phi_i] + \text{massive (pseudo-)vectors } D^*$$

- Φ_i: two doublets: pseudo-scalar ~ (^{D0}_D) and scalar

 Φ_i^{*}: two doublets: vector ~ (^{D0}_D) and pseudo-vector

 𝔅⁽⁰⁾_{ac} = q̄iϑq + c̄(iϑ m_c)c
- q: light-quark doublet $\sim \begin{pmatrix} u \\ d \end{pmatrix}$

► c: singlet

 $\begin{array}{c} & {\rm Outline} \\ {\rm Heavy-quark\ rescattering\ in\ QGP} \\ {\rm Non-photonic\ } e^{\pm} & {\rm Observables:\ } v_2 {\rm \ and\ } R_{AA} \\ & {\rm Conclusions\ and\ Outlook} \end{array}$

Interactions

- Interactions determined by chiral symmetry
- For transversality of vector mesons: heavy-quark effective theory vertices

$$\begin{aligned} \mathscr{L}_{\text{int}} &= -G_S\left(\bar{q}\frac{1+\not\!\!/}{2}\Phi_1c_v + \bar{q}\frac{1+\not\!\!/}{2}\mathrm{i}\gamma^5\Phi_2c_v + h.c.\right) \\ &-G_V\left(\bar{q}\frac{1+\not\!\!/}{2}\gamma^{\mu}\Phi_{1\mu}^*c_v + \bar{q}\frac{1+\not\!\!/}{2}\mathrm{i}\gamma^{\mu}\gamma^5\Phi_{2\mu}^*c_v + h.c.\right) \end{aligned}$$

- v: four velocity of heavy quark
- in HQET: spin symmetry $\Rightarrow G_S = G_V$

 $\begin{array}{c} & {\rm Outline} \\ {\rm Heavy-quark\ rescattering\ in\ QGP} \\ {\rm Non-photonic\ } e^{\pm} & {\rm Observables:\ } v_2 {\rm \ and\ } R_{AA} \\ & {\rm Conclusions\ and\ Outlook} \end{array}$

Resonance Scattering

elastic heavy-light-(anti-)quark scattering

▶ *D*- and *B*-meson like resonances in sQGP

parameters

- $m_D = 2 \text{ GeV}, \ \Gamma_D = 0.4 \dots 0.75 \text{ GeV}$
- $m_B = 5 \text{ GeV}, \ \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$

 $\begin{array}{c} & {\rm Outline} \\ {\rm Heavy-quark\ rescattering\ in\ QGP} \\ {\rm Non-photonic\ } e^{\pm} & {\rm Observables:\ } v_2 {\rm \ and\ } R_{AA} \\ {\rm \ Conclusions\ and\ Outlook} \end{array}$

Contributions from pQCD

Lowest-order matrix elements (Combridge '79)

▶ In-medium Debye-screening mass for *t*-channel gluon exchange: $\mu_g = gT$, $\alpha_s = 0.4$

Outline

Heavy-quark rescattering in QGP Non-photonic e^{\pm} Observables: v_2 and R_{AA} Conclusions and Outlook

Cross sections

- total pQCD and resonance cross sections: comparable in size
- ► BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion

 $\begin{array}{c} \mbox{Outline}\\ \mbox{Heavy-quark rescattering in QGP}\\ \mbox{Non-photonic } e^{\pm} \mbox{ Observables: } v_2 \mbox{ and } R_{AA}\\ \mbox{Conclusions and Outlook} \end{array}$

The Fokker-Planck Equation

▶ heavy particle (c,b quarks) in a heat bath of light particles (QGP) $\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$

Assumption: Relevant scattering processes are soft

 $\begin{array}{c} \mbox{Outline}\\ \mbox{Heavy-quark rescattering in QGP}\\ \mbox{Non-photonic } e^{\pm} \mbox{ Observables: } v_2 \mbox{ and } R_{AA}\\ \mbox{Conclusions and Outlook} \end{array}$

The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

- Assumption: Relevant scattering processes are soft
- ► A and B_{ij} given by averages with matrix elements (cross sections) from resonance model
- A(t,p) friction (drag) coefficient = $1/\tau_{eq}$
- ▶ *B_{ij}*: time scale for momentum fluctuations

 $\begin{array}{c} \mbox{Outline}\\ \mbox{Heavy-quark rescattering in QGP}\\ \mbox{Non-photonic } e^{\pm} \mbox{ Observables: } v_2 \mbox{ and } R_{AA}\\ \mbox{Conclusions and Outlook} \end{array}$

The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

- Assumption: Relevant scattering processes are soft
- ► A and B_{ij} given by averages with matrix elements (cross sections) from resonance model
- A(t,p) friction (drag) coefficient = $1/\tau_{eq}$
- B_{ij} : time scale for momentum fluctuations
- ▶ to ensure correct equilibrium limit: $B_1(t,p) = T(t)E_pA(t,p)$ (Einstein dissipation-fluctuation relation)

Drag and Diffusion: pQCD vs. resonance scattering

3-momentum dependence

▶ resonance contributions factor $\sim 2 \dots 3$ higher than pQCD!

The Coefficients: pQCD vs. resonance scattering

Temperature dependence

Time evolution of the fire ball

 Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

$$V(t) = \pi(z_0 + v_z t)a(t)b(t), \quad a, b: \text{ half-axes of ellipse},$$
$$v_{a,b} = v_{\infty}[1 - \exp(-\alpha t)] \mp \Delta v[1 - \exp(-\beta t)]$$

Time evolution of the fire ball

 Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

$$V(t) = \pi(z_0 + v_z t)a(t)b(t), \quad a, b: \text{ half-axes of ellipse},$$
$$v_{a,b} = v_{\infty}[1 - \exp(-\alpha t)] \mp \Delta v[1 - \exp(-\beta t)]$$

- ▶ Isentropic expansion: S = const (fixed from N_{ch})
- QGP Equation of state:

$$s = \frac{S}{V(t)} = \frac{4\pi^2}{90}T^3(16 + 10.5n_f^*), \quad n_f^* = 2.5$$

- obtain $T(t) \Rightarrow A(t,p)$, $B_0(t,p)$ and $B_1 = TEA$
- ▶ for semicentral collisions (b = 7 fm): T₀ = 340 MeV, QGP lifetime ≃ 5 fm/c.
- simulate FP equation as relativistic Langevin process

Initial conditions

- need initial p_T -spectra of charm and bottom quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming δ -function fragmentation
 - exp. non-photonic single- e^{\pm} spectra: Fix bottom/charm ratio

Spectra and elliptic flow for heavy quarks

 Fireball parametrization consistent with hydro

Spectra and elliptic flow for heavy quarks

Spectra and elliptic flow for heavy quarks

With form-factor vertices instead of point vertices ($\Lambda = 1 \text{ GeV}$)

Observables: p_T -spectra (R_{AA}), v_2

- ► Hadronization: Coalescence with light quarks (fixed before [Greco et al 03]) + fragmentation (cc̄, bb̄ conserved)
- ▶ single electrons from decay of *D* and *B*-mesons

Without further adjustments: data quite well described

Observables: p_T -spectra (R_{AA}), v_2

- Hadronization: Fragmentation only
- ▶ single electrons from decay of *D* and *B*-mesons

Outlook on CBM

• scattering mechanism via resonances at $T > T_c$?

Outlook on CBM

- scattering mechanism via resonances at $T > T_c$?
- dominant channel: quark-anti-c-quark s channel

- CBM: quark dominated $\Rightarrow \bar{c}$ quarks most affected
- ► thermalization effects more pronounced for D
 (D⁻) than for D
 (D⁺) mesons!

Conclusions and Outlook

- Assumption: survival of resonances in the (s)QGP
- nonperturbative re-interactions of heavy quarks in QGP
- Observables via Langevin approach and coalescence+fragmentation
 - Elastic resonance scattering $\Rightarrow R_{AA}^{(c)} \simeq 0.2$, $v_2^{(c)} \simeq 0.1$ without upscaling of cross sections
 - small effects on bottom quarks
 - Heavy-light quark coalescence enhances $v_2^{(e)}$ and R_{AA} for $p_T \simeq 2 \text{ GeV}$
 - ▶ bottom dominates for $p_T > 3.5 \text{ GeV} \Rightarrow$ reduced suppression, $v_2^{(e)}$

Conclusions and Outlook

- Assumption: survival of resonances in the (s)QGP
- nonperturbative re-interactions of heavy quarks in QGP
- Observables via Langevin approach and coalescence+fragmentation
 - Elastic resonance scattering $\Rightarrow R_{AA}^{(c)} \simeq 0.2$, $v_2^{(c)} \simeq 0.1$ without upscaling of cross sections
 - small effects on bottom quarks
 - Heavy-light quark coalescence enhances $v_2^{(e)}$ and R_{AA} for $p_T \simeq 2 \text{ GeV}$
 - ▶ bottom dominates for $p_T > 3.5 \text{ GeV} \Rightarrow$ reduced suppression, $v_2^{(e)}$
- Further investigations
 - improved (softer) fragmentation
 - implementation of gluon-radiation processes
 - quantitative consequences for quarkonia