Charm and beauty production in AA collisions in a Fokker-Planck approach

Hendrik van Hees

Goethe University Frankfurt and FIAS

March 19, 2015

Outline

Heavy-quark interactions in the sQGP

- Heavy quarks in heavy-ion collisions
- Heavy-quark diffusion: The Langevin Equation
- 2 Non-perturbative HQ interactions
 - Resonance model for HQ-q Scattering
 - T-matrix approach with lQCD potentials

3 Comparison with data

- Nonphotonic electrons at RHIC
- D mesons at LHC
- Predictions for D mesons at FAIR
- Dileptons from correlated D \overline{D} decays

Summary and Outlook

- Fast equilibration of hot and dense matter in heavy-ion collisions: collective flow (nearly ideal hydrodynamics) ⇒ sQGP
- Heavy quarks as calibrated probe of QGP properties
 - produced in early hard collisions: well-defined initial conditions
 - not fully equilibrated due to large masses
 - heavy-quark diffusion ⇒ probes for QGP-transport properties
- Langevin simulation within UrQMD-hydro hybrid model
- sensitivity to medium evolution

⇒ [P. B. Gossiaux, S. Vogel, HvH, J. Aichelin, R. Rapp, M. He, M. Bluhm, arXiv: 1102.1114 [hep-ph]]

- drag and diffusion coefficients
 - T-matrix approach with static lattice-QCD heavy-quark potentials
 - resonance formation close to *T_c*
 - mechanism for non-perturbative strong interactions

Heavy Quarks in Heavy-Ion collisions

hard production of HQs described by PDF's + pQCD (PYTHIA)

> HQ rescattering in QGP: Langevin simulation drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP

Hadronization to D,B mesons via quark coalescence + fragmentation

 $\begin{array}{l} \text{semileptonic decay} \Rightarrow \\ \text{``non-photonic'' electron observables} \\ R_{AA}^{e^+e^-}(p_T), \ v_2^{e^+e^-}(p_T) \end{array}$

Relativistic Langevin process

- Langevin process: friction force + Gaussian random force
- in the (local) rest frame of the heat bath

$$d\vec{x} = \frac{\vec{p}}{E_p} dt,$$

$$d\vec{p} = -A\vec{p} dt + \sqrt{2dt} [\sqrt{B_0}P_{\perp} + \sqrt{B_1}P_{\parallel}]\vec{w}$$

- \vec{w} : normal-distributed random variable
- A: friction (drag) coefficient
- *B*_{0,1}: diffusion coefficients
- Einstein dissipation-fluctuation relation $B_1 = E_p T A$.
- flow via Lorentz boosts between "heat-bath frame" and "lab frame"
- *A* and *B*⁰ from microscopic models for *qQ*, *gQ* scattering
- background medium: UrQMD \rightarrow hydro \rightarrow UrQMD

[R. Rapp, HvH, R. C. Hwa and X. N. Wang (eds.), Quark-Gluon Plasma Vol. IV, World Sientific (2010), arXiv: 0903.1096 [hep-ph]; M. He, HvH, P. B.

Gossiaux, R. J. Fries, R. Rapp, Phys. Rev. E 88, 032138 (2013)]

Hendrik van Hees (GU Frankfurt/FIAS)

Non-perturbative interactions: Resonance Scattering

- General idea: Survival of *D* and *B*-meson like resonances above *T*_c
- model based on chiral symmetry (light quarks) HQ-effective theory
- elastic heavy-light-(anti-)quark scattering

• *D*- and *B*-meson like resonances in sQGP

parameters

- $m_D = 2 \text{ GeV}, \Gamma_D = 0.4 \dots 0.75 \text{ GeV}$
- $m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$

[HvH, R. Rapp, Phys. Rev. C 71, 034907 (2005); HvH, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)]

- total pQCD and resonance cross sections: comparable in size
- BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion

Transport coefficients: pQCD vs. resonance scattering

• three-momentum dependence

• resonance contributions factor ~ 2...3 higher than pQCD!

Transport coefficients: pQCD vs. resonance scattering

• Temperature dependence

T-matrix

• Brueckner many-body approach for elastic *Qq*, *Q* \bar{q} scattering

- *V*: static $q\bar{q}$ potential from lattice QCD (*F* and *U*)
- reduction scheme: 4D Bethe-Salpeter \rightarrow 3D Lipmann-Schwinger
- S- and P waves
- Relation to invariant matrix elements

$$\sum |\mathcal{M}(s)|^2 \propto \sum_q d_a \left(|T_{a,l=0}(s)|^2 + 3|T_{a,l=1}(s)|^2 \cos \theta_{\rm cm} \right)$$

[HvH, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)]

Static heavy-quark potentials from lattice QCD

• color-singlet free energy from lattice \rightarrow internal energy

$$U_1(r,T) = F_1(r,T) - T \frac{\partial F_1(r,T)}{\partial T},$$

$$V_1(r,T) = U_1(r,T) - U_1(r \to \infty,T)$$

• Casimir scaling of Coulomb part for other color channels; confining part color blind [E Riek, R. Rapp, Phys. Rev. C 82, 035201 (2010)].

$$V_{\bar{3}} = rac{1}{2}V_1, \quad V_6 = -rac{1}{4}V_1, \quad V_8 = -rac{1}{8}V_1$$

T-matrix results

- resonance formation at lower temperatures $T \simeq T_c$
- melting of resonances at higher T
- model-independent assessment of elastic *Qq*, *Qq* scattering!

Transport coefficients

- *T*-matrix resonance-scattering coefficients: decrease with *T*
- from non-pert. interactions reach $A_{non-pert} \simeq 1/(7 \text{ fm}/c) \simeq 4A_{pQCD}$
- results for free-energy potential, F considerably smaller

Nonphotonic electrons at RHIC

- form D and B mesons via quark-antiquark coalescence
- use PYTHIA for semi-leptonic decays
- comparison to single-electron data from PHENIX (200 AGeV Au-Au collisions)

- form D via quark-antiquark coalescence
- comparison to D-meson data from ALICE (2.76 ATeV Pb-Pb collisions)

[T. Lang, HvH, J. Steinheimer, M. Bleicher, arXiv: 1211.6912 [hep-ph]]

D mesons at FAIR

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)

[T. Lang, HvH, J. Steinheimer, M. Bleicher, arXiv: 1305.1797 [hep-ph]]

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)
- large μ_B in resonance model: \overline{c} more dragged than c

[T. Lang, HvH, J. Steinheimer, M. Bleicher, arXiv: 1305.1797 [hep-ph]]

Dileptons from correlated D \overline{D} decays

• for $m_{\phi} \lesssim M_{\ell^+\ell^-} \lesssim m_{J/\psi}$:

dilepton emission from thermal QGP and from correlated D \overline{D} decays

• medium modifications of D and \overline{D} destroy correlations

[T. Lang, HvH, J. Steinheimer, M. Bleicher, arXiv: 1305.7377 [hep-ph]]

Summary and Outlook

- Heavy quarks in the sQGP
- non-perturbative interactions
 - mechanism for strong coupling: resonance formation at $T \gtrsim T_c$
 - lattice-QCD potentials parameter free
 - also provides "natural" mechanism for quark coalescence

[R. Ravagli, HvH, R. Rapp, Phys. Rev. C 79, 064902 (2009)]

- Comparison to data and predictions for FAIR
 - *R_{AA}* and *v*₂ of non-photonic electrons at RHIC
 - R_{AA} and v_2 for D mesons at LHC
 - *R*_{AA} and *v*₂ for D mesons at FAIR (pp baseline mandatory!)
 - impact of medium modifications on correlated D D decays to dileptons
- Outlook
 - implementation of hadronic cross sections for D/B-meson diffusion
 - include inelastic heavy-quark processes (gluo-radiative processes)
 - implement resonance-recombination model for hadronization
 - charmonium/bottomonium suppression/regeneration