Electromagnetic spectra at the CERN-SPS

Hendrik van Hees

Goethe-Universität Frankfurt

May 21, 2013

Electromagnetic probes in heavy-ion collisions

- Vector mesons and electromagnetic probes
- Sources of dilepton emission in heavy-ion collisions

Comparison to NA 60 data

- Invariant-mass spectra
- *m_T* spectra

3 Conclusions and Outlook

Electromagnetic probes in heavy-ion collisions

- γ , ℓ^{\pm} : no strong interactions
- reflect whole "history" of collision:
 - from pre-equilibrium phase
 - from thermalized medium QGP and hot hadron gas
 - from VM decays after thermal freezeout

Fig. by A. Drees

Vector Mesons and electromagnetic Probes

• photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f})$

[L. McLerran, T. Toimela 85, H. A. Weldon 90, C. Gale, J.I. Kapusta 91]

$$\Pi_{\mu\nu}^{<}(q) = \int d^{4}x \exp(iq \cdot x) \left\langle J_{\mu}(0)J_{\nu}(x) \right\rangle_{T} = -2f_{B}(q \cdot u) \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q)$$

$$q_{0} \frac{dN_{\gamma}}{d^{4}xd^{3}\vec{q}} = \frac{\alpha}{2\pi^{2}}g^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q) \Big|_{q_{0}=|\vec{q}|} f_{B}(q \cdot u)$$

$$\frac{dN_{e^{+}e^{-}}}{d^{4}xd^{4}q} = -g^{\mu\nu} \frac{\alpha^{2}}{3q^{2}\pi^{3}} \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q) \Big|_{q^{2}=M_{e^{+}e^{-}}^{2}} f_{B}(q \cdot u)$$

- *u*: four-velocity of the fluid cell; $p \cdot u = p_0^{hb}$ energy in "heat-bath frame"
- to lowest order in α : $e^2 \Pi_{\mu\nu} \simeq \Sigma_{\mu\nu}^{(\gamma)}$
- vector-meson dominance model:

$$\Sigma^{\gamma}_{\mu\nu} = \mathbf{O}_{\mathbf{D}} \mathbf{O$$

0

Sources of dilepton emission in heavy-ion collisions

- initial hard processes: Drell Yan

$$\frac{1}{q_T}\frac{\mathrm{d}N^{(\mathrm{thermal})}}{\mathrm{d}M\mathrm{d}q_T} = \int \mathrm{d}^4x \int \mathrm{d}y \int M\mathrm{d}\varphi \frac{\mathrm{d}N^{(\mathrm{thermal})}}{\mathrm{d}^4x\mathrm{d}^4q}$$

● "corona" ⇔ emission from "primordial" mesons (jet-quenching)
 ● after thermal freeze-out ⇔ emission from "freeze-out" mesons
 [Cooper, Frye 1975]

$$N^{(\text{fo})} = \int \frac{\mathrm{d}^3 q}{q_0} \int q_\mu \mathrm{d}\sigma^\mu f_B(u_\mu q^\mu / T) \frac{\Gamma_{\text{meson}\to\ell^+\ell^-}}{\Gamma_{\text{meson}}}$$

Hadronic many-body theory

- HMBT for vector mesons [Ko et al, Chanfray et al, Herrmann et al, Rapp et al, ...]
- $\pi\pi$ interactions and baryonic excitations

- +corresponding vertex corrections ⇔ gauge invariance
- Baryon (resonances) important, even at RHIC with low **net** baryon density $n_B n_B$
- reason: $n_B + n_{\bar{B}}$ relevant (CP inv. of strong interactions)

In-medium spectral functions and baryon effects

[R. Rapp, J. Wambach 99]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

In-medium spectral functions and baryon effects

[R. Rapp, J. Wambach 99]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

In-medium spectral functions and baryon effects

[R. Rapp, J. Wambach 99]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small *M*

Intermediate masses: hadronic " 4π contributions"

• e.m. current-current correlator $\Leftrightarrow \tau \rightarrow 2n\pi$

- " 4π contributions": $\pi + \omega, a_1 \rightarrow \mu^+ + \mu^-$
- leading-order virial expansion for "four-pion piece"
- additional strength through "chiral mixing"

Radiation from thermal sources: Meson t-channel exchange

- motivation: *q*_T spectra too soft compared to NA60 data
- thermal contributions not included in models so far

- in QGP phase: $q\bar{q}$ annihilation
- HTL improved electromagnetic current correlator

- or electromagnetic current correlator from the lattice [H.-T. Ding, A. Francis et al (Bielefeld) 2011] (extrapolated to finite *q*)
- "quark-hadron duality" around T_c

Fireball and Thermodynamics

- cylindrical fireball model: $V_{\text{FB}} = \pi (z_0 + v_{z0}t + \frac{a_z}{2}t^2) \left(\frac{a_\perp}{2}t^2 + r_0\right)^2$
- thermodynamics:
 - isentropic expansion; S_{tot} fixed by N_{ch} ; $T_c = T_{\text{chem}} = 175 \text{ MeV}$
 - $T > T_c$: QGP; lattice equation of state
 - continuous cross-over (no 1st-order mixed state!)
 - $T < T_c$: hadron-resonance gas

•
$$\Rightarrow$$
 $T(t)$, $\mu_{\text{baryon,meson}}(t)$

- chemical freezeout:
 - $\mu_N^{\text{chem}} = 232 \text{ MeV}$
 - hadron ratios fixed $\Rightarrow \mu_N, \mu_\pi, \mu_K, \mu_\eta$ at fixed $s/\varrho_B = 27$
- thermal freezeout: $(T_{\text{fo}}, \mu_{\pi}^{\text{fo}}) \simeq (120, 80) \text{ MeV}$

Fireball evolution

- comparison 1st-order EoS (EoS-A) vs. lattice EoS (EoS-L)
- in both $T_c = T_{ch} = 175 \text{ MeV}$
- EoS-A: $t_{\text{form}} = 1 \text{ fm}/c$, $r_0 = 4.6 \text{ fm}$, $z_0 = 1.8 \text{ fm} \Rightarrow T_{\text{initial}} = 195 \text{ MeV}$
- EoS-L: $t_{\text{form}} = 0.67 \text{ fm}/c$, $r_0 = 4.0 \text{ fm}$, $z_0 = 1.2 \Rightarrow T_{\text{initial}} = 245 \text{ MeV}$

The higher-mass region

- DY subtracted in data
- theory a bit low ⇒ need longer QGP phase ⇒ somewhat smaller formation time

Hendrik van Hees (GU Frankfurt)

Importance of baryon effects

- Baryonic interactions important!
- in-medium broadening
- Iow-mass tail!

Conclusions and Outlook

- dilepton spectra ⇔ in-medium em. current correlator
- models for dilepton sources
 - radiation from thermal sources: QGP, ρ , ω , ϕ
 - ρ -decay after thermal freeze-out
 - decays of non-thermalized primordial ρ 's
 - Drell-Yan annihilation
- invariant-mass spectra and medium effects
 - excess yield dominated by radiation from thermal sources
 - baryons essential for in-medium properties of vector mesons
 - melting ρ with little mass shift
 - IMR well described by scenarios with radiation dominated either by QGP or multi-pion processes (depending on EoS)
 - Reason: mostly from thermal radiation around 160 MeV $\leq T \leq$ 190 MeV
 - \Leftrightarrow "parton-hadron" duality of rates
 - $\Leftrightarrow compatible with chiral-symmetry restoration!$
 - here: lattice $EoS \Rightarrow QGP$ dominates over hadronic in the IMR
 - dimuons in In-In (NA60), Pb-Au (CERES/NA45), γ AA at SPS, RHIC, LHC \Rightarrow Charles Gale's talk on Thursday

Conclusions and Outlook

• More realistic medium evolution

- use transport model for medium evolution
- dilemma: consistent implementation of in-medium em. current correlators?
- pragmatic solutions:
 - use transport-hydro-hybrid approach: for UrQMD+Shasta 3D hydro
 ⇒ [Elvira Santini et al 2010/11]; use thermal rates in hydro; "shining" in UrQMD "afterburner"
 - new approach: "coarse-grained transport" \Rightarrow find energy + baryon density ("Eckhart frame") \Rightarrow EoS. gives $(T, \mu_B) + \mu_{\pi}, \mu_K$; use again thermal rates in coarse-grained fluid cells \Rightarrow Stephan Endres's talk on Thursday!

• Further theoretical developments

• vector- should be complemented with axial-vector-spectral functions

(a_1 as chiral partner of ρ)

- constrained with IQCD via in-medium Weinberg chiral sum rules
- direct connection to chiral phase transition!
 - \Rightarrow Paul Hohler's talk today!

Hendrik van Hees (GU Frankfurt)