# Electromagnetic Spectra at CERN-SPS and the QCD phase diagram

Hendrik van Hees

Texas A&M University

June 19, 2007

with Ralf Rapp





## Outline

#### QCD and Chiral Symmetry

- QCD and accidental symmetries
- Phenomenology and chiral symmetry
- The QCD-phase diagram

#### Electromagnetic Probes

- Vector mesons and electromagnetic probes
- Vector-meson spectral functions
- Fireball dynamics

#### NA60 Dimuon Data

- Dilepton-excess spectra
- NA60- $p_T$  spectra (semicentral) Fireball 1
- NA60-p<sub>T</sub> spectra

#### Conclusions and Outlook

6 Appendix: Thermal radiation vs. decay after freeze-out

## QCD and ("accidental") symmetries

Theory for strong interactions: QCD

$$\mathscr{L}_{\mathsf{QCD}} = -\frac{1}{4} F^{\mu\nu}_{a} F^{a}_{\mu\nu} + \bar{\psi} (\mathrm{i} \not\!\!\!D - \hat{M}) \psi$$

- Particle content:
  - $\psi$ : Quarks, including flavor- and color degrees of freedom,  $\hat{M} = \text{diag}(m_u, m_d, m_s, \ldots) = \text{current quark masses}$
  - $A^a_{\mu}$ : gluons, gauge bosons of SU(3)<sub>color</sub>
- Symmetries
  - fundamental building block: local SU(3)color symmetry
  - in light-quark sector: approximate chiral symmetry
  - chiral symmetry most important connection between QCD and effective hadronic models

## Phenomenology and Chiral symmetry

- In vacuum: Spontaneous breaking of chiral symmetry
- ullet  $\Rightarrow$  mass splitting of chiral partners



# The QCD-phase diagram

- at high temperature/density: restoration of chiral symmetry
- Lattice QCD:  $T_c^{\chi} \simeq T_c^{\text{deconf}}$





Dropping Masses?

- Mechanism of chiral restoration?
  - Two main theoretical ideas
    - "dropping masses":  $m_{
      m had} \propto \left< ar{\psi} \psi \right>$
    - "melting resonances": broadening of spectra through medium effects
    - More theoretical question: Realization of chiral symmetry in nature?

Hendrik van Hees (Texas A&M University) EM Spectra at SPS and QCD phase diagram

June 19, 2007 5 / 34

#### Finite Temperature/Density: Idealized theory picture

• partition sum:  $Z(V, T, \mu_q, \Phi) = \text{Tr}\{\exp[-(\mathbf{H}[\Phi] - \mu_q \mathbf{N})/T]\}$ 



# Why Electromagnetic Probes?



- reflect whole "history" of collision
- chance to see chiral symm. rest. directly?





#### Vector Mesons and electromagnetic Probes

• photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function  $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f})$ 

$$\Pi_{\mu\nu}^{<}(q) = \int d^{4}x \exp(iq \cdot x) \langle J_{\mu}(0)J_{\nu}(x)\rangle_{T} = -2f_{B}(q_{0}) \operatorname{Im} \Pi_{\mu\nu}^{(\mathsf{ret})}(q)$$

$$q_{0} \frac{dN_{\gamma}}{d^{4}xd^{3}\vec{q}} = \frac{\alpha_{\mathsf{em}}}{2\pi^{2}} g^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}^{(\mathsf{ret})}(q) \Big|_{q_{0} = |\vec{q}|} f_{B}(q_{0})$$

$$\frac{dN_{e^{+}e^{-}}}{d^{4}xd^{4}q} = -g^{\mu\nu} \frac{\alpha^{2}}{3q^{2}\pi^{3}} \operatorname{Im} \Pi_{\mu\nu}^{(\mathsf{ret})}(q) \Big|_{q^{2} = M_{e^{+}e^{-}}^{2}} f_{B}(q_{0})$$

- to lowest order in  $\alpha$ :  $e^2 \Pi_{\mu\nu} \simeq \Sigma^{(\gamma)}_{\mu\nu}$
- derivable from partition sum  $Z(V, T, \mu, \Phi)!$

#### Vector Mesons and chiral symmetry

 vector and axial-vector mesons ↔ correlators of the respective currents

$$\Pi^{\mu\nu}_{V/A}(q) := \int \mathrm{d}^4x \exp(\mathrm{i}qx) \left\langle J^{\nu}_{V/A}(0) J^{\mu}_{V/A}(x) \right\rangle_{\mathsf{ret}}$$

Ward-Takahashi Identities from chiral symmetry ⇒ Weinberg-sum rules

$$f_{\pi}^{2} = -\int_{0}^{\infty} \frac{\mathrm{d}q_{0}^{2}}{\pi q_{0}^{2}} [\operatorname{Im} \Pi_{V}(q_{0}, 0) - \operatorname{Im} \Pi_{A}(q_{0}, 0)] -\frac{\pi}{2} \alpha_{s} \langle \mathscr{O}_{\chi \mathsf{SB}} \rangle = -\int_{0}^{\infty} \frac{\mathrm{d}q_{0}^{2}}{\pi} [\operatorname{Im} \Pi_{V}(q_{0}, 0) - \operatorname{Im} \Pi_{A}(q_{0}, 0)]$$

• spectral functions of vector (e.g.  $\rho$ ) and axial vector (e.g.  $a_1$ ) directly related to order parameters of chiral symmetry!

- different models with chiral symmetry: equivalent only on shell ("low-energy theorems")
- model-independent conclusions only in low-temperature/density limit (chiral perturbation theory) or from lattice-QCD calculations
  - Hidden-Local Symmetry model: dropping masses  $(M_{
    ho}, M_{a_1} \rightarrow 0$  for  $T \rightarrow T_c)$  [Harada, Sasaki 06]
  - Massive Yang Mills model:  $M_{
    ho} \uparrow$ ,  $M_{a_1} \downarrow +$  broadening [Song 93]
- use hadronic many-body theory (HMBT) to assess medium modifications of vector mesons

## Hadronic many-body theory

- HMBT [Ko et al, Chanfray et al, Herrmann et al, Rapp et al, ...] for vector mesons
- $\pi\pi$  interactions and baryonic excitations



• Baryon (resonances) important, even at RHIC with low **net** baryon density  $n_B - n_{\bar{B}}$ 

• reason:  $n_B + n_{\bar{B}}$  relevant (CP inv. of strong interactions)

- vacuum: em. pion-form factor, decay widths
- cold nuclear matter: Photo-absorption on nucleons and nuclei



#### Properties of spectral functions: QCD sum rules



•  $\rho$ -spectral function at finite  $n_B$ 

consistent with QCD-sum rules



#### Properties of spectral functions: Moments



•  $m_{\rho}^{**} \sim \text{const} \Rightarrow \text{no significant mass shifts!}$ 

Hendrik van Hees (Texas A&M University) EM Spectra at SPS and QCD phase diagram

#### In-medium spectral functions and baryon effects



• baryon effects important  $\leftrightarrow N_B + N_{\bar{B}}$  relevant (not  $N_B - N_{\bar{B}}$ )

- some more broadening of the peak
- $\bullet\,$  responsible for most of the strength at small M

## Dilepton rates: Hadron gas $\leftrightarrow$ QGP



- in-medium hadron gas matches with QGP
- $\bullet\,$  similar results also for  $\gamma\,$  rates
- "quark-hadron duality" !?
- indirect evidence for chiral-symmetry restoration

#### Fireball dynamics and hadro-chemistry

homogeneous thermal fireball model

$$W_{\mathsf{FB}} = \pi (z_0 + v_z t) \left( \frac{a_\perp}{2} t^2 + r_0 \right)^2$$

- thermodynamics: isentropic expansion
- hadro-chemistry: hadron ratios fixed for  $T < T_{ch} \Rightarrow \mu_N, \mu_\pi, \mu_K, \dots$



Hendrik van Hees (Texas A&M University) EM Spectra at SPS and QCD phase diagram

#### Sources of dilepton emission in heavy-ion collisions

initial hard processes: Drell Yan

"core" ⇔ emission from thermal source [McLerran, Toimela 1985]

$$\frac{1}{q_T} \frac{\mathrm{d}N^{(\mathsf{thermal})}}{\mathrm{d}M \mathrm{d}q_T} = \int \mathrm{d}^4 x \int \mathrm{d}y \int M \mathrm{d}\varphi \frac{\mathrm{d}N^{(\mathsf{thermal})}}{\mathrm{d}^4 x \mathrm{d}^4 q} \mathsf{Acc}(M, q_T, y)$$

 ● "corona" ⇔ emission from "primordial" mesons (jet-quenching)
 ● after thermal freeze-out ⇔ emission from "freeze-out" mesons [Cooper, Frye 1975]

$$\mathrm{d}N^{(\mathrm{fo})} = \int \frac{\mathrm{d}^3 q}{q_0} q_{\mu} \mathrm{d}\sigma^{\mu} f_B(u_{\mu}q^{\mu}/T) \frac{\Gamma_{\mathrm{meson} \to \ell^+ \ell^-}}{\Gamma_{\mathrm{meson}}} \mathsf{Acc}$$

- $\bullet$  additional factor  $\gamma = q_0/M$  compared to thermal emission
- physical reason
  - thermal source rate  $\propto au_{
    m med} rac{\Gamma_{
    m meson 
    ightarrow \ell^+ \ell^-}}{\gamma}$
  - decay of mesons after fo: rate  $\propto \overset{'}{\Gamma_{\rm meson}} \frac{\Gamma_{\rm meson}}{\Gamma_{\rm meson}}$

• e.m. current-current correlator  $\Leftrightarrow au o 2n\pi$ 



- leading-order virial expansion for "four-pion piece"
- additional strength through "chiral mixing"

#### NA60 excess spectra: all $p_T$

• isentropic expansion: QGP ( $T_i \simeq 197 \text{ MeV}$ ) via mixed phase ( $T_c = 175 \text{ MeV}$ ) to thermal freeze-out ( $T \simeq 120 \text{ MeV}$ )



- relative normalization of thermal components fixed by in-medium em. spectral functions
- absolute normalization ⇔ fireball lifetime
- good overall agreement with data
- intermediate masses: hadronic " $4\pi$  contributions" via model-independent virial estimate!

#### NA60 excess spectra: IMR



• "4 $\pi$  contributions"  $(\pi + \omega, a_1 \rightarrow \mu^+ + \mu^-)$ 

slightly enhanced by VA mixing

#### NA60 excess spectra: $p_T < 0.5 \text{ GeV}$ , $p_T > 1.0 \text{ GeV}$



• good description in different  $p_T$  bins

#### Importance of Baryon effects



without baryons

- not enough broadening
- lack of strength below  $\rho$  peak

#### NA45 dielectron spectra



- electrons  $\Rightarrow$  low-mass region
- o probes baryon effects!

## Chiral reduction formalism (virial expansion)



[HvH, Rapp hep-ph/0604269]

[Dusling, Teaney, Zahed 06]

- underestimates medium effects on the ρ (due to low-density approximation no broadening!)
- results with fireball parametrization very similar to hydro!

## NA60 excess spectra (semicentral)



## NA60 $p_T$ spectra



# NA60 $p_T$ spectra (central) Fireball 2



 $10^{8}$ 0.4 GeV<M<0.6 GeV <sup>10</sup>,  $10^{6}$ NA60 central 10<sup>3</sup> total RW QGP ĎΥ 10 FO cocktail 10 0.5 1.5 qT [GeV]

• larger flow  $(v_{B\perp}^{(2)} = 0.72c \text{ vs } v_{B\perp}^{(1)} = 0.56c)$ •  $T_{\text{eff}}^{(\text{fo})} \simeq T_{\text{fo}} + m \langle v_{\perp} \rangle^2$ 

• 
$$T^{(2)}_{\text{eff}} = 291 \text{ MeV vs.}$$
  
 $T^{(1)}_{\text{eff}} = 223 \text{ MeV}$ 

 $\Rightarrow$  harder spectra

• realistic for 158-GeV-In-In?



#### New contribution: t-channel meson exchange

- motivation:  $p_T$  spectra too soft compared to NA60 data
- thermal contributions not included in models so far



• also for  $a_1$ 

#### New contribution: t-channel meson exchange

- motivation:  $p_T$  spectra too soft compared to NA60 data
- thermal contributions not included in models so far
- also for  $a_1$



## NA60- $p_T$ spectra (semicentral)





#### hadro chemistry

- sensitive to chemical freeze-out parameters ↔
   "Hagedorn resonance-gas limit"
- latent heat: duration of QGP and mixed phase

#### • (hydro) dynamics

- velocity profile  $v_\perp \propto r_\perp$  vs.  $r_\perp^{1/2},\ldots$   $\Rightarrow$  detailed hydro study
- longitudinal expansion: boost invariant vs. accelerated expansion
- viscosity effects (see QM 2006 Talk by Teaney)

#### complete set of sources

- thermal (McLerran-Toimela) vs. decay after freeze-out (Cooper-Frye)
- hard production: Drell-Yan
- non-thermalized "primordial  $\rho$ 's"
  - jet-quenching model ( $\sigma_{\text{pre-had}} = 0.4 \text{ mb}$ ; after  $\tau_{\text{form}}$ :  $\sigma_{\text{had}} = 5 \text{ mb}$ )
  - $q_T \lesssim 1 \; {\rm GeV}$ :  $N_{\rm part}$  scaling;  $q_T \gtrsim 3 \; {\rm GeV}$ :  $N_{\rm coll}$  scaling
  - "switched" linearly between scaling scenarios
  - $\bullet~\sim$  compatible with WA98 pion data

## Conclusions and Outlook

- Dilepton spectra ⇔ em. current correlator ⇔ QCD-phase diagram
- directly related to chiral symmetry (vector and axial-vector currents)
- hadronic many-body theory
  - low-mass region: light vector mesons
  - intermediate-mass region: four-pion continuum, QGP
- medium effects
  - baryons essential for in-medium properties of vector mesons
  - " $4\pi$ " contributions  $(\pi + \omega, a_1 \rightarrow \ell^+ + \ell^-)$
- fireball/freeze-out dynamics  $\Leftrightarrow p_T$  spectra
  - complete set of sources
  - need detailed hydro study
  - precise hadro-chemical freeze-out description (latent heat!)

- all calculations done in (local) heat-bath frame
- Dileptons from a thermal source ( $\rho$  channel)
- McLerran-Toimela formula + vector-meson dominance:

$$\frac{\mathrm{d}N_{\ell^+\ell^-}^{\text{therm}}}{\mathrm{d}^4 x \mathrm{d}^4 q} = -\frac{\alpha^2 m_{\rho}^4}{\pi^3 g_{\rho\pi\pi}^2} \frac{f_B(q_0)}{M^2} \operatorname{Im} D_{\rho}^{(\text{ret})}(q_0, \vec{q})$$

•  $\mathrm{d}^4 q = M \mathrm{d} M \mathrm{d}^2 q_t \mathrm{d} y$ 

$$\frac{\mathrm{d}N_{\ell^+\ell^-}^{\mathsf{therm}}}{\mathrm{d}M\mathrm{d}^2 q_t \mathrm{d}y} = \int_0^{t_{\mathsf{fo}}} \mathrm{d}t \ V_{\mathsf{FB}}(t) \frac{\alpha^2 m_\rho^4}{\pi^3 g_{\rho\pi\pi}^2} \frac{f_B(q_0)}{M} \operatorname{Im} D_\rho^{(\mathsf{ret})}(q_0, \vec{q})$$

## Dileptons from $\rho$ decays after freeze-out

- all calculations done in (local) heat-bath frame
- $\bullet$  distribution of  $\rho$  mesons at freeze-out
- Cooper-Frye formula

$$\frac{\mathrm{d}N_{\rho}}{\mathrm{d}^{3}\vec{x}\mathrm{d}^{4}q} = \frac{f_{B}(q_{0})}{(2\pi)^{3}} 2q_{0}\delta^{(+)}(q^{2} - M^{2})$$

• for broad resonance

$$\frac{\mathrm{d}N_{\rho}}{d^{3}xd^{4}q} = -\frac{f_{B}(q_{0})}{(2\pi)^{3}}\frac{2q_{0}}{\pi}\operatorname{Im}D_{\rho}$$

• dilepton rate from decay of freeze-out (  $\gamma(\vec{q})=q_0/M)$ 

$$\frac{\mathrm{d}N_{\ell^+\ell^-}^{\mathrm{fo}}}{\mathrm{d}^4x\mathrm{d}^4q} = -\frac{f_B(q_0)}{(2\pi)^3}\frac{2q_0}{\pi}\operatorname{Im} D_\rho \frac{\Gamma_{\rho\to\ell^+\ell^-}}{\gamma(\vec{q})}\exp\left(-\frac{\Gamma_{\mathsf{tot}}(t-t_{\mathsf{fo}})}{\gamma(\vec{q})}\right)$$

integration over space-time

$$\frac{\mathrm{d}N_{\ell^+\ell^-}^{\mathsf{fo}}}{\mathrm{d}M\mathrm{d}^2q_t\mathrm{d}y} = -\frac{V_{\mathsf{fo}}}{(2\pi)^3} f_B(q_0) \frac{2}{\pi} \operatorname{Im} D_\rho \frac{\Gamma_{\rho \to \ell^+\ell^-}}{\Gamma_{\mathsf{tot}}} q_0 M$$