Electromagnetic probes in the GiBUU Transport Model

Hendrik van Hees in collaboration with Janus Weil

Justus-Liebig Universität Gießen

April 26, 2011

Institut für Theoretische Physik

Outline

1 Motivation for transport models

The GiBUU model

- The Boltzmann-Uehling-Uhlenbeck Equation
- Off-shell transport: kinetics of broad resonances

3 Dileptons

- pp collisions (HADES)
- pNb (HADES)

4 ω production in γA collisions

Motivation for Transport Models

• description of various nuclear reactions within one framework

• pA, γA , eA, νA , AA

- time evolution of system \Rightarrow need dynamical approach
- transport models well suited for Monte-Carlo simulations (test-particle approach)
- strongly interacting many-body system: "medium modifications" of hadrons
- challenging task: description of broad resonance-like excitations
 - off-shell transport with consistent dynamical evolution of spectral properties
 - conservation laws
 - thermodynamic consistency
- in this talk: GiBUU model
 - dileptons in pp and pNb collisions (HADES)
 - ω production in γA (CBELSA/TAPS)

The GiBUU Model

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

- BUU framework for hadronic transport
- reaction types: pA, πA , γA , eA, νA , AA
- open-source modular Fortran 95/2003 code
- version control via Subversion
- publicly available realeases: http://gibuu.physik.uni-giessen.de

The Boltzmann-Uehling-Uhlenbeck Equation

• time evolution of phase-space distribution functions

 $[\partial_t + (\vec{\nabla}_p H_i) \cdot \vec{\nabla}_x - (\vec{\nabla}_x H_i) \cdot \vec{\nabla}_p] f_i(t, \vec{x}, \vec{p}) = I_{\text{coll}}[f_1, \dots, f_i, \dots, f_j]$

- Hamiltonian H_i
 - selfconsistent hadronic mean fields, Coulomb potential, "off-shell potential"
- collision term I_{coll}
 - two- and three-body decays/collisions
 - multiple coupled-channel problem
 - at low reaction energies: resonance model
 - at high reaction energies: (modified) PYTHIA

Transport model for broad resonances

• resonances described with relativistic Breit-Wigner distribution

$$\mathcal{A}(x,p) = -\frac{1}{\pi} \frac{\mathrm{Im}\,\Pi}{(p^2 - M^2 - \mathrm{Re}\,\Pi)^2 + (\mathrm{Im}\,\Pi)^2}; \quad \mathrm{Im}\,\Pi = -\sqrt{p^2}\Gamma$$

- full off-shell equation from quantum-transport approach [Botermans, Malfliet,...] hard to solve due to "back-reaction term"
- way out: off-shell potential ansatz [Effenberger, Mosel; Leupold; Cassing, Juchem; Buss] • in test-particle ansatz: off-shell potential, $\Delta \mu_i^2$,

$$p_i^2 = M^2 + \operatorname{Re} \Pi + \Delta \mu_i^2, \quad \chi_i = \frac{\Delta \mu_i^2}{\Gamma_i}$$

• off-shell equations of motion

$$\dot{\vec{r}}_i = \frac{1}{1 - C_i} \frac{1}{2E_i} \left[2\vec{p}_i + \vec{\nabla}_{p_i} (\operatorname{Re} \Pi_i + \chi_i \Gamma_i) \right]$$
$$\dot{\vec{p}}_i = -\frac{1}{1 - C_i} \frac{1}{2E_i} \vec{\nabla}_r (\operatorname{Re} \Pi_i + \chi_i \Gamma_i)$$
$$C_i = \frac{1}{2E_i} \frac{\partial}{\partial E_i} (\operatorname{Re} \Pi_i + \chi_i \Gamma_i), \quad \dot{\chi}_i = 0$$

Resonance Model

- \bullet reactions dominated by resonance scattering: $ab \rightarrow R \rightarrow cd$
- Breit-Wigner cross-section formula

$$\sigma_{ab\to R\to cd} = \frac{2s_R + 1}{(2s_a + 1)(2s_b + 1)} \frac{4\pi}{p_{\mathsf{lab}}^2} \frac{s\Gamma_{ab\to R}\Gamma_{R\to cd}}{(s - m_R^2)^2 + s\Gamma_{\mathsf{tot}}^2}$$

- \bullet applicable for low-energy nuclear reactions $E_{\rm kin} \lesssim 1.1 \; {\rm GeV}$
- example: $\sigma_{\pi^-p
 ightarrow \pi^-p}$ [Teis (PhD thesis 1996)]

Hendrik van Hees in collaboration with Janu:

• further cross sections

Hendrik van Hees in collaboration with Janus

Heavy-Quark Transport

- dileptons valuable probe for in-medium properties of vector mesons
- main sources
 - Dalitz decays: $\pi^0, \eta \to \gamma \ell^+ \ell^-$; $\omega \to \pi^0 \ell^+ \ell^-$, $\Delta \to N \ell^+ \ell^-$
 - ρ, ω, φ → ℓ⁺ℓ⁻: invariant mass ℓ⁺ℓ⁻ spectra ⇒ spectral properties of vector mesons
- provides direct access to in-medium properties of vector mesons, if they decay inside the medium!
- \bullet in GiBUU: strict vector-dominance model $J_{\rm em}^{\rm had} \propto V^{\mu}$

Comparison to HADES data

Hendrik van Hees in collaboration with Janu:

Comparison to HADES data

 $pp@3.5\;{\rm GeV}$

Hendrik van Hees in collaboration with Janus

Heavy-Quark Transport

Comparison to HADES data

 $pp@3.5\;{\rm GeV}$

Hendrik van Hees in collaboration with Janus

Heavy-Quark Transport

Δ -Dalitz Decay

- \bullet transition-form factor $\Delta \to N \gamma^*$
- unknown in time-like region
- two-component quark model [Wan, lachello, IJP A 20 (2005)]

Hendrik van Hees in collaboration with Janu:

Comparison to HADES data with Δ form factor

Comparison to HADES data with Δ form factor

Hendrik van Hees in collaboration with Janus

Comparison to HADES data with resonance model

pp@3.5 GeV

need higher resonances at this energy

• ρ shape changes

Hendrik van Hees in collaboration with Janu:

$\begin{array}{l} \mbox{Comparison to HADES data with resonance} \\ \mbox{model+PYTHIA} \end{array}$

- use ρ shape from resonance model (rescaled by factor 1.5!)
- use PYTHIA for all other channels as before

Comparison to HADES data with Δ form factor

Hendrik van Hees in collaboration with Janus

Improved experimental upper limit for $\eta \rightarrow e^+e^-$?

- upper limit from [Berlowski et al [WAFA Collab.], PRD 77 (2008)]: ${\rm BR}(\eta \to e^+e^-) < 2.7 \cdot 10^{-5}$
- theoretical prediction [Browder et al, PRD 56 (1997)]: ${
 m BR}(\eta
 ightarrow e^+e^-) \simeq 10^{-9}$

- *pp* baseline as input (including the discussed uncertainties!) cross sections, branching ratios, form factors, etc.
- medium effects built in transport model
 - final-state interactions
 - production from secondary collisions
- additional impact from vector-meson spectral functions?

- discrepancy in normalization (π_0 Dalitz?)
- acceptance issue?

- medium modifications of vector-meson spectral functions?
- collisional broadening

- medium modifications of vector-meson spectral functions?
- dropping mass (16% at nuclear-matter density)

- medium modifications of vector-meson spectral functions?
- dropping mass + collisional broadening

ω production in γA collsions

- main motivation: medium effects on ω spectral function
- earlier GiBUU simulations by Mühlich
- γ 40 Ca, $E_{\gamma}=0.9$ -1.2 GeV
- large low-mass tail
- threshold effect

- γ ⁴⁰Ca, $E_{\gamma} = 1.5$ -2.2 GeV
- nearly no effect

ω production in γA collisions (CBELSA/TAPS)

- improved implementation of off-shell transport
- spectral functions relax properly to vacuum shape!

ω production in γA collisions (CBELSA/TAPS)

- improved implementation of off-shell transport
- spectral functions relax properly to vacuum shape!
- $E_{\gamma} = 0.9$ -1.3 GeV

Hendrik van Hees in collaboration with Janu:

Position of decaying ω 's

- not so much sensitivity to in-medium effects
 - few $\omega{\rm 's}$ decay inside the nucleus
 - strong in-medium broadening
 - density profile of nucleus
- correct implementation of off-shell transport crucial!

29 / 30

Conclusions

- GiBUU transport model
 - comprehensive model for pA, πA , γA , eA, νA , AA collisions
 - dynamically consistent transport of broad resonances via "off-shell potential"
 - open-source releases available (Fortran 95/2003)
 - http://gibuu.physik.uni-giessen.de
- Dilepton probes@HADES
 - resonance model for VM production ($E_{\rm kin} \lesssim 1.1 \ {\rm GeV}$)
 - vector-meson dominance model for dileptons
 - modified PYTHIA at higher energies
 - pp baseline: still uncertainties in VM region (form factors)
 - *pA*: within uncertainties no clear indication of medium effects (also in normalization/acceptance)
 - AA: work in progress
- $\bullet\,$ photoproduction of $\omega\,$ mesons on nuclei
 - mass spectra inconclusive wrt. medium effects
 - consistent off-shell transport crucial!
 - transparency ratio: large broadening of ω ($\Gamma_{\omega} \simeq 140 \ {
 m MeV}$)