Symmetries Ward Takahashi identities and all that

Hendrik van Hees

Content

- 1PI- and 2PI-Functionals of quantum field theory
- Ward Takahashi identities
- Example: Goldstone's Theorem
- The Φ-derivable scheme and symmetries
- Restoration of symmetries

1PI-Functionals I

- Start with a local $(\mathrm{O}(N)$ symmetric!) classical action functional

$$
S[\vec{\phi}]=\left\{\frac{1}{2}\left(\partial_{\mu} \vec{\phi}(1)\right)\left(\partial^{\mu} \vec{\phi}(1)\right)-\frac{m^{2}}{2} \vec{\phi}^{2}(1)-\frac{\lambda}{8}\left(\vec{\phi}^{2}(1)\right)^{2}\right\}_{1}
$$

- Generating functional for Green's functions:

$$
Z[\vec{J}]=\int \mathrm{D} \vec{\phi} \exp \left[\mathrm{i}\left(S[\vec{\phi}]+\{\vec{J}(1) \vec{\phi}(1)\}_{1}\right)\right]
$$

- Generates Green's functions:

$$
\mathrm{i} G^{(n)}\left(1 j_{1}, \ldots, n j_{n}\right)=\left\langle T_{\mathcal{C}} \phi^{j_{1}}(1) \cdots \phi^{j_{n}}(n)\right\rangle=\left.\frac{(-\mathrm{i})^{n}}{Z[0]} \frac{\delta^{n} Z[J]}{\delta J_{j_{1}}(1) \cdots \delta J_{j_{n}}(n)}\right|_{J=0}
$$

- Generating functional for connected Green's functions:

$$
Z[J]=\exp (\mathrm{i} W[J]), \quad G_{c}^{(n)}\left(1 j_{1}, \ldots, n j_{n}\right)=\left.(-\mathrm{i})^{n} \frac{\delta^{n} W[J]}{J_{j_{1}}(1) \cdots J_{j_{n}}(n)}\right|_{J=0}
$$

1PI-Functionals II

- Mean field:

$$
\varphi^{j}(1)=\frac{\delta W[J]}{\delta J_{j}(1)}=\left\langle\phi^{j}(1)\right\rangle_{J}
$$

- Generating functional for proper vertex functions

1-particle irreducible (1PI) truncated Green's functions:

$$
\begin{gathered}
\Gamma[\vec{\varphi}]=W[\vec{J}]-\{\vec{J}(1) \vec{\varphi}(1)\} \Leftrightarrow \vec{J}(1)=-\frac{\delta \Gamma[\vec{\varphi}]}{\delta \vec{\varphi}(1)} . \\
-\mathrm{i} \Gamma^{(n)}\left(1 j_{1}, \ldots, n j_{n}\right)=\left.\frac{\delta^{n} \Gamma[\vec{\varphi}]}{\delta \varphi\left(1 j_{1}\right) \cdots \delta \varphi\left(n, j_{n}\right)}\right|_{\frac{\delta \Gamma}{\delta \bar{\varphi}}=-\vec{J}=0}
\end{gathered}
$$

- Relation for the connected 2-point Green's function

$$
\Gamma^{(2)}\left(1 j_{1}, 2 j_{2}\right)=\mathrm{i}\left(G_{c}^{(2)}\right)^{-1}\left(1 j_{1}, 2 j_{2}\right)
$$

- All connected (and disconnected) Green's functions can be expressed as tree diagrams with the proper vertex functions as vertices and $G_{c}^{(2)}$ as propagator lines
- Only proper vertex functions need to be renormalized!

Symmetries of the class. action: Noether's theorem

- In our case $S[\vec{\varphi}]$ is symmetric under $\mathrm{O}(N)$-transformations of the fields:

$$
\forall \delta \eta_{a}:\{\frac{\delta S[\vec{\varphi}]}{\delta \vec{\varphi}\left(x_{1}\right)} \underbrace{\delta \eta_{a} \hat{\tau}^{a} \vec{\varphi}\left(x_{1}\right)}_{\delta \vec{\varphi}\left(x_{1}\right)}\}_{1}=0
$$

- Must hold for any field configuration:

$$
\exists j_{\mu}^{a}: \frac{\delta S[\vec{\varphi}]}{\delta \vec{\varphi}(x)} \hat{\tau}^{a} \vec{\varphi}(x)=\partial^{\mu} j_{\mu}^{a}
$$

- Equations of motion

$$
\frac{\delta S[\vec{\phi}]}{\delta \vec{\phi}}=0
$$

- For each independent global symmetry: conserved Noether current

$$
\partial^{\mu} j_{\mu}^{a}=0
$$

Symmetries of the quantized theory

- "Field-translation" invariance of path-integral measure:

$$
Z[\vec{J}]=\int \mathrm{D} \vec{\phi} \exp \left[\mathrm{i} S[\vec{\phi}+\delta \vec{\phi}]+\mathrm{i}\{\vec{J}(x)(\vec{\phi}(x)+\delta \vec{\phi}(x))\}_{x}\right]
$$

- In this general form: Ehrenfest's theorem
- For infinitesimal $\delta \vec{\varphi}$:

$$
\left\{\int \mathrm{D} \vec{\phi}\left[\frac{\delta S[\vec{\phi}]}{\delta \vec{\phi}\left(x^{\prime}\right)}+\vec{J}\left(x^{\prime}\right)\right] \delta \vec{\phi}\left(x^{\prime}\right) \exp \left[\mathrm{i} S[\vec{\phi}]+\mathrm{i}\{\vec{J}(x) \vec{\phi}(x)\}_{x}\right]\right\}_{x^{\prime}}=0
$$

- For infinitesimal Symmetry transformations green term vanish identically:

$$
\delta \vec{\phi}(x)=\delta \eta_{a} \hat{\tau}^{a} \vec{\phi}(x): \Rightarrow \forall \delta \eta_{a}: \delta \eta_{a}\left\{\vec{J}\left(x^{\prime}\right) \hat{\tau}^{a} \frac{\delta}{\delta \mathrm{i} \vec{J}\left(x^{\prime}\right)} Z[J]\right\}_{x^{\prime}}=0
$$

- Linear in $\frac{\delta}{\delta \vec{J}}$: The same for $W \Rightarrow$

$$
\delta \eta_{a}\left\{\frac{\delta \Gamma[\vec{\varphi}]}{\delta \varphi \overrightarrow{(x)}} \hat{\tau}^{a} \varphi \overrightarrow{(x)}\right\}_{x}=0
$$

Perturbative renormalizability

- Linear symmetry operations + path-integral measure invariant + Existence of symmetry consistent regularization
$\square[\vec{\varphi}]$ has the same symmetry as the classical action
- Contains the full set of Ward Takahashi identities for proper Green's functions
- For (perturbative renormalization): If Lagrangian contains all monomials of order 4 or less allowed by symmetries also the counter terms are of the same form: Theory renormalizable to any order of \hbar or λ
- \hbar : Overall factor in exponential of path integral; Order by order symmetric
- λ : quadratic part and "interaction part" of action are separately invariant
- Conclusion: Renormalized action is symmetric under $\mathrm{O}(N)$ order by order in the loop ($\hbar)$ or Coupling constant expansion
- Remark: Holds also true for perturbative large N-expansion

"Hidden Symmetries" and Goldstone's theorem

- Hidden symmetry: Solution $\frac{\delta \Gamma}{\delta \bar{\varphi}}=0$ not invariant, i.e., solution $\vec{\varphi}_{0} \neq 0$
- Inverse Green's function:

$$
G^{-1}\left(x_{1} j_{1}, x_{2} j_{2}\right)=\left.\frac{\delta^{2} \Gamma[\vec{\varphi}]}{\delta \varphi_{j_{1}}\left(x_{1}\right) \delta \varphi_{j_{2}}\left(x_{2}\right)}\right|_{\vec{\varphi}=\vec{\varphi}_{0}}
$$

- Taking derivative of WTI for Γ at $\vec{\varphi}_{0}$

$$
\delta \eta_{a}\left\{G^{-1}\left(x_{1}^{\prime} j_{1}^{\prime}, x_{2} j_{2}\right)\left(\tau^{a}\right)_{j_{1}^{\prime} j_{1}} \varphi_{0 j_{1}}\left(x^{\prime}\right)\right\}_{x^{\prime}}=0
$$

- If theory translation invariant (e.g., vacuum or thermal equilibrium)

$$
\delta \eta_{a}\left(G^{-1}\right)_{j_{1}^{\prime} j_{2}}(p=0)\left(\tau^{a}\right)_{j_{1}^{\prime} j_{1}} \varphi_{0 j_{1}}=0
$$

- $\hat{\tau}^{a}$ generators of $\mathrm{O}(N)$ and $\vec{\varphi}_{0} \neq 0 \Rightarrow$
- If G is symmetry group of Γ and H is the subgroup which leaves $\vec{\varphi}_{0}$ invariant \Rightarrow

$$
N_{\mathrm{NG}}=\operatorname{dim} G-\operatorname{dim} H(=N-1 \text { for } \sigma \text {-model })
$$

massless field degrees of freedom: Nambu-Goldstone modes

- Nambu-Goldstone phase can be renormalized with symmetric counter terms
- Need to introduce mass renormalization scale

The Φ-Functional

- Generating functional

$$
Z[J, K]=N \int \mathrm{D} \phi \exp \left[\mathrm{i} S[\phi]+\mathrm{i}\left\{J_{1} \phi_{1}\right\}_{1}+\left\{\frac{\mathrm{i}}{2} K_{12} \phi_{1} \phi_{2}\right\}_{12}\right], \quad Z[J, K]=\exp (\mathrm{i} W[J, K])
$$

- The mean field and the connected Green's function

$$
\varphi_{1}=\frac{\delta W}{\delta J_{1}}, G_{12}=-\frac{\delta^{2} W}{\delta J_{1} \delta J_{2}} \Rightarrow \frac{\delta W}{\delta K_{12}}=\frac{1}{2}\left[\varphi_{1} \varphi_{2}+\mathrm{i} G_{12}\right]
$$

- Legendre transformation for φ and G :

$$
\mathbb{\Gamma}[\varphi, G]=W[J, K]-\left\{\varphi_{1} J_{1}\right\}_{1}-\frac{1}{2}\left\{\left(\varphi_{1} \varphi_{2}+\mathrm{i} G_{12}\right) K_{12}\right\}_{12}
$$

- Exact closed form:

$$
\begin{aligned}
\mathbb{\Gamma}[\varphi, G]= & S_{0}[\varphi]+\frac{\mathrm{i}}{2} \operatorname{Tr} \ln \left(M^{2} G^{-1}\right)+\frac{\mathrm{i}}{2}\left\{D_{12}^{-1}\left(G_{12}-D_{12}\right)\right\}_{12} \\
& +\Phi[\varphi, G] \Leftarrow \text { all closed 2PI interaction diagrams } \\
D_{12}= & \left(-\square-m^{2}\right)^{-1}
\end{aligned}
$$

Equations of Motion

- External sources should vanish \Rightarrow Equations of motion:

$$
\begin{array}{r}
\frac{\delta \mathbb{\Gamma}}{\delta \varphi_{1}}=-J_{1}-\left\{K_{12} \varphi_{2}\right\}_{2} \stackrel{!}{=} 0 \\
\frac{\delta \mathbb{\Gamma}}{\delta G_{12}}=-\frac{\mathrm{i}}{2} K_{12} \stackrel{!}{=} 0
\end{array}
$$

- Equation of motion for the mean field φ

$$
-\square \varphi-m^{2} \varphi:=j=-\frac{\delta \Phi}{\delta \varphi}
$$

- for the "full" propagator $G \Rightarrow$ Dyson's equation:

$$
-\mathrm{i}\left(D_{12}^{-1}-G_{12}^{-1}\right):=-\mathrm{i} \Sigma=2 \frac{\delta \Phi}{\delta G_{21}}
$$

- Integral form of Dyson's equation:

$$
G_{12}=D_{12}+\left\{D_{11^{\prime}} \Sigma_{1^{\prime} 2^{\prime}} G_{2^{\prime} 2}\right\}_{1^{\prime} 2^{\prime}}
$$

- Closed set of equations of for φ and G

Properties of the Φ-derivable Approximations

- Same technique as for 1 PI -functional \Rightarrow Generalized WTI:

$$
\delta \eta_{a}\left(\left\{\frac{\delta \mathbb{\Gamma}[\vec{\varphi}, G]}{\delta \vec{\varphi}_{1}} \hat{\tau}^{a} \vec{\varphi}_{1}\right\}_{1}+\left\{\frac{\delta \mathbb{\Gamma}[\vec{\varphi}, G]}{\delta G_{12}^{j k}}\left[\left(\tau^{a}\right)_{j j^{\prime}} G_{12}^{j^{\prime} k}+\left(\tau^{a}\right)_{k k^{\prime}} G_{12}^{j k^{\prime}}\right]\right\}_{12}\right)=0
$$

\mathbb{I} invariant under $\mathrm{O}(N)$ with $\vec{\varphi}$ transforming as a vector, G transforming as a 2 nd-rank tensor

- Truncation (\hbar-expansion, λ-expansion, ...) of the Series of diagrams for Φ

Espectation values for Noether currents are exactly conserved

- In equilibrium $\mathrm{i} \mathbb{\Gamma}[\varphi, G]=\ln Z(\beta) \Rightarrow$ thermodynamical potential
- consistent treatment of Dynamical quantities and thermodynamical bulk properties like energy, pressure, entropy
- Problem: Equations of motion \Rightarrow partial resummation of infinite series of pert. diagrams. No systematic expansion parameter for solutions
Crossing symmetry violated
Although functional is symmetric Σ and higher n-point functions do not fulfill usual 1PI WTIs!
Especially: In general Goldstone's theorem violated!

Repairing symmetries

- First aim: Repair crossing symmetry \Rightarrow Look for non-perturbative 1PI-effective action:

$$
\tilde{\Gamma}[\vec{\varphi}]=\mathbb{\Gamma}[\vec{\varphi}, \tilde{G}[\vec{\varphi}]] \text { with }\left.\frac{\delta \mathbb{\Gamma}[\vec{\varphi}, G]}{\delta G}\right|_{G=\tilde{G}[\vec{\varphi}]} \stackrel{!}{=} 0
$$

- Solutions of 2 PI equations of motion given by

$$
\left.\frac{\delta \tilde{\Gamma}[\vec{\varphi}]}{\delta \vec{\varphi}}\right|_{\vec{\varphi}=\vec{\varphi}_{0}}=0, \quad G=\tilde{G}\left[\vec{\varphi}_{0}\right]
$$

- Define 1PI effective proper vertex functions as usual

$$
\tilde{\Gamma}^{(n)}\left(x_{1} j_{1}, \ldots, x_{n} j_{n}\right)=\left.\mathrm{i} \frac{\delta^{n} \tilde{\Gamma}[\vec{\varphi}]}{\delta \varphi_{j_{1}}\left(x_{1}\right) \cdots \delta \varphi_{j_{n}}\left(x_{n}\right)}\right|_{\vec{\varphi}=\vec{\varphi}_{0}}
$$

- Can be expressed with self-consistent propagators as internal lines and mean fields
- Crossing symmetric, fulfill 1PI-WTIs
- Remainders of symmetry violations: Internal lines do not fulfill Goldstone's theorem; wrong thresholds
- Wrong phase transition behaviour

Example: Hartree approximation

- Hatree approximation:

$$
1, x+8+8
$$

- 1PI self-energy defined on top of Hartree approximation

Random phase approximation (RPA):

$$
\left.-i \tilde{\Sigma}=\underline{x}+0+{ }^{x}\right)^{x}+\infty^{x}+\cdots
$$

RPA-resummation

External σ-mass at $\mathrm{T}=150 \mathrm{MeV}$ (stable solution)

External π-mass at $\mathrm{T}=150 \mathrm{MeV}$ (stable solution)

External σ-mass at $\mathrm{T}=150 \mathrm{MeV}$ (stable solution)

External σ-mass at $\mathrm{T}=150 \mathrm{MeV}$ (stable solution)

General scheme for $\tilde{\Sigma}$

- 1st step: define Φ and internal propagator

$$
\begin{aligned}
& i \Phi=x+\underset{x}{x} \boldsymbol{x}+\underbrace{}_{4}+\frac{1}{2} x+\frac{1}{2} \longrightarrow \\
& \mathrm{i}\left(\square-\tilde{m}^{2}\right) \varphi=\underset{\boldsymbol{x}}{\boldsymbol{X} \boldsymbol{x}}+\mathbf{Q}_{\boldsymbol{4}}+\longrightarrow \boldsymbol{\sim} \\
& -\mathrm{i} \Sigma=\underset{+}{+}+\infty
\end{aligned}
$$

- Φ defines kernels for Bethe-Salpeter equation

Definition of Bethe-Salpeter ingredients

$$
\mathrm{i}^{(3)}=\mathrm{i} \Phi_{\mathrm{i} G, \varphi}=\mathrm{i} \Phi_{\mathrm{i} G, \mathrm{i} G}=
$$

- Green's function lines and mean fields fixed from self-consistent Φ-Functional solution

Conclusions and outlook

- Reminder of usual 1PI functional formalism
- Self-consistent Φ-derivable schemes
- Symmetry analysis
- Violations of symmetries by solutions
- Reparation of symmetries for external vertices
- Remainder of symmetry violations: Wrong dynamics in internal lines!
- "Toolbox" for application to realistic models
- Perspectives for self-consistent treatment of gauge theories
- But Symmetry violations for internal lines worse for local gauge symmetries: Internal lines contain unphysical degrees of freedom
- QCD e.g. beyond HTL?
- Transport equations for particles with finite width
??? Wanted: selfconsistent and symmetry conserving scheme beyond mean field approximation for vector fields! Still not in sight :-(

