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Preface

In these notes I try to give a self contained treatment of statistical physics. The reader should be familiar with
quantum theory and the formalism of the 2nd quantization. It was my goal to show that statistical physics is
not a special topic of its own but a completion of the concept of physics at all.

The main idea of application of statistical concepts in physics in the 19th century was to give an explanation
of the world we live in from properties of little particles. Although this idea is very old in history of science
(reaching back to Democritus), the main problem for “the statistical physicists” was to prove the existence of
the atoms at all! There was no direct proof for the existence of discrete constituents of the macroscopic world
which looks so smooth.

Although the program of statistical physics was very successful in deriving the macroscopic properties, es-
pecially the explanation of phenomenological thermo dynamics, there were many physicists in doubt if the
atoms were real. The solution of this problem was given by Einstein, using statistical methods to explain
the Brownian motion which he treated as the fluctuation of “mesoscopic” particles due to collisions with the
surrounding molecules of the fluid the particles are suspended in.

Of course in our days the meaning of statistical physics has changed completely because the existence of atoms
and even smaller constituents of matter is not in doubt. The most important meaning of statistical physics
is to explain the classical nature of the macroscopic world, we are so familiar with from every day life, on
grounds of the underlying quantum world.

This point of view dictates the whole conception of these notes. Thus we start with some mathematical foun-
dations of statistics which is not meant to be rigorous but to give some techniques for the practical calculations.
It is important to see that probability theory, which can be summarized by Kolmogorov’s axioms, gives no
advice how to describe a certain situation with help of probability distributions but only the mathematical
general properties of probabilities.

Looking at the problem from the physical side we find as the basic theory quantum theory for many particle
problems which is most conveniently formulated as a quantum field theory. Quantum theory contains also
elements of statistics because of the Born interpretation for the “wave function”1. But these statistics have
nothing to do with the statistics used to describe the macroscopic world as constituted by very many little
particles but because of the principal impossibility to give all measurable observables of a system a certain
value (indeterminism). Maximally the properties described by a complete compatible set of observables can
be used to describe the system, then known to be in a certain pure state given by a ray in Hilbert space.

Statistical physics is used to describe situations where it is not possible to determine the state ket because of
the complexity of the system under consideration. This is especially the case for macroscopic systems which
contain about 1024 particles. Then we shall use probability distributions for the state kets. It is not difficult to
formulate the general properties of probability distributions in quantum physics. Especially quantum theory
gives the dynamics of the probability distribution from first principles of quantum dynamics. This will be
explained in the beginning of the 2nd chapter.

1We will use the operator formalism in the abstract Hilbert space, rather than the Schrödinger’s wave function approach in order
to pronounce the particle point of view which seems to be more adequate for the meaning of statistical physics
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Again we have the problem to find this probability distribution. Now it is clear that there is no help from
quantum physics to find this distribution because the only thing we know about our system are the initial
values of some observable macroscopic quantities but of course not the sharp values of a complete set of
observables.

The solution of the problem how to find the probability distribution must thus be a new principle not con-
tained in probability theory or quantum physics. The idea of this principle is to use the probability distribu-
tion which describes nothing else than the knowledge we have about the system. The idea is thus to measure
the amount of information which is hidden in the probability distribution. This is the aim of the information
theory founded by Shannon for applying it in signal theory of electric engineering. Our feeling is that we
know more about the system as the distribution becomes more concentrated around a certain value of the
stochastic observable under consideration. It is this simple idea which is formulated a little bit more exactly
which leads to the entropy well known in thermodynamics and statistics as the measure of the lack of in-
formation against “complete” information of the system. Now it is clear what to do to find the probability
distribution which should be used: Given the information of the system at a initial time we have to use the
probability distribution of all those respecting the given information which gives the maximal entropy. Since
the entropy is the measure of lacking information we can be sure to describe the given (incomplete) informa-
tion about the system by the very probability distribution which contains the least prejudice. The maximal
entropy principle of phenomenological thermodynamics (valid only for the equilibrium case) is thus founded
on purely statistical grounds, namely the Jaynes principle of least prejudice. The same time this leads to the
more generalized meaning of the entropy principle beyond equilibrium situations.
These notes are organized as follows:

The first chapter gives a self-contained introduction in mathematical statistics and information theory. The
second chapter starts with a short introduction to basic quantum physics and uses the statistical concepts of the
first chapter to describe quantum statistics. The third chapter gives some general ideas about thermodynamic
equilibrium and a statistical explanation for phenomenological thermodynamics, i.e., of course we shall apply
this concepts at first to ideal gas problems.
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Chapter 1

Mathematical Foundations of Statistics

1.1 Events and Probability

In this section we shall give an introduction to the mathematical formalism behind probability theory. The
main goal of applied mathematical statistics is the analysis of experiments with unpredictable results. This
is a rather vague idea and has to be founded axiomatically to build a nice mathematical theory. Nevertheless
these axioms are oriented on the practical task.

An often used example is playing dice and we shall use this example to give an idea what is axiomatic statistics
about. The first thing we have to do is to describe precisely the results of the stochastic experiment. All
possible results of an experiment build the set of results. In our example of the dice a result of an experiment
may be described by the number showing up. Thus the set of results is given by Ω= {1,2,3,4,5,6}.
But often there are situations where it is not important which number shows up after throwing the dice but
other events, for instance if the number is 6 or not. An event thus might be described as partial sets of Ωwith
the meaning that a certain experiment belongs to the event under consideration if the outcome is contained
in the set describing the event. For instance the event E = {6} ⊆Ω is realized if the dice shows the number 6.

Another example might be E = {2,4,6} or “even number”. An experiment realizes this event if the number
coming out is even. The set of all events is thus the potency set of Ω, i.e., the set of all subsets of Ω.It is
important to realize that the elements of this set are sets, namely the subsets of Ω.
Now we can also investigate what is the meaning of elementary operations with the events. Given two events
E1 and E2 we can ask for the event E1 and E2 being present simultaneously. But we have defined an event as
a subset of Ω containing all outcomes of an experiment belonging to the event. Thus the event that both E1
and E2 happened is given by the cut of these events E

1 and 2
= E1 ∩ E2. If E1 and E2 are contradicting (for

instance in our example with the dice take E1 = {1,3,5} and E2 = {2,4,6}), which means that there are no
common results contained in both E1 and E2, we have E1 ∩ E2 = ;. This gives us the interpretation of the
empty set contained in the set of events: it’s the impossible event.

The same line of reasoning shows that the event “E1 or E2” happened is given by E1 ∪ E2.

Given an event E it is also sensible to ask if “E did not happen”, which is again an event, which is clearly given
by the complement of E with respect to Ω: Ē =Ω\E . Take again the empty set which had the meaning of an
event which can never happen doing an experiment. Its negation is the event which is true for any experiment
one can do. This is given by Ω=Ω \ ;.
These considerations show that all elementary set operations which can be done on the events again give an
event with a simple relation to the events involved. Now for the formal theory of statistics it is important
that the three operations ∪, ∩ and Ω\ · applied to the potency set of Ω are closed, i.e., all these operations are
mapsP Ω→P Ω.

7



Chapter 1 · Mathematical Foundations of Statistics

Now it is simple to realize that the structure (P Ω,∩,∪, ·̄) builds an Boolean algebra:

A∪B = B ∪A, A∩B = B ∩A, (1.1.1)
A∩ (B ∪C ) = (A∩B)∪ (B ∩C ), A∪ (B ∩C ) = (A∪B)∩ (B ∪C ), (1.1.2)

A∪;=A, A∩Ω=A, (1.1.3)

A∪ Ā=Ω, A∩ Ā= ; (1.1.4)

where A,B ,C ∈P (Ω) and Ā=Ω \A.

We shall not prove all the basic rules for calculations using this algebra.

1.2 Probabilities

Now we like to measure the probability of an event. In this section we shall give only the basic properties of
such a measure, not the rules how to obtain it in practice. We also don’t give a discussion of the principal
problems of probability theory present in the philosophical literature. All these problems are solved by
looking from the axiomatic point of view. Thus we give immediately Kolmogorov’s axioms:

(P1) The probability is a function P :P Ω→R≥0,

(P2) P (Ω) = 1,

(P3) For any events E1 and E2 with E1 ∩ E2 = ; we have P (E1 ∪ E2) = P (E1)+ P (E2).

The idea behind this axioms is that the probability measures how often an experiment will give a result
belonging to a given event.

The most simple idea of how to measure it comes again from playing with a perfect dice where all numbers
are equally probable, i.e., P ({i}) = 1/6 for i = 1 . . . 6. Now Kolmogorov’s axioms allow to calculate the
probability for any event from this simple ansatz.1 Then P3 is for this case nothing else than the idea that
the probability is given as the fraction of the number of elements contained in the event and the number of
results which are possible at all.

As we shall show later the probabilities can be measured in practice by performing very much independent
experiments. If N (E) are the number the event E occurs and N is the number of experiments performed then
the probability is given by the limit N (E)/N for N →∞.

Now we prove some simple rules about probabilities

Lemma 1. (1) For E ∈P Ω we have P (Ē) = 1− P (E). For all E ∈P Ω we have P (E)≤ 1

(2) P (;) = 0.

(3) For A,B ∈P Ω: P (A∪B) = P (A)+ P (B)− P (A∩B).

(4) Sylvester’s formula: Let Ai ∈P Ω with i = 1, . . . , n. Then we find

P

� n
⋃

i=1

Ai

�

=
n
∑

i=1

P (Ai )−
n
∑

i , j=1;i< j

P (Ai ∩Aj )+ · · ·+(−1)n−1P (A1 ∩A2 ∩ . . .∩An). (1.2.1)

1Keep in mind that the choice of the probabilities for the elementary events (which are defined as the subsets ofΩwith 1 element)
are only a guess. There is no other idea behind this than what is meant by a “ideal dice”. If the material the dice is made of is not
homogeneous this guess might be wrong.
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Proof. (1) is simply shown by using the fact that E ∪ Ē =Ω and E ∩ Ē = ;. Using P2 and P3 we find

1= P (Ω) = P (E ∪ Ē) = P (E)+ P (Ē). (1.2.2)

Since 0≤ P (Ē) = 1− P (E) we conclude P (E)≤ 1.

(2) From (1) we know
P (;) = 1− P (;̄) = 1− P (Ω) = 0 (1.2.3)

where we have used P2 in the last step.

(3) We have A∪B =A∪ (B ∩ Ā) and A∩ (B ∩ Ā) = ;. Thus we can use P3:

P (A∪B) = P (A)+ P (B ∩ Ā). (1.2.4)

On the other hand we have B = (A∩B)∪ (Ā∩B) and (A∩B)∩ (Ā∩B) = ; so that P3 again applies:

P (B) = P (A∩B)+ P (Ā∩B). (1.2.5)

With help of this we can eliminate P (Ā∩B) from (1.2.4) which gives the claim.

(4) is a simple proof by induction making use of

n
⋃

i=1

Ai =
n−1
⋃

i=1

Ai ∪An (1.2.6)

The rest is done by straightforwardly writing out all the sums which is a nice exercise for the reader! Q.E.D.

Now we define conditional probabilities as follows: The probability for the event B ∈P Ω under the condi-
tion that A∈P Ω is true is defined for P (A) 6= 0 as

PA(B) =
P (A∩B)

P (A)
. (1.2.7)

Lemma 2. The PA :P Ω→R≥0 fulfills Kolmogorov’s axioms (P1)-(P3).

Proof. (P1) We have to show that the range of PA is really [0,1]. Clearly we have PA(E)≥ 0 because P (A∩B)≥
0 and P (A)> 0. That it is ≤ 1 follows from (P2) and (P3) because each event can be built as disjunct union of
elementary events.

(P2) PA(Ω) = P (A∩Ω)/P (A) = P (A)/P (A) = 1.

(P3) Let B ∩C = ;. Then

PA(B ∪C ) =
P [A∩ (B ∪C )]

P (A)
=

P [(A∩B)∪ (A∩C )]
P (A)

(1.2.8)

Now (A∩B)∩(A∩C ) =A∩(B∩C ) =A∩;= ; and using (P3) for the probabilities P we get the claim. Q.E.D.

Definition 1. Two events A,B ∈P Ω are called stochastically independent if and only if

P (A∩B) = P (A)P (B) (1.2.9)

It should be kept in mind that stochastic independence is defined on grounds of probabilities and are not a
property of the events as sets.

9



Chapter 1 · Mathematical Foundations of Statistics

1.3 Probability variables

Let ξ :P Ω→R be a function. Then ξ is called a probability variable. A simple example in the case of playing
is the number showing up.

Having defined probabilities P on P Ω we define probabilities for the probability variable as follows. We
define the probability function for the probability variable ξ as

Pξ : Dξ →R : Pξ (x) = P ({ri |ξ (ri )≤ x}). (1.3.1)

Further we define the probability distribution as the weak derivative of Pξ with respect to x. The weak
derivative is meant to be taken in the sense of the theory of distributions.

Now an example is at place. In the case of the example with the dice we have defined ξ ({k}) = k for k = 1→ k.
Taking the probabilities P ({k}) = 1/6 we have

Pξ (x) =
1
6

6
∑

i=1

Θ(x − i) (1.3.2)

where we have defined Heaviside’s unit step function as

Θ :R→R : Θ(x) =
¨

0 for x < 0
1 for x ≥ 0.

(1.3.3)

Now we show that the weak derivative of the Θ-function (which has to be interpreted as distribution defined
on the C∞0 (R)-functions2 now) is Dirac’s δ distribution. To this end remember the definition of the weak
derivative Θ′ as the distribution fulfilling:

∀ f ∈C∞0 (R) :
∫

dxΘ′(x − y) f (x) =−
∫

dxΘ(x − y) f ′(x). (1.3.4)

Now clearly we have

−
∫

dxΘ(x) f ′(x) =−
∫ ∞

y
dx f (x) = f (y) =

∫

dxδ(x − y) f (x). (1.3.5)

Thus for our example we find

Wξ (x) := P ′ξ (x) =
1
6

6
∑

i=1

δ(x − i). (1.3.6)

Using the theory of distributions has the advantage that we can summarize the case of continues range of
probability variables and discrete ones.

Now we can give some important definitions

Definition 2. Given a function f : R → R, its expectation value with respect to the probability variable ξ is
given by

〈 f (ξ )〉=
∫

dx f (x)Wξ (x) (1.3.7)

provided the defining integral exists.

2Remember that C∞0 (R) is the space of all functions f : R → R with compact support, where the support is defined as
{x| f (x) 6= 0}.
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1.3 · Probability variables

Especially we can write
Pξ (x) = 〈Θ(x − ξ )〉 and Wξ (x) = 〈δ(x − ξ )〉 . (1.3.8)

We have also

〈1〉=
∫

dxWξ (x) = lim
x→∞Pξ (x)− lim

x→−∞Pξ (x) = 1. (1.3.9)

Now let g : M →R, where M is the range of the probability variable ξ . g might be differentiable in the sense
of distributions. For any y ∈ R the function x 7→ g (x)− y might have only a finite number of zero points,
which are all simple.

Then we want to find the probability distribution for η= g ◦ ξ .

Using (1.3.8) we write

Wη(y) = 〈δ[y − g (ξ )]〉=
∫

dxδ[y − g (x)]. (1.3.10)

With the definition {g−1
n (y)}n∈I (y) for the set of all points x with g (x) = y we obtain immediately

Wη(y) =
∑

n∈I (y)

Wξ [g
−1
n (y)]

|g ′[g−1
n (y)]|

. (1.3.11)

Definition 3. The characteristic function of a probability distribution Wξ is defined by its Fourier transform:

Cξ (u) =
∫

dx exp(iu x)Wξ (x) = 〈exp(iuξ )〉 . (1.3.12)

From this definition we read off that

Mn := 〈ξ n〉= 1
in

�

d
du

�n

Cξ (u)|u=0, (1.3.13)

i.e. we can calculate the expectation values of all potencies of ξ by derivation with respect to u. Mn is also
called the nth momentum of the probability distribution Wξ . With Taylor’s theorem we can express the
characteristic functions in terms of the momenta:

Cξ (u) = 1+
∞
∑

n=1
(iu)n

Mn

n!
. (1.3.14)

Thus if we know all momenta of the distribution we can reconstruct the characteristic function and so the
distribution.

Definition 4. The cumulative distribution function is defined as the logarithm of the characteristic function:

Kξ (u) = ln[Cξ (u)] = ln

�

1+
∞
∑

n=1

(iu)n

n!
Mn

�

=
∞
∑

n=1

(iu)n

n!
Kn . (1.3.15)

The coefficients Kn are called the cumulant of the distribution.

Taylor expansion of the logarithm shows that one may express the cumulants with help of the momenta.
Thus knowledge of the cumulants also allows the reconstruction of the distribution.

Here we are content with the first two cumulants:

K1 =M1, K2 =M2−M 2
1 . (1.3.16)
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Chapter 1 · Mathematical Foundations of Statistics

Thus the first cumulant is the first momentum, i.e. the expectation value of ξ . The 2nd cumulant is also
called variance and is a measure for the width of the distribution. We have

K2 =



(ξ −〈ξ 〉)2�= 
ξ 2�−〈ξ 〉2 . (1.3.17)

Let us look on two simple examples of distributions.

The first one is defined by 0=K2 =K3 = . . . and K1 =M1 arbitrary real. Thus

Cξ (u) = exp(iuK1)⇒Wξ (x) =
1

2π

∫

duCξ (u)exp(−i u x) = δ(x −K1). (1.3.18)

This means that for vanishing 2nd and higher cumulants the stochastic experiment is determined because
comparison with (1.3.2) shows that for sure the value of ξ is K1.

The next example is defined by 0=K3 =K4 = . . .. Then the distribution is given by

Cξ (u) = exp
�

iuK1−K2
u2

2

�

⇒Wξ (x) =
1

p

2πK2

exp
�

− (x −K1)
2

2K2

�

(1.3.19)

which shows that K2 is a measure for the width of the distribution while the higher cumulants are a measure
of deviation from a Gaussian distribution (1.3.19).

1.4 Vector valued probability variables

In statistical physics the most realistic problems are described by more than one probability variable. In this
section we shall treat the relevant mathematical foundations for such problems.

Clearly in principle there is nothing new. We might think about a stochastic experiment and define a function
ξ :P Ω→Rn and a probability distribution as in the case of one probability variable:

Wξ :Rn→R : Wξ (x) =
¬

δ (r )(ξ − x)
¶

(1.4.1)

and the expectation value for a function f defined on the range of ξ :

〈 f (ξ )〉=
∫

Rr
dr x f (x)Wξ (x). (1.4.2)

The distribution for a subspace of ξ may be calculated as follows. Provided this subspace lies in the vector
space spanned by the first i basis vectors then the distribution for the variables ξ1, . . . ,ξi is given by

Wi (x1, . . . , xi ) =
∫

Rr−i
dxi+1 · · ·dxr Wr (x1, . . . , xr ). (1.4.3)

To understand this we remember

δ (r )(x − ξ ) =
r
∏

k=1

δ(xk − ξk ) (1.4.4)

and thus

Wi (x1, . . . , xi ) =
¬

δ (i)(x1− ξ1, . . . , xi − ξi )
¶

=

=
∫

Rr−i
dxi+1 · · ·dxr

¬

δ (r )(x1− ξ1, . . . , xr − ξr )
¶ (1.4.5)

12



1.4 · Vector valued probability variables

and together with (1.4.1) this is (1.4.3).

Again the Fourier transform of the distribution is the characteristic function:

Cr (u) = 〈exp(iuξ )〉=
∫

Rr
exp(iu x)Wr (x). (1.4.6)

The momenta are again the derivatives with respect to the probability variables

Mn1...nr
=

*

r
∏

j=1

ξ
n j

j

+

=
�

1
i

�

∑r
j=1 n j r

∏

j=1

�

∂

∂ u j

�n j

Cr (u)

�

�

�

�

�

�

u=0

(1.4.7)

and we can reconstruct the characteristic function out of the momenta with help of Taylor expansion

Cr (u) =
∞
∑

n1...nr=1
Mn1...nr

r
∏

j=1

(iu j )
n j

n j !
. (1.4.8)

Transforming back we may reconstruct the probability distribution:

Wr (x) =
�

1
2π

�r ∫

Rr
dr u exp(−iu x)Cr (u). (1.4.9)

The cumulants are given by

Kn1...nr
=
�

1
i

�

∑r
j=1 n j r

∑

j=1

r
∏

j=1

�

∂

∂ u j

�n j

ln[Cr (u)]

�

�

�

�

�

�

u=0

. (1.4.10)

The characteristic function is given in terms of the cumulants by

Cr (u) = exp





∑

n1...nr∈N
Kn1...nr

r
∏

j=1

(iu j )
n j

n j !



 . (1.4.11)

The conditional probability distribution that ξ1 = x1 provided that the other ξ j = x j ( j = 2, . . . , r ) is given
with help of (1.4.3) by:

Px1|x2,...,xr
=

Wr (x1, . . . , xr )
Wr−1(x2, . . . , xr )

=
Wr (x1, . . . , xr )

∫

R dx1Wr (x1, . . . , xr )
. (1.4.12)

By definition the probability variables ξ1 and ξ2 are stochastically independent if the probability distribution
factorizes like

W2(x1, x2) = P (x1|x2)
∫

R
dx1W2(x1, x2) =: W (1)

1 (x1)W
(2)
2 (x2). (1.4.13)

Thus we define probability variables ξ1 and ξ2 as stochastically independent if and only if the probability
distribution is a product of two distributions for each of the probability variables alone.

The other extreme case of total determination of ξ1 by measuring ξ2, which means ξ1 = f (ξ2), is given by

P (x1|x2) = δ[x1− f (ξ2)]. (1.4.14)

Then from (1.4.12) we find
W2(x1, x2) = δ[x1− f (x2)]W1(x2). (1.4.15)

13



Chapter 1 · Mathematical Foundations of Statistics

There are different measures for stochastic dependence or correlations of variables. One of them is the cross
correlation

κ(ξ1,ξ2) = 〈ξ1ξ2〉− 〈ξ1〉 〈ξ2〉 . (1.4.16)

With (1.4.13) one sees immediately that for stochastically independent probability variables the cross corre-
lation vanishes. But it is in general not true that one can conclude from the vanishing of the cross correlation
that the probability variables are stochastically independent!

Another correlation measure is the relative cross correlation

R(ξ1,ξ2) =
κ(ξ1,ξ2)
σ(ξ1)σ(ξ2)

with σ(ξ j ) =
È

¬

ξ 2
j

¶

−
¬

ξ j

¶2
, j = 1,2. (1.4.17)

To generalize these ideas to more than two probability variables we observe that (1.4.16) is the 11-cumulant
according to (1.4.11) (prove this as an exercise by calculating K11 with help of the definition (1.4.11)). Thus
we define the cross correlation for r probability variables:

κ(ξ1, . . . ,ξr ) =K1...2 =
r
∏

j=1

�

1
i
∂

∂ u j

�

lnCr (u1, . . . , ur )

�

�

�

�

�

�

u=0

. (1.4.18)

Note that this function already vanishes if only one of the probability variable (for instance ξ1) is stochastically
independent of the rest of the variables, i.e., if

Wr (x) =W (1)
1 (x1)W

(2)
r−1(x2, . . . , xr ), (1.4.19)

where W (2)
r−1 needs not to factorize.

1.5 Stochastic processes

Now we think about a typical physical question, namely how to describe the evolution of probability experi-
ments in time. This means the situation the system the probability experiment is done with depends on time.
This is called a stochastic process. For sake of simplicity take the case of only one probability observable. The
time dependence of the system is then described by the time dependence of the probability variable ξ . The
probability distribution at time t is then defined by (1.4.1):

W1(x1; t ) = 〈δ[x1− ξ (t )]〉 . (1.5.1)

The expectation value has to be taken over a big ensemble of systems prepared at the one time instant t .

Now it makes sense to ask after the probability for the event that ξ takes the values x1, . . . , xn at the times
t1, . . . , tn . By definition the probability distribution for this event is given by

Wn(xn , tn ; . . . , x1, t1) =

*

n
∏

j=1

δ[x j − ξ (t j )]

+

. (1.5.2)

If Wn is independent of all times t j then the process is called stationary.

We define the conditional probability that ξ (tn) takes on the value xn provided it took the values x1, . . . , xn−1
at the earlier instants of time t1 < t2 < · · ·< tn :

P (xn , tn |xn−1, tn−1; . . . ; x1, t1) =
Wn(xn , tn ; . . . ; x1, t1)

∫

R dxnWn(xn , tn ; . . . ; x1, t1)
(1.5.3)

where we have made use of (1.4.12).

Now one may classify the processes as follows.
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1.6 · Information

1.5.1 Totally stochastic processes

A totally stochastic process is given if the result to a time is independent of all knowledge about the system
in the past. This means that the probability distribution factorizes completely, i.e., the experiment done at
time t is stochastically independent of all results obtained at earlier times which means by definition

Wn(xn , tn ; . . . ; x1, t1) =
n
∏

j=1

W1(x j , t j ). (1.5.4)

This situation is not the one we expect to be valid in physics because we want to describe the processes as
causal in time. Thus we like to calculate the behaviour of the system, even if we don’t know its exact state,
from the given behaviour in the past. It would be even nicer if it would be enough to know the probability
contribution to one single instant in time and then it can be calculated by dynamical laws for later times.

1.5.2 Markovian processes

The situation described at last in the previous case is called a Markovian process. This means the conditional
probability (1.5.3) depends only on the last time tn−1 before the experiment is done:

P (xn , tn |xn−1, tn−1; . . . ; x1, t1) = P (xn , tn |xn−1, tn−1). (1.5.5)

Using (1.5.3) and (1.5.5) successively one finds or a Markovian process:

Wn(xn , tn ; . . . ; x1, t1) =
�n−1
∏

k=1

P (xk+1, tk+1|xk , tk )
�

W1(x1, t1) (1.5.6)

which shows that P (xk+1, tk+1|xk , tk ) is the transition probability for ξ to take on the value xk+1 at time tk+1
if it is known to have taken on the value xk at time tk and that for a Markovian process the time evolution of
the system depends only on the result of the last known result at an earlier time, not on the whole history of
knowledge about the system.

1.5.3 General processes

In the most general case (1.5.3) depends on all times tk with k = 1, . . . , (n− 1). This means that the system at
time tn has “memorized” the measurements done at all earlier times tk .

There are examples in physics where this behaviour is really observed, for instance the so called non-Newtonian
fluids which “remember” their whole history. Such processes cannot be described by an initial value partial
differential equation problem but one has to find a “memory functional” to take care of the whole history of
the system.

It is the main task of statistical physics to describe a system in terms of a stochastic process, if the complete
knowledge about the system, which would be needed to describe it by the underlying deterministic theory,
is not available because of practical reasons.3

1.6 Information

Now we come to the mathematical tool for specifying the probability distribution to a given probability
experiment due to the given information we have about the system. The problem is to find an objective

3Note that quantum theory is meant to be deterministic in this context. The complete information we can have about the system
is given by a state and the Hamiltonian of the system, if these are given we may calculate in principle the state and the Hamiltonian
to any later instant of time by making use of the quantum mechanical time evolution equations (Schrödinger equation of motion).
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Chapter 1 · Mathematical Foundations of Statistics

idea how to determine the distribution without simulating more knowledge about the system than we have
really about it. Thus we need a concept for preventing prejudices hidden in the wrong choice of a probability
distribution.

The idea is to define a measure for the missing information about the system provided we define a probability
distribution about the outcome of experiments on the system. Clearly this has to be defined relative to the
complete knowledge about the system.

We start with the most simple case of a stochastic experiment with a finite number of possible results. The set
of possible results may be written as Ω= {1,2, . . . , n} for sake of simplicity. All the elementary events might
be equally probable. Thus we have the Laplacian probability distribution: P ({i}) = 1/n for i = 1, . . . , n.

Now comparing situations with |Ω| = m and |Ω| = n (where |Ω| denotes the number of elements contained
in Ω) with n > m we want our measure of lacking information to be less in the first case than in the second,
because there are less possibilities for the experiment if there are less possible results:

I (n)> I (m) for n, m ∈N and n > m. (1.6.1)

For n = 1 there is no lack of information, because all experiments will give the same result, namely “1”. Thus
we set by definition

I (1) = 0. (1.6.2)

Now we think about this as the situation that there is an object which can be in n cells. Each of the cells might
be divided in m boxes. The total number of boxes is nm and the total lack of information when asking in
which box the object may be is thus I (nm). On the other hand we can locate the object equally well by first
asking in which cell it is located (missing information I (n)) and then in which of the boxes this special cell is
divided in (missing information I (m)). Now since this two questions are thought to be independent of each
other it makes sense to define the complete lack of information to be the sum of the single ones I (n)+ I (m).
This means that our measure has to fulfill:

I (nm) = I (n)+ I (m). (1.6.3)

If now n/l ∈N this reads

I
�n

l

�

= I (n)− I (l ). (1.6.4)

In order to define the measure for all positive rational numbers we take this equation to be valid for any pair
of positive integers n and l . Further it is continued to all positive real arguments by continuous continuation.

Now from this assumptions we can determine the measure up to a positive constant factor. For this purpose
we suppose that x ∈R is chosen such that ln x = m/n with m, n ∈N . Then we have

I (xn) = I (e m)⇒ nI (x) = mI (e) (1.6.5)

where we have made use of (1.6.3) which is valid also for positive real numbers because of (1.6.4) and continuity
of the function. Thus we have

I (x) =
m
n

I (e) = I (e) ln x. (1.6.6)

Thus the measure for lacking information in the case of a finite number of equally probable possible results
is given by ln x up to a positive factor I (e) which is set to 1 by definition. Thus we have

I (n) = ln n. (1.6.7)

Now let us think about the definition of the measure for the lack of information provided for an experiment
with n possible results we have given the probabilities for any elementary event Pi for i = 1, . . . , n.
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1.6 · Information

Then we can find the information measure by the following idea: We can make an experiment of equally dis-
tributed elementary events if we think about it in terms of repeating the experiment N times independently.

The first step is to show that the probability contribution for the single event k can be obtained nearly exactly
by doing a large number of experiments, i.e., letting N ⇒∞. Let N (k ,N ) be the number the result k occurs
when doing N experiments.

The result of an experiment which consists of N independent experiments is given as an N -tuple of results.
If p = Pk then the probability that a certain N -tuple with N (k ,N ) occurs is pN (k ,N )qN−N (k ,N ) because the
experiments were supposed to be independent of each other. For the number N (k ,N ) it is not important in
which order the results show up and thus the distribution for this probability variable is given by

P [N (k ,N )] =
�

N
N (k ,N )

�

pN (k ,N )qN−N (k ,N ). (1.6.8)

Now we want to calculate the expectation value and variance for N (k ,N ). This can be done by defining the
polynomial:

f (x) =
N
∑

j=0

�

N
j

�

p j qN− j x j = (p x + q)N (1.6.9)

where we have made use of the binomial theorem.

Then we can easily calculate the expectation value

〈N (k ,N )〉=
N
∑

j=0

j
�

N
j

�

p j qN− j = f ′(1) =N p (1.6.10)

and the expectation value for the square



N (k ,N )2
�

= [x f ′(x)]′|x=1 =N p +N (N − 1)p2. (1.6.11)

The expectation value for N (k ,N )/N and its variance
�

N (k ,N )
N

�

= p, σ2
�N (k ,N )

N

� =
pq
N

. (1.6.12)

One can show that also all higher cumulants vanish for N →∞which shows that the contribution approaches
the one for a determined result for N →∞.

The number of possible results is the number of different N -tuples. There are N ! possible permutations of
N elements but interchanging equal ones does not change the result. Thus the total number is for N →∞
given by

N !
∏n

j=1(N P j )!
. (1.6.13)

By using (1.6.7) we find

I (N ) = ln
N !

∏n
j=1(N P j )!

= lnN !−
N
∑

j=1

ln[(N P j )!]. (1.6.14)

For N →∞ we can use Stirling’s asymptotic formula

lnN ! ∼=
N→∞

N lnN −N +O(lnN ). (1.6.15)

Using this formula also for (N P j )! we find

I (N ) ∼=
N→∞

−N
n
∑

j=1

P j ln P j +O(lnN ). (1.6.16)

17
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The missing information per experiment is thus given as

I [P ] = lim
N→∞

I (N )
N
=−

n
∑

j=1

P j ln P j =−〈ln P 〉 . (1.6.17)

Clearly there is no problem in using this result also for a probability experiment with countable many possible
results:

I [P ] =−
∞
∑

j=1

P j ln P j . (1.6.18)

In the case of continuous distributions we have to take it as a limit of discrete distributions. For a d -dimensional
probability vector ξ we can divide its definition range in cubes of volume∆d x resulting in a countable set of
cubes. Then the discrete probability distribution is defined as

P j =Wd (x j )∆
d x (1.6.19)

where x j is an arbitrary value in the j th cube. The missing information is then calculable with help of (1.6.17)
or (1.6.18):

I (W ,∆d x) =−∑
j

P j ln P j =−
∑

j

Wd (x j )∆
d x ln[Wd (x j )∆

d x]. (1.6.20)

In these notes we shall always use the technique of using a discrete version of the probability distribution and
taking a limit to the continuous distribution after calculating the missing information for the discrete case.

18



Chapter 2

Basics of Quantum Statistics

In this chapter we shall describe how to formulate Quantum Theory for the case of incomplete knowledge
about a system with help of statistics.

2.1 Basics of Quantum Theory

In this course we assume that the reader is familiar with quantum mechanics in terms of Dirac’s bra- and ket
formalism. We repeat the basic facts by giving some postulates about the structure of quantum theory which
are valid in the non-relativistic case as well as in the relativistic one. In these notes we emphasize that quantum
theory is a picture about physical systems in space and time. As we know this picture is in some sense valid
for a wider range of phenomena than the classical picture of particles and fields.

Although it is an interesting topic we do not care about some problems with philosophy of quantum me-
chanics. In my opinion physicists have a well understood way in interpreting the formalism with respect to
nature and the problem of measurement is not of practical physical importance. That sight seems to be settled
by all experiments known so far: They all show that quantum theory is correct in predicting and explain-
ing the outcome of experiments with systems and there is no (practical) problem in interpreting the results
from calculating “physical properties of systems” with help of the formalism given by the mathematical tool
“quantum theory”. So let’s begin with some formalism concerning the mathematical structure of quantum
mechanics as it is formulated in Dirac’s famous book.

• The state of a quantum system is described completely by a ray in a Hilbert spaceH . A ray is defined
as the following equivalence class of vectors:

[|ψ〉] = {c |ψ〉 | |ψ〉 ∈H , c ∈C \ {0}}. (2.1.1)

• The observables of the system are represented by self-adjoint operators O which build together with
the unity operator an algebra of operators acting in the Hilbert space. For instance in the case of a
quantized classical point particle the algebra of observables is generated by the operators of the Cartesian
components of configuration space and (canonical) momentum operators, which fulfill the Heisenberg
algebra:

[xi ,xk] = [pi ,pk] = 0, [xi ,pk] = iδi k1. (2.1.2)

Here and further on (except in cases when it is stated explicitly) we set (Planck’s constant) ħh = 1. In
the next chapter when we look at relativity we shall set the velocity of light c = 1 too. In this so called
natural system of units observables with dimension of an action are dimensionless. Space and time have
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Chapter 2 · Basics of Quantum Statistics

the same unit which is reciprocal to that of energy and momentum and convenient unities in particle
physics are eV or MeV.

A possible result of a precise measurement of the observable O is necessarily an eigenvalue of the cor-
responding operator O. Because O is self-adjoint its eigenvalues are real and the eigenvectors can be
chosen such that they build a complete normalized set of kets.

• (Born’s Rule) If |o, j 〉 is a complete set of orthonormal eigenvectors of O to the eigenvalue o, the
probability to find the value o when measuring the observable O is given by

Pψ(o) =
∑

j

| 〈o, j |ψ〉 |2. (2.1.3)

The most famous implication is Heisenberg’s uncertainty relation which follows from the positive
definiteness of the scalar product in Hilbert space:

∆A∆B ≥ 1
2
|〈[A, B]〉| . (2.1.4)

Two observables are simultaneously exactly measurable if and only if the corresponding operators com-
mute. In this case both operators have the same eigenvectors. After a simultaneous measurement the
system is in a corresponding simultaneous eigenstate.

A set of pairwise commutating observables is said to be complete if the simultaneous measurement of
all these observables fixes the state of the system completely, i.e. if the simultaneous eigenspaces of these
operators are one-dimensional (non-degenerate).

• Time is a real parameter. There is an self-adjoint operator H corresponding to the system such that if
O is an observable then

Ȯ =
1
i
[O,H]+ ∂t O (2.1.5)

is the operator of the time derivative of this observable.

The partial time derivative is needed only in the case of explicit time dependence. The fundamental
operators like space and momentum operators, which form a complete generating system of the algebra
of observables, are not explicitly time dependent (by definition!). It should be emphasized that Ȯ is not
the mathematical total derivative with respect to time. We shall see that the mathematical dependence
on time is arbitrary in a wide sense, because if we have a description of quantum mechanics, then we are
free to transform the operators and state kets by a time dependent (!) unitary transformation without
changing any physical prediction (possibilities, mean values of observables etc.).

• Due to our first assumption the state of the quantum system is completely known if we know a state ket
|ψ〉 lying in the ray [|ψ〉], which is the state the system is prepared in, at an arbitrary initial time. This
preparation of a system is possible by performing a precise simultaneous measurement of a complete
complete set of observables.

It is more convenient to have a description of the state in terms of Hilbert space quantities than in terms
of the projective space (built by the above defined rays). It is easy to see that the state is uniquely given
by the projection operator

P|ψ〉 =
|ψ〉 〈ψ|
‖ψ‖2 , (2.1.6)

with |ψ〉 an arbitrary ket contained in the ray (i.e. the state the system is in).
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2.1 · Basics of Quantum Theory

• In general, for example if we like to describe macroscopic systems with quantum mechanics, we do not
know the state of the system exactly. In this case we can describe the system by a statistical operator
ρ which is positive semi definite (that means that for all kets |ψ〉 ∈ H we have 〈ψ |ρ|ψ〉 ≥ 0) and
fulfills the normalization condition Trρ= 1. It is chosen such that it is consistent with the knowledge
about the system we have and contains no more information than one really has. This concept will be
explained in a later section.

The trace of an operator is defined with help of a complete set of orthonormal vectors |n〉 as Trρ =
∑

n 〈n |ρ|n〉. The mean value of any operator O is given by 〈O〉=Tr(Oρ).

The meaning of the statistical operator is easily seen from this definitions. Since the operator P|n〉 an-
swers the question if the system is in the state [|n〉]we have pn =Tr(P|n〉ρ) = 〈n |ρ|n〉 as the probability
that the system is in the state [|n〉]. If now |n〉 is given as the complete set of eigenvectors of an observ-
able operator O for the eigenvalues On then the mean value of O is 〈O〉=∑n pnOn in agreement with
the fundamental definition of the expectation value of a stochastic variable in dependence of the given
probabilities for the outcome of a measurement of this variable.

The last assumption of quantum theory is that the statistical operator is given for the system at all times.
This requires that

ρ̇=
1
i
[ρ,H]+ ∂tρ= 0. (2.1.7)

This equation is also valid for the special case if the system is in a pure state that means ρ= P|ψ〉.

2.1.1 Choice of the Picture

Now that we have shortly repeated how quantum mechanics works, we like to give the time evolution a
mathematical content, i.e. we settle the time dependence of the operators and states describing the system.
As mentioned above it is in a wide range arbitrary how this time dependence is chosen. The only observable
facts about the system are expectation values of its observables, so they should have a unique time evolution.
To keep the story short we formulate the result as a theorem and prove afterwards that it really gives the right
answer. Each special choice of the mathematical time dependence consistent with the axioms of quantum
mechanics given above is called a picture of quantum mechanics. Now we can state

Theorem 1. The picture of quantum mechanics is uniquely determined by the choice of an arbitrary self-adjoint
Operator X which can be a local function of time. Local means in this context that it depends only on one time,
so to say the time point “now” and not (as could be consistent with the causality property of physical laws) on the
whole past of the system.
This operator is the generator of the time evolution of the fundamental operators of the system. This means that it
determines the unitary time evolution operator A(t , t0) of the observables by the initial value problem

i∂t A(t , t0) =−X(t )A(t , t0), A(t0, t0) = 1 (2.1.8)

such that for all observables which do not depend explicitly on time

O(t ) =A(t , t0)O(t0)A
†(t , t0). (2.1.9)

Then the generator of the time evolution of the states is necessarily given by the self-adjoint operator Y =H−X,
where H is the Hamiltonian of the system. This means the unitary time evolution operator of the states is given
by

i∂t C(t , t0) = +Y(t )C(t , t0). (2.1.10)
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Proof. The proof of the theorem is not too difficult. At first one sees easily that all the laws given by the
axioms like commutation rules (which are determined by the physical meaning of the observables due to
symmetry requirements which will be shown later on) or the connection between states and probabilities is
not changed by applying different unitary transformations to states and observables.

So there are only two statements to show: First we have to assure that the equation of motion for the time
evolution operators is consistent with the time evolution of the entities themselves and second we have to
show that this mathematics is consistent with the axioms concerning “physical time evolution” above, espe-
cially that the time evolution of expectation values of observables is unique and independent of the choice of
the picture.

For the first task let us look on the time evolution of the operators. Because the properties of the algebra given
by sums of products of the fundamental operators, especially their commutation rules, shouldn’t change with
time, the time evolution has to be a linear transformation of operators, i.e. O→AOA−1 with an invertible
linear operator A on Hilbert space. Because the observables are represented by self-adjoint operators, this
property has to be preserved during evolution with time leading to the constraint that A has to be unitary,
i.e. A−1 =A†.

Now for t > t0 the operator A should be a function of t and t0 only. Now let us suppose the operators evolved
with time from a given initial setting at t0 to time t1 > t0 by the evolution operator A(t0, t1). Now we can
take the status of this operators at time t1 as a new initial condition for their further time development to a
time t2. This is given by the operator A(t1, t2). On the other hand the evolution of the operators from t0 to
t2 should be given simply by direct transformation with the operator A(t0, t2). One can easily see that this
long argument can be simply written mathematically as the consistency condition:

∀t0 < t1 < t2 ∈R : A(t2, t1)A(t1, t0) =A(t2, t1), (2.1.11)

i.e. in short words: The time evolution from t0 to t1 and then from t1 to t2 is the same as the evolution
directly from t0 to t2.

Now from unitarity of A(t , t0) one concludes:

AA† = 1= const.⇒ (i∂t A)A
† =A∂t (iA)

†, (2.1.12)

so that the operator X =−i(∂t A)A
† is indeed self-adjoint: X† = X. Now using eq. (2.1.11) one can immedi-

ately show that
[i∂t A(t , t0)]A

†(t , t0) = [i∂t A(t , t1)]A
†(t , t1) :=−X(t ) (2.1.13)

which shows that X(t ) does not depend on the initial time t0, i.e. it is really local in time as stated in the
theorem. So the first task is done since the proof for the time evolution operator of the states is exactly the
same: The assumption of a generator X(t ) or. Y(t ) which is local in time is consistent with the initial value
problems defining the time evolution operators by their generator.

Now the second task, namely to show that this description of time evolution is consistent with the above
mentioned axioms, is done without much sophistication. From (2.1.9) together with the definition (2.1.8)
one obtains for an operator which may depend on time:

dO(t )
dt

=
1
i
[O(t ), X(t )]+ ∂t O(t ). (2.1.14)

This equation can be written with help of the “physical time derivative” (2.1.5) in the following form:

dO(t )
dt

= Ȯ− 1
i
[O,H−X] . (2.1.15)

One sees that the eqs. (2.1.14) and (2.1.15) together with given initial values for an operator O at time t0 are
uniquely solved by applying a unitary time evolution operator which fulfils the eq. (2.1.8).
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Now the statistical operator ρ fulfils that equations of motion as any operator. But by the axiom (2.1.7) we
conclude from eq. (2.1.15)

dρ(t )
dt

=−1
i
[ρ(t ), Y] (2.1.16)

and that equation is solved uniquely by a unitary time evolution with the operator C fulfilling (2.1.10).

Q.E.D.

It should be emphasized that this evolution takes only into account the time dependence of the operators
which comes from their dependence on the fundamental operators of the algebra of observables. It does not
consider an explicit dependence in time! The statistical operator is always time dependent. The only very
important exception is the case of thermodynamical equilibrium where the statistical operator is a function
of the constants of motion (we’ll come back to that later in our lectures).

Now we have to look at the special case that we have full quantum theoretical information about the system,
so we know that this system is in a pure state given by ρ= P|ψ〉 = |ψ〉 〈ψ| (where |ψ〉 is normalized). It is clear,
that for this special statistical operator the general eq. (2.1.16) and from that (2.1.10) is still valid. It follows
immediately, that up to a phase factor the state ket evolves with time by the unitary transformation

|ψ, t 〉=C(t , t0) |ψ, t0〉 . (2.1.17)

From this one sees that the normalization of |ψ, t 〉 is 1 if the ket was renormalised at the initial time t0. The
same holds for a general statistical operator, i.e. Trρ(t ) =Trρ(t0) (exercise: show this by calculating the trace
with help of a complete set of orthonormal vectors).

2.1.2 Formal Solution of the Equations of Motion

We now like to integrate the equations of motion for the time evolution operators formally. let us do this for
the case of A introduced in (2.1.9). Its equation of motion which we like to solve now is given by (2.1.8).

The main problem comes from the fact that the self-adjoint operator X(t ) generating the time evolution
depends in general on the time t and operators at different times need not commute. Because of this fact we
cant solve the equation of motion like the same equation with functions having values in C.

At first we find by integration of (2.1.8) with help of the initial condition A(t0, t0) = 1 an integral equation
which is equivalent to the initial value problem (2.1.8):

A(t , t0) = 1+ i
∫ t

t0

dτX(τ)A(τ, t0). (2.1.18)

The form of this equation leads us to solve it by defining the following iteration scheme:

An(t , t0) = 1+ i
∫ t

t0

X(τ)An−1(τ, t0)dτ, A0(t , t0) = 1. (2.1.19)

The solution of the equation should be given by taking the limit n → ∞. We will not think about the
convergence because this is a rather difficult problem.

One can prove by induction that the formal solution is given by the series

A(t , t0) =
∞
∑

k=0

A(k)(t , t0) with (2.1.20)

A(k)(t , t0) =
∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .
∫ τk−1

t0

dτk X(τ1)X(τ2) . . . X(τk ).
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To bring this series in a simpler form let us look at A(2)(t , t0):
∫ t

t0

dτ1

∫ τ1

t0

dτ2X(τ1)X(τ2). (2.1.21)

The range of the integration variables is the triangle in the τ1τ2-plane shown at figure 2.1:
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Figure 2.1: Range of integration variables in (2.1.21)
Using Fubini’s theorem we can interchange the both integrations

A(2) =
∫ t

t0

dτ1

∫ t

τ1

dτ2X(τ2)X(τ1). (2.1.22)

A glance on the operator ordering in (2.1.21) and (2.1.22) shows that the operator ordering is such that the
operator at the later time is on the left. For this one introduces the causal time ordering operator Tc invented
by Dyson. With help of Tc one can add this both equations, leading to the result

2A(2)(t , t0) = Tc

∫ t

t0

dτ1

∫ t

t0

dτ2X(τ1)X(τ2). (2.1.23)

We state that this observation holds for the general case of an arbitrary summand in the series (2.1.20), i.e.

A(k)(t , t0) =
1
k!

Tc

∫ t

t0

dτ1 · · ·
∫ t

t0

dτnX(τ1) · · ·X(τn). (2.1.24)

To prove this assumption we apply induction. Assume the assumption is true for k = n− 1 and look at the
nth summand of the series. Because the assumption is true for k = n − 1 we can apply it to the n − 1 inner
integrals:

A(n)(t , t0) =
1

(n− 1)!
Tc

∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τ1

t0

dτnX(τ1) · · ·X(τn). (2.1.25)

Now we can do the same calculation as we did for A(2) with the outer integral and one of the inner ones.
Adding all the possibilities of pairing and dividing by n one gets immediately

A(n)(t , t0) =
1
n!

Tc

∫ t

t0

dτ1 · · ·
∫ t

t0

dτnX(τ1) · · ·X(τn), (2.1.26)

and that is (2.1.24) for k = n. So our assumption is proven by induction.
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With this little combinatorics we can write the series formally

A(t , t0) = Tc exp

�

i
∫ t

t0

dτX(τ)
�

. (2.1.27)

This is the required solution of the equation of motion. For the operator C(t , t0) one finds the solution by
the same manipulations to be:

C(t , t0) = Tc exp

�

−i
∫ t

t0

dτY(τ)
�

. (2.1.28)

2.1.3 Example: The Free Particle

The most simple example is the free particle. For calculating the time development of quantum mechanical
quantities we chose the Heisenberg picture defined in terms of the above introduced operators X = H and
Y = 0. We take as an example a free point particle moving in one-dimensional space. The fundamental algebra
is given by the space and the momentum operator which fulfil the Heisenberg algebra

1
i
[x,p] = 1, (2.1.29)

which follows from the rules of canonical quantization from the Poisson bracket relation in Hamiltonian
mechanics or from the fact that the momentum is defined as the generator of translations in space.

As said above in the Heisenberg picture only the operators representing observables depend on time and the
states are time independent. To solve the problem of time evolution we can solve the operator equations of
motion for the fundamental operators rather than solving the equation for the time evolution operator. The
Hamiltonian for the free particle is given by

H =
p2

2m
, (2.1.30)

where m is the mass of the particle. The operator equations of motion can be obtained from the general rule
(2.1.14) with X =H:

dp
dt
=

1
i
[p,H] = 0,

dx
dt
=

1
i
[x,H] =

p
m

. (2.1.31)

That looks like the equation for the classical case but it is an operator equation. But in our case that doesn’t
effect the solution which is given in the same way as the classical one by

p(t ) = p(0) = const, x(t ) = x(0)+
p(0)
m

t . (2.1.32)

Here we have set without loss of generality t0=0.

Now let us look on the time evolution of the wave function given as the matrix elements of the state ket and
a complete set of orthonormal eigenvectors of observables. We emphasize that the time evolution of such a
wave function is up to a phase independent of the choice of the picture. So we may use any picture we like
to get the answer. Here we use the Heisenberg picture where the state ket is time independent. The whole
time dependence comes from the eigenvectors of the observables. As a first example we take the momentum
eigenvectors and calculate the wave function in the momentum representation. From (2.1.31) we get up to a
phase:

|p, t 〉= exp(iHt ) |p, 0〉= exp
�

i
p2

2m
t
�

|p, 0〉 , (2.1.33)
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and the time evolution of the wave function is simply

ψ(p, t ) = 〈p, t |ψ〉= exp
�

−i
p2

2m
t
�

ψ(p, 0). (2.1.34)

This can be described by the operation of an integral operator in the form

ψ(p, t ) =
∫

d p ′



p, t
�

� p ′, 0
�

︸ ︷︷ ︸

U (t , p;0, p ′)




p ′, 0
�

�ψ
�

=
∫

d p ′U (t , p; 0, p ′)ψ(p ′, 0). (2.1.35)

From (2.1.32) one finds

U (t , p, 0, p ′) = exp
�

−i
p2

2m
t
�

δ(p − p ′). (2.1.36)

It should be kept in mind from this example that the time evolution kernels or propagators which define the
time development of wave functions are in general distributions rather than functions.

The next task we like to solve is the propagator in the space representation of the wave function. We will give
two approaches: First we start anew and calculate the space eigenvectors from the solution of the operator
equations of motion (2.1.32). We have by definition:

x(t ) |x, t 〉=
�

x(0)+
p(0)
m

t
�

|x, t 〉= x |x, t 〉 . (2.1.37)

Multiplying this with



x ′, 0
�

� we find by using the representation of the momentum operator in space repre-
sentation p= 1/i∂x :

(x ′− x)



x ′, 0
�

� x, t
�

=
it
m
∂x ′



x ′, 0
�

� x, t
�

(2.1.38)

which is solved in a straightforward way:

U (t , x; 0, x ′)∗ =



x ′, 0
�

� x, t
�

=N exp
h

−i
m
2t
(x ′− x)2

i

. (2.1.39)

Now we have to find the normalization factor N . It is given by the initial condition

U (0, x; 0, x ′) = δ(x − x ′). (2.1.40)

Since the time evolution is unitary we get the normalization condition
∫

dx ′U (0, x; t , x ′) = 1. (2.1.41)

For calculating this integral from (2.1.39) we have to regularise the distribution to get it as a weak limit of a
function. This is simply done by adding a small negative imaginary part to the time variable t → t− iε. After
performing the normalization we may tend ε→ 0 in the weak sense to get back the searched distribution.
Then the problem reduces to calculate a Gaussian distribution. As the final result we obtain

U (t , x; 0, x ′) =
È

m
2πit

exp
h

i
m
2t
(x ′− x)2

i

. (2.1.42)

An alternative possibility to obtain this result is to use the momentum space result and transform it to space
representation. We leave this nice calculation as an exercise for the reader. For help we give the hint that again
one has to regularise the distribution to give the resulting Fourier integral a proper meaning.
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2.2 Mixed states

Now we want to elaborate further the above ad hoc given definition of mixed states. For this purpose we
think about how to formulate the idea of statistical quantum theory in terms of probability theory given in
chapter 1.

First let us give an example from physics. Suppose we have measured exactly an observable O (and we have
read off its value o from the apparatus). Then we know from the above mentioned basics that the system is in
a eigenstate of the corresponding self-adjoint operator O with eigenvalue o1. But if the measured eigenvalue
o is degenerated we do not know any more than that. Thus it seems to be sensible to try a description of the
situation in terms of probability theory on grounds of the known information.

The probabilities we look for correspond to a future experiment and the first task is to find out what are
suitable experiments. This is not as easy as in classical physics where we might measure whatever we like
and nothing happens to the system. The only thing we do is to realize a property of the system we have not
known before.

In quantum theory this changes dramatically because the system has not all properties which can be measured
but only the one given by the previous measurement of O. Thus the set of possible resultsΩ depends on which
observable we are going to measure at next. Now suppose we measure an observable O ′ which is compatible
with O, which means that their corresponding operators commute

�

O, O′
�

= 0.

In this case the possible result is an eigenvalue of o′ but this might not be a complete description because it
might be that the simultaneous eigenspace space of O and O′ to the measured values o and o′ respectively
might be degenerated too. Thus the set Ω of possible results for the measurement of O is given by

Ω= {|o, r 〉 〈o, r |} (2.2.1)

where |o, r 〉 is an arbitrary complete set of orthonormalised eigenvectors of O with eigenvalue value o and r
is labeling the degeneracy of the eigenspace. This basis can be chosen such that |o, r 〉 is also a eigenbasis for
O′. Of course, measuring O ′ will result again in a eigenstate of O with the measured eigenvalue o because
the observables were supposed to be compatible.

We do not know which will be the state the system is in completely and thus we can not know in which state
it will go when measuring O ′. The best we can do is to assume a probability distribution for these state. This
distribution is completely defined by giving Pr with 0≤ Pr ≤ 1 and

∑

r Pr = 1.

In general we can conclude that we can define the set of possible results by

Ω= {|n〉 〈n|}n∈N (2.2.2)

where the |n〉 build a complete orthonormal system (cons). The probability distribution is given by the P (n),
i.e., the probabilities that one finds the system in the state |n〉.
Now we like to find a tool to incorporate these statistics into the quantum theoretical formalism. If we like
to calculate the expectation value of an observable O it is customary to take |o,α〉, the cons. defined by the
eigenvectors of the operator O corresponding to the observable O. Then by definition the expectation value
of O due to the probability distribution P (o,α) is given by

〈O〉=∑
o,α

oP (o,α) =
∑

o,α
〈o,α |O| o,α〉P (o,α). (2.2.3)

We like now to find a description without any reference to a special cons. For this purpose we introduce a
new cons {|n〉}n∈N into 2.2.3:

〈O〉= ∑

o,α,n1,n2

〈o,α |n1 〉 〈n1 |O|n2〉 〈n2 | o,α 〉P (o,α). (2.2.4)

1We assume the operator to have a discrete spectrum.
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Introducing the operator
R =

∑

o,α
P (o,α) |o,α〉 〈o,α| (2.2.5)

we can write the sum over o,α as a matrix element with respect to the cons. {|n〉}n∈N:
∑

o,α
〈n2 | o,α 〉 o,αn1P (o,α) = 〈n2 |R|n1〉 (2.2.6)

and thus (2.2.3) reads

〈O〉=∑

n1,n2

〈n2 |R|n1〉 〈n1 |O|n2〉=
∑

n2

〈n2 |RO|n2〉=Tr(RO). (2.2.7)

Herein the Tr of an operator A is defined with help of a cons. {|n〉}n∈N by

TrA=
∑

n
〈n |A|n〉 (2.2.8)

from which one concludes that this is invariant under changing the cons. Thus (2.2.7) is the cons.-independent
expression we are looking for.

The mixed state is thus described by an operator R which is called the statistical operator. By definition it
fulfills the picture independent equation of motion (2.1.7), the von Neumann equation of motion:

Ṙ =
1
i
[R,H]+ ∂t R = 0. (2.2.9)

This expresses the fact that, if the statistical operator is given at one instant of time, it is associated to the
system at any later time.

The mathematical time evolution is given by the unitarian matrix C defined in eq. (2.1.10):

R(F(t ), t ) =C(t , t0)R(F(t0), t )C†(t , t0) (2.2.10)

where we had to write out the dependence on the fundamental operators F and the explicit time dependence.
Of course the time evolution operator C takes account of the time dependence coming in through the fun-
damental operators, not the explicit time dependence.

From the representation (2.2.5) we can read off easily the coordinate free properties a statistical operator has
to fulfill. Since the probabilities P (o,α) are real, it is self-adjoint:

R† =
∑

o,α
P ∗(o,α)(|o,α〉 〈o,α|)† =∑

o,α
P (o,α) |o,α〉 〈o,α|= R. (2.2.11)

Further the P (o,α) are positive or 0 and thus R is positive semidefinite:

〈ψ |R|ψ〉=∑
o,α

P (o,α)| 〈ψ | o,α 〉 |2 ≥ 0. (2.2.12)

The statistical operator is normalized such that

〈1〉=Tr R =
∑

o,α
P (o,α) = 1. (2.2.13)

If we are given a self-adjoint positive semidefinite operator with trace 1 we can conclude from its eigenvalue
properties that it is a statistical operator corresponding to a probability experiment with the set of possible
results Ω given by the set of projectors to the eigenvectors of the operator.
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A pure state is represented in this formalism by a projection operator P, i.e. an operator with P2 = P. The
eigenvector with eigenvalue 1 is the state |ψ〉 represented by the projector and the probability distribution
tells us that (seen from the point of view of a statistical operator) the system is known to be in the pure state
[|ψ〉].
All this shows that we have to determine the statistical operator with the properties (2.2.11-2.2.13) at an initial
time which fulfills Jaynes’ principle of least prejudice from (1.6.17-1.6.18) we read off that the measure for the
missing information is given by

I [R] =−〈ln R〉=−Tr(R ln R) (2.2.14)

which is the von Neumann entropy corresponding to the statistical operator R.

As an important example we calculate the statistical operator fulfilling Jaynes’ principle for the case that we
know the expectation values of some observables Ok for k = 1 . . . n. These observables need not be compatible
because only knowing their expectation values does not mean that we know them exactly. Thus it can make
sense to determine expectation values for not compatible observables.

Thus we have to find the statistical operator R which maximizes the von Neumann entropy (2.2.14) out of
all statistical operators which fulfill the constraints:

Ok = 〈Ok〉=Tr(RO), Tr R = 1. (2.2.15)

This problem is solved as usual for extremal problems with constraints by introduction of Lagrange parame-
ters λk and Ω:

I ′[R,Ω,λ] =−Tr

�

R

�

ln R+
n
∑

k=1

λk Ok +Ω− 1

��

. (2.2.16)

Herein we have chosen Ω− 1 as the Lagrange parameter for the constraint Tr R = 1.

Now we have to maximize I ′ by varying R over all self-adjoint positive semidefinite operators. This is done
most conveniently by introducing the eigen-cons. of the self-adjoint operator

Q =
n
∑

k=1

λk Ok (2.2.17)

where the set of Lagrange parameters is fixed. Let us call this cons. {|α〉}α∈N. Then we write

R =
∑

α

Pα |α〉 〈α| , Q |α〉= qα |α〉 . (2.2.18)

Plugging this in (2.2.16) this results in

I ′[R,Ω,λ] =−∑
α

Pα (ln Pα+ qα+Ω− 1) . (2.2.19)

Now varying R over all positive semi-definite self-adjoint operators is given by variation of all Pα ≥ 0 inde-
pendently:

δI ′ =−∑
α

δPα (Ω+ qα+ ln Pα)
!= 0. (2.2.20)

Since the Pα are varied independently of each other, we find

Pα = exp(−Ω− qα) (2.2.21)

As we see the Pα are all positive.
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Plugging this result into (2.2.18) and using (2.2.17) we find

R = exp

�

−Ω1−
n
∑

k=1

λk Ok

�

. (2.2.22)

The Lagrange parameters have to be chosen such that the constraints (2.2.15) are fulfilled. We shall prove in
an appendix of this chapter that this is really the (unique) statistical operator fulfilling Jaynes’ principle, i.e.,
which maximizes the von Neumann entropy (2.2.14) under all statistical operators respecting the constraints
(2.2.15).

Especially we have

Z = expΩ=Tr

�

exp

�

−
n
∑

k=1

λk Ok

��

. (2.2.23)

Z is called the partition sum. Taking the derivative of Ω with respect to the Lagrange parameters we obtain
the expectation values of the corresponding observables:

∂ Ω

∂ λk
=

1
Z
∂ Z
∂ λk

=Tr[Ok R] = 〈Ok〉= Ok . (2.2.24)

The proof for this conjecture is given in an appendix not to interrupt our line of arguments2.

2.2.1 Example: Position and Momentum

As an example we like to calculate the statistical operator according to Jaynes’ principle given the average
position and momentum and their standard deviations of a one dimensional system. The set of operators Ok
is then given by

O1 = x, O2 = p, O3 = x2−X 2, O4 = p2−P 2 withX = 〈x〉 , P = 〈p〉 . (2.2.25)

This we can plug directly in (2.2.22) to obtain the statistical operator. Without loss of generality we can write
this as

R = exp(−Ω)exp
�

−λ1

2
(x− x0)

2− λ2

2
(p− p0)

2
�

(2.2.26)

where x0, p0, λ1 and λ2 are substitutes for the Lagrange parameters.

This problem can be solved analytically because we may set

ξ = x− x0, π= p− p0 (2.2.27)

which fulfill the commutator relations of the Heisenberg algebra

1
i
[ξ ,π] = 1. (2.2.28)

With them the statistical operator reads

R = exp(−Ω)exp
�

−λ1

2
ξ 2− λ2

2
π2
�

. (2.2.29)

This has the form of exponential of the Hamiltonian of a harmonic oscillator. The solution for the corre-
sponding eigenvalue problem is given in any basic quantum mechanics text book. Thus we summarize only
the results.

2Note that this is not trivial because generally the operators Ok need not commute
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The first step is to define the annihilation operator for an oscillator quantum

a= (λ1λ2)
1/4

�

1
p

2λ2

ξ + i
1

p

2λ1

π

�

. (2.2.30)

The Heisenberg algebra (2.2.28) gives the crucial commutator relation
�

a†,a
�

= 1. (2.2.31)

This relation is used to show that a basis for an irreducible representation of the Heisenberg algebra is given
by the eigenvectors of the number operator

n= a†a, n |n〉= n |n〉 with n ∈N := {0,1,2, . . .}. (2.2.32)

The eigenvectors are built by successive application of the creation operator to the vacuum state |0〉:
a† |n〉=pn+ 1 |n+ 1〉 (2.2.33)

where the |n〉 are orthonormal vectors. With the choice of phases defined by (2.2.33) operating with a leads
to

a |0〉= 0, a |n〉=pn |n− 1〉 for n ∈N>0. (2.2.34)

The statistical operator reads

R = exp(−Ω)exp
�

−
Æ

λ1λ2

�

n+
1
2

��

. (2.2.35)

The partition sum reads

Z = exp(Ω) = exp

�

−
p

λ1λ2

2

� ∞
∑

n=0
exp(−n

Æ

λ1λ2) =
exp

�

−
p
λ1λ2
2

�

1− exp(−pλ1λ2)
=

1

2sinh
�p

λ1λ2
2

� . (2.2.36)

The explicit dependence on x0 and p0 is lost but it is simple to calculate directly that

〈ξ 〉=TrξR = 0, 〈π〉=TrπR = 0 (2.2.37)

and thus
〈x〉=TrxR = x0, 〈p〉=TrpR = p0. (2.2.38)

The uncertainties (i.e. standard deviations) are calculated by differentiating Z with respect to λ1 and λ2:




ξ 2�=∆x2 =− 2
Z
∂ Z
∂ λ1

=

√

√

√
λ1

4λ2
coth

�p

λ1λ2

2

�

,




π2�=∆p2 =− 2
Z
∂ Z
∂ λ2

=

√

√

√
λ2

4λ1
coth

�p

λ1λ2

2

�

.

(2.2.39)

This shows that λ1,2 ≥ 0 and

∆x∆p =
1
2

coth

�p

λ1λ2

2

�

≥ 1/2 (2.2.40)

which shows that giving ∆x and ∆p values violating the Heisenberg uncertainty relation does not allow to
chose a statistical operator which fulfills Jaynes’ principle of least prejudice. This should of course be so
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because we cannot know more than quantum theory allows us to know and since we resign information we
can give position and momentum only with lower precision than by a pure state. Thus there cannot exist any
statistical operator violating the Heisenberg uncertainty relation!

Using (2.2.36) in (2.2.35) we find that the statistical operator is given by

R =
1

1− exp(−pλ1λ2)
exp

�

−
Æ

λ1λ2n
�

. (2.2.41)

As (2.2.40) shows the state with minimal uncertainty, ∆x∆p = 1/2, is given by the limit λ1λ2→∞. To see
the meaning of this limit for R we evaluate its matrix elements with respect to the occupation-number basis,
|n〉, which is the eigenbasis of R:

R(n1, n2) = 〈n1|R|n2〉=
exp(−pλ1λ2n2)

1− exp(−pλ1λ2)
δn1n2

. (2.2.42)

We find that for λ1λ2 →∞ we get a non-vanishin matrix element only for n2 = 0, and thus in this limit R
represents the pure state,

R∆x∆p=1/2 = |n = 0〉〈n = 0|, (2.2.43)

i.e., only the ground state of the Hamiltonian of a (shifted) harmonic oscillator leads to a state of minimal
space-momentum uncertainty.

2.3 Appendix: Proof of two important theorems

In this appendix we shall give the proof for two important theorems used in the last section.

Theorem 2 (Uniqueness of the statistical operator). Let {O j } j=1,...,n be a set of (not necessarily compatible)
operators. Then the statistical operator

R = exp(−Ω−
n
∑

j=1

λ j O j ) (2.3.1)

is the only statistical operator under all operators which fulfill the constraints

〈O〉 j = O j (2.3.2)

with given expectation values O j which maximizes the von Neumann entropy

I [ρ] =−〈lnρ〉=−Tr(ρ lnρ) (2.3.3)

provided there exists a set of Lagrange parameters λ j ( j = 1 . . . n) such that the constraints (2.3.2) are fulfilled.
Then this set of Lagrange parameters are unique, i.e., the maximum-entropy principle provides a unique statistical
operator of minimal prejudice, given the constraints (2.3.2).

Proof. Let ρ be an arbitrary statistical operator fulfilling (2.3.2). Then we like to prove

S[ρ]− S[R]≤ 0. (2.3.4)

To this end we show that

∀x ∈R>0 : ln x ≥ x − 1 and x − 1= ln x⇔ x = 1. (2.3.5)
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We have only to investigate the function f : R>0 → R with f (x) = x − 1− ln x. Its derivative is given by
f ′(x) = 1− 1/x which is strictly monotone ascending and has the only 0 at x = 1. Thus f has the global
minimum at x = 1 and f (1) = 0. This shows f (x)≥ 0 for all x ∈R>0 and ln x = x − 1 only for x = 1.

To use this equation we observe with help of the eigen-cons. of R

Tr[R ln R] =−∑
n

Rn

�∑

λ j o
( j )
nn +Ω

�

=−Ω−∑λ jO j

=−Tr



ρ

 

−Ω−∑
j

λ j O j

!



=Tr(ρ ln R)
(2.3.6)

where we have used that ρ and R fulfill both the constraints (2.3.2). Herein we have used the following
notation: Rn are the eigenvalues of R with the eigenvector |n〉 and o( j )nn =

¬

n
�

�

�O j

�

�

�n
¶

.

Using now the eigen-cons. of ρ labeled by |α〉 we find

S[ρ]− S[R] =
∑

α

ρα ln
�

Rαα
ρα

�

≤∑
α

(ρα−Rαα) = 0 (2.3.7)

where we have used the inequality (2.3.5) and Trρ=Tr R = 1.

This shows that, if a set of Lagrange parameters Ω and λ j exists such that (2.3.2) is fullfilled for the statistical
operator of the form (2.3.1) any other statistical operator ρ fullfilling (2.3.2) can not have a larger entropy
than R. Since the necessary condition for ρ to maximize the entropy is that it is of the form (2.3.1). Thus
to prove the uniqueness of the statistical operator we have to show that the solution of the constraints (2.3.2)
and Tr R = 1 leads to a unique solution for Ω and the λ j .

Q.E.D.

Theorem 3 (Derivatives of exponential functions). Let Y : D → Hom(H ) where D is an open subset of R.
Then we define

∂aY(a) = lim
∆a→0

Y(a+∆a)−Y(a)
∆a

. (2.3.8)

If this limit exists then we call Y differentiable in a.
Supposed this is the case then also the operator exp[Y(a)] is differentiable in a and we have

∂a exp[Y(a)] = exp[Y(a)]
∫ 1

0
dτ exp[−τY(a)]∂aY(a)exp[τY(a)]. (2.3.9)

Proof. Let X : D → Hom(H ) (with D an open subset of R) and X(t ) = X1(t ) +X2(t ). Define operators U
and U j with ( j = 1,2) by the initial value problem

∂t U(t , t0) =X(t )U(t , t0), U(t0, t0) = 1;
∂t U j (t , t0) =X j (t )U j (t , t0), U j (t0, t0) = 1

(2.3.10)

which is solved in section 2.1 for the problem of time evolution. Now we define the operator V

V(t , t0) =U1(t , t0)+
∫ t

t0

dt ′U(t , t ′)X2(t
′)U1(t , t0). (2.3.11)

Differentiating with respect to t and using (2.3.10) and U(t , t ) = 1 for t ∈D we find that

∂t V (t , t0) =X(t )V (t , t0). (2.3.12)
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Further it can be seen immediately from (2.3.10) that V(t0, t0) = 1. Thus V ≡U. Thus we have the identity

U(t , t0) =U1(t , t0)+
∫ t

t0

dt ′U(t , t ′)X2(t
′)U1(t , t0). (2.3.13)

Now we apply this to the case that X1 and X2 and thus X =X1+X2 are independent of t :

exp[(t − t0)X] = exp[(t − t0)X1]+
∫ t

t0

dt ′ exp[(t − t ′)X]X2 exp[(t ′− t0)X1]. (2.3.14)

Now set t0 = 0 and t = 1 to obtain

exp[X1+X2] = exp[X1]+ exp(X)
∫ 1

0
dτ exp[τ(X1+X2)]X2 exp(τX1). (2.3.15)

Setting X1 = Y(a) and X2 =∆a∂aY(a) and letting∆a→ 0 we find the claim of the theorem.3 Q.E.D.

Theorem 4 (Calculating expectation values). The partition sum for a statistical operator fulfilling Jaynes’ prin-
ciple with the given constraints (2.3.2) is defined as

Z = expΩ=Trexp

 

−
n
∑

j=1

λ j O j

!

. (2.3.16)

Then the expectation values for the observable O j are given by the derivatives of Z as follows:

¬

O j

¶

=− 1
Z
∂ Z
∂ λ j

=− ∂ Ω
∂ λ j

. (2.3.17)

Proof. Using

Y =−
n
∑

j=1

λ j O j and a = λk with k = 1, . . . , n (2.3.18)

in (2.3.9) we have

∂

∂ λk
exp



−
n
∑

j=1

λ j O j



=−exp



−
n
∑

j=1

λ j O j





∫ 1

0
dτ exp



−τ
n
∑

j=1

λ j O j



Ok exp



τ
n
∑

j=1

λ j O j



 (2.3.19)

Now given two operators X and Y and provided the trace of their product exists we have

Tr(XY) =Tr(YX). (2.3.20)

Using a cons. {|n〉}n∈N this is proven by

Tr(XY) =
∑

n1,n2

〈n1 |X|n2〉 〈n2 |Y|n1〉=
∑

n1,n2

〈n2 |Y|n1〉 〈n1 |X|n2〉=Tr(YX). (2.3.21)

Taking the trace of (2.3.19) we can write the rightmost exponential operator to the very left (taking the first
under the integral). Then we can use the simple equation

[X ,Y ] = 0⇒ exp(X+Y) = exp(X)exp(Y) (2.3.22)

3Mention that this is not a rigorous proof because we have interchanged taking the integral and the limit.
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which is proven with help of Cauchy’s product law for series like in the case of the exponential of a complex
number.4Then the integral becomes trivial and we find

Tr





∂

∂ λk
exp

 

n
∑

j=1

λ j O j

!



=−Tr



Ok exp

 

n
∑

j=1

λ j O j

!



 . (2.3.23)

To finish the proof we have only to show that we can interchange differentiation with respect to λk with
taking the trace operator X(a):

∂a Tr X(a) = ∂a

∑

n
〈n |X(a)|n〉 . (2.3.24)

To interchange the derivative with the summation we have to claim that the series is uniformly convergent in
a neighbourhood of a and that the same is true for the series built by the derivatives of its summands. Then
we can interchange the derivative with taking the trace and the theorem is proven. Q.E.D.

4If the operators in the exponential do not commute then there exists a more general formula known as Baker Campbell Hausdorff
formula.
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Chapter 3

Equilibrium Thermodynamics

In this chapter we want to derive the results of phenomenological thermodynamics which deals with equilib-
rium, i.e., macroscopically static situations.

Due to the ideas developed in the previous section the stationarity of the statistical operator fixes the possible
set of given expectation values as the known information about the system to the global conserved quantities
of the system.

In order to obtain the full thermodynamic content of the phenomenological theory we have to take into
account adiabatic changes of the external parameters which will be discussed in the first section. From these
considerations one can deduce the whole thermodynamic content in terms of the thermodynamic potentials.

Beginning with the next section we shall treat some physical examples. Starting with ideal gases we shall
introduce the perturbative methods needed for treating interacting systems.

3.1 Adiabatic changes of external parameters

In this section we shall prove the important adiabatic theorem:

Theorem 5. Suppose the Hamiltonian H(χ ) of the system depends on an external parameter χ .1. We assume
that the Hamiltonian has a non degenerate spectrum.
Now let the external parameter change with time according to

χ (t ) = χ1+
t
τ
(χ2−χ1). (3.1.1)

Then in the limit of infinitesimal slow change, i.e., τ→∞ the time evolution from t = 0 to t = τ of a conserved
observable O(χ1) leads to a conserved observable with external parameter χ2.

Proof. For sake of simplicity we do the calculations in the Heisenberg picture. Then the full time dependence
is at the operators. The state |ψ〉 the system is prepared in stays constant while the eigenstate |α,χ 〉 of the
Hamiltonian is time dependent through the time dependence of the external parameter χ . To fix the notation
we write down the eigenvalue equation for H:

H(χ ) |α,χ 〉= Eα(χ ) |α,χ 〉 . (3.1.2)

The Heisenberg picture equation of motion is

−i
d
dt
|α,χ 〉=H(χ ) |αχ 〉− i

χ2−χ1

τ

∂

∂ χ
|α,χ 〉 (3.1.3)

1This might be an external field or as most often discussed in elementary applications the volume of the container of a gas
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which leads to the Schrödinger equation for the energy representation

i
d
dt
〈α,χ |ψ〉= 〈α,χ |H(χ )|ψ〉+ i

χ2−χ1

τ

∂

∂ χ
〈α,χ |ψ〉 . (3.1.4)

Making use of the operator

G(χ ) = i
∑

α

�

∂

∂ χ
|α,χ 〉

�

〈α,χ |=−i
∑

α

|α,χ 〉 ∂
∂ χ
〈α,χ | (3.1.5)

leads to

i
d
dt
〈α,χ |ψ〉= Eα(χ ) 〈α,χ |ψ〉− χ2−χ1

τ

∑

α′
Gαα′(χ )




α′,χ
�

�ψ
�

(3.1.6)

with the matrix element
Gαα′(χ ) =




α,χ
�

�G(χ )
�

�α′,χ
�

. (3.1.7)

Now we define

〈α,χ |ψ〉= exp
�

−i
∫ t

0
dt ′Eα(χ (t

′))
�

φα(t ) (3.1.8)

and substitute it in the equation of motion (3.1.6) using the integration

∫ t

0
dt ′Eα(χ (t

′)) = τ

χ2−χ1

∫ χ (t )

χ1

dχ Eα(χ ) (3.1.9)

which leads after simple calculations to

i
dφα(t )

dt
=−χ2−χ1

τ

∑

α′
Gαα′(χ )exp

�

iτ
χ2−χ1

∫ χ (t )

χ1

dχ [Eα(χ )− Eα′(χ )]
�

(3.1.10)

Now redefining the phase of the eigenvectors |α,χ 〉 by
�

�α′,χ
�

= exp[iσα(χ )] |α,χ 〉 (3.1.11)

the operator G changes to

G′(χ ) =Gχ −∑
α

|α,χ 〉 dσα(χ )
dχ

〈α,χ | (3.1.12)

which means

G′αα(χ ) =



α′,χ
�

�G(χ )
�

�α′,χ
�− dσα(χ )

dχ
. (3.1.13)

This means that we can make the diagonal elements of G vanish by proper choice of the arbitrary phases σα.
From now on we assume that this is already the case for G.

Integrating (3.1.10) over time we find

i[φα(τ)−φα(0)] =−
χ2−χ1

τ

∑

α′

∫ τ

0
dtGαα′(χ )φα′ exp

�

iτ
χ2−χ1

∫ χ (t )

χ1

dχ [Eα(χ )− Eα′]
�

. (3.1.14)

By our choice of phases such that Gαα = 0 for allα in the sum of (3.1.10) only non-vanishing energy differences
occur in the exponential because we assumed the Hamiltonian to have a non-degenerate spectrum. Thus the
integral in the argument of the exponential is increasing with time and for τ→∞ starts to oscillate more and
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more rapidly while all the other functions vary little with time. Thus the integration over t tends to cancel
the sum completely. This leads to the asymptotic statement of our theorem, namely

φα(τ) ∼=τ→∞φα(0). (3.1.15)

Now let A(χ ) be a constant of motion with respect to the parameter dependent Hamiltonian H(χ ). Then it
is diagonal with respect to the eigenbasis of the Hamiltonian:

A=
∑

α

aαα(χ ) |α,χ 〉 〈α,χ | (3.1.16)

and (3.1.15) shows that the adiabatic change of the parameter χ with time moves this from A(χ1) which is
a constant of motion with respect to H(χ1) to A(χ2) which is a constant of motion with respect to H(χ2).

Q.E.D.

3.2 Phenomenological Thermodynamics revisited

In this section we shall briefly show that with the development of general statistical quantum physics one can
derive all the knowledge of phenomenological thermodynamics from microscopic quantum statistics.

To this end we have to remember that phenomenological thermodynamics deals with stationary, i.e., macro-
scopic equilibrium states. This situation is completely defined by a statistic operator R which does not depend
on time explicitly. Using the von Neumann equation of motion (2.2.9) this means

1
i
[R,H] = 0 (3.2.1)

and this means for the operator fulfilling Jaynes’ principle of least prejudice (2.2.22) must depend only on
constants of motion. Thus the most general equilibrium statistic operator has to be built with given expec-
tation values of conserved quantities. Denote an independent set of conserved quantities by {Oi}i=1...n any
equilibrium operator has to be of the form

R = exp

�

−Ω−
n
∑

i=1

λi Oi

�

(3.2.2)

The most important statistical operator the canonical statistical operator where only the mean energy of the
system is given

R = exp(−Ω−βH) (3.2.3)

and the grand canonical statistical operator where the mean energy and numbers of particles are given2

R = exp(−Ω−βH−αN). (3.2.4)

As we know from theorem 4 of section 2.3 the expectation values can be calculated by taking the derivatives
of the logarithm of the partition sum Ω with respect to the Lagrange parameters λi :

〈Oi 〉=−
∂ Ω

∂ λi
. (3.2.5)

Due to the adiabatic theorem of the last section under an adiabatic change of the external parameters the
statistical operator remains an equilibrium one with respect to the conserved quantities dependent on the

2Keep in mind that we are working in non-relativistic quantum theory now where the particle number is conserved provided we
have particles which don’t build bound states.
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external parameters. On the other hand the adiabatic change is described as a time evolution in the limit of
changing the external parameters very slowly. Since the von Neumann equation of motion tells us that the
statistical operator R stays constant with time together with Ehrenfest’s theorem we conclude that the von
Neumann entropy I =−〈ln R〉 stays constant within an adiabatic change of the external parameters.

On the other hand we have

I =−〈ln R〉=Ω+∑
j

λ j o j with o j =
¬

O j

¶

. (3.2.6)

This shows that Ω is a Legendre transform of the entropy, also known as Massieu functions in the literature.

Thus an adiabatic change of the parameters means that the system stays in the most general thermal equilib-
rium and for a closed system we have

dI =
�

∂ I
∂ χ

�

o j=const.
dχ +

∑

j

λ j do j = 0. (3.2.7)

This we call the Thermodynamic adiabatic theorem.

Now using (3.2.6) and ∂ Ω/∂ λ j =−o j this can be written as

dI =
∑

χ

�

∂ Ω

∂ χ

�

λ j=const.
dχ +

∑

j

λ j do j = 0 (3.2.8)

because
�

∂ I
∂ χ

�

o j=const.
=
�

∂ Ω

∂ χ

�

λ j=const.
. (3.2.9)

Now in general we can never know the average values of all conserved quantities (as we shall see in the next
section this would be an infinite number of occupation numbers in the usual grand canonical approach!). In
the usually explored cases of classical phenomenological thermodynamics we have only a view parameters
like energy and particle numbers. But one looks at open systems. This means that we have a big macro-
scopic system (in general one may think of it as the whole universe) and we look on a little subsystem of also
macroscopic dimensions.

We suppose now that the whole system is in thermodynamical and chemical equilibrium, i.e., the statistical
operator describing the whole system is the grand canonical operator

R = exp(−Ω−βH−αN) (3.2.10)

where N is the operator of the total particle number.3

Now we suppose that we make an adiabatic change on the smaller subsystem and that the whole system is
so big that under that change the system stays at thermodynamical and chemical equilibrium, i.e., after the
change of state the whole system is again described by a grand canonical statistical operator (3.2.10) with
changed Lagrange parameters β and α and thus also changed average particle number and energy.

From the thermal adiabatic theorem (3.2.7) we obtain under these circumstances

dI1 =βdE1+αdN1+β
∑

χ

�

∂ Ω

∂χ

�

λ j=const.

=−dI2. (3.2.11)

3Keep in mind that this is a equilibrium operator in the non-relativistic case only, because in relativistic physics the particle
number is not conserved. In this case one has to substitute conserved charge operators (for instance electric charge, lepton number
or baryon number) for N.
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Now we take especially the volume V of the small system as an external parameter. From (3.2.11) we obtain

dE1 =
1
β

d I1−
1
β

�

∂ Ω

∂ V

�

α,β
dV − α

β
dN1. (3.2.12)

If we identify our Lagrange parameters and the derivative of the Massieu function Ω with the phenomeno-
logical bulk properties of the thermodynamic system in the following way

I1 = S, β=
1
T

, p =
1
β

�

∂ Ω

∂ V

�

α,β=const.
, µ=− α

β
(3.2.13)

then (3.2.12) reads
dE1 = T dS − pdV +µdN1 (3.2.14)

which is nothing else than the first law of thermodynamics namely the macroscopic energy conservation: The
change of energy of the subsystem is given by the energy T dS, the heat, coming from the bigger subsystem
(which takes account of thermal and chemical equilibrium and therefore often is called the heat bath), the
mechanical work −pdV and chemical work µdN1.

We also see that Shannon’s measure of missing information for an open system which is in thermal and
chemical equilibrium with a heat bath, which fulfills Jaynes’ principle of least prejudice is nothing else than
the macroscopic entropy invented by Clausius and Planck.

All this shows that phenomenological thermodynamics can be re-derived using the quantum statistics for the
equilibrium in the grand canonical ensemble. The main advantage of the statistical approach is that one is (at
least in principle) able to derive the properties of macroscopic systems the underlying dynamics of the very
many particles it is built of.

It should only be mentioned that our quantum statistical approach avoids a lot of difficulties the classical
statistics has with deriving phenomenological thermodynamics.

3.3 Ideal gases in the grand canonical ensemble

In this section we shall use the formalism developed so far for calculating the properties of one of the most
important examples for quantum statistics, the ideal gases. From the microscopic point of view these are the
most simple systems built by non interacting particles.

From the very beginning we shall use the methods of quantum field theory to calculate all the thermodynamic
properties. This is done to introduce the formalism of canonical field quantization. In my notes about quan-
tum field theory you may read the same ideas from the particle point of view while the canonical quantization
formalism is more from the field point of view.

3.3.1 Non-relativistic ideal gases

In these notes we prefer the canonical field quantization formalism against the particle point of view of the
same mathematics. This has the advantage of leading immediately to the interesting physical results but has
the pedagogical disadvantage to hide the microscopic picture of particles behind the whole philosophy of
statistics. The reader my look on my notes about quantum field theory for a complete treatment of the
particle point of view.

We start with the classical action for the one particle Schrödinger equation:

A[ψ∗,ψ] =
∫

d4x
�

iψ∗∂tψ−
1

2m
(∇ψ)∗(∇ψ)

�

︸ ︷︷ ︸

L

. (3.3.1)
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Thereby we used the abbreviation x = (t , ~x) within the integral.4 The classical equations of motion are
given by the Hamiltonian principle which tells us to look for the fields ψ∗ and ψ which minimize the action
functional. The result are the Euler-Lagrange equations of motion:

δA
δψ∗

=
d
dt

∂L
∂ ∂tψ∗

+∇ ∂L
∂ (∇ψ∗) −

∂L
∂ ψ∗

= 0. (3.3.2)

The variation with respect to ψ leads to the conjugate complex equation. Taking the Lagrangian from eq.
(3.3.1) we immediately find the Single particle Schrödinger equation for free particles5:

i∂tψ=−
∆ψ

2m
. (3.3.3)

The important point of this field point of view is that it is very easy to find the expressions for total field
energy, momenta, angular momenta and single particle number because these are conserved quantities due
to Noether’s theorem (see my notes on quantum field theory ch. 1). We shall not derive these well known
expressions here which should be done by the reader as a simple exercise.

We aim now to quantize this “field formalism” canonically. For this purpose the first step is to transform into
the Hamiltonian formalism which is a Legendre transformation with respect to the time derivatives of the
fields. The canonical field momenta6 are given by

Π=
∂L
∂ (∂tψ)

= iψ∗m,Π∗ = ∂L
∂ (∂tψ∗)

= 0 (3.3.4)

and the Hamiltonian is given by making use of its definition

H = 1
2m
(∇ψ∗)(∇ψ) =− i

2m
(∇Π)(∇ψ). (3.3.5)

In this case the vanishing ofΠ∗ does not lead to any difficulties for the Hamiltonian formalism because in this
we do not need to eliminate the time derivatives out of the Hamiltonian. The reason is that the Schrödinger
field Lagrangian depends linearly on these derivatives and thus they vanish completely in the Hamiltonian.
Nevertheless it is important to mention that the independent field degrees of freedom are given by ψ and Π
and thus only those have to be used in the canonical quantization formalism. The reader should verify that
the Hamiltonian formalism of course leads to the correct equations of motion for ψ and π= iψ∗, namely the
Schrödinger equation of motion and its complex conjugate.

As already mentioned above additionally to the space-time symmetries of Newtonian mechanics the La-
grangian for the Schrödinger equation also respects the symmetry transformation of a global phase trans-
formation:

ψ′(x) = exp(−iα)ψ(x), ψ′∗(x) = exp(+iα)ψ∗(x). (3.3.6)

According to Noether’s theorem the conserved quantity following from this symmetry is the normalization
integral

N =
∫

d3~xψ∗(x)ψ(x) with x = (t , ~x). (3.3.7)

4The reader should keep in mind that this has nothing to do with the relativistic Minkowski space notation because here we treat
the non-relativistic case.

5For sake of simplicity we take spin-0-particles. As we know from the spin-statistics theorem of relativistic quantum field theory
these particles are necessarily bosons. As we shall see for the case of the calculation of non interacting particles extension of the
results for arbitrary spin particles is trivial

6Keep in mind that these have nothing to do with physical momenta. It is just a naming convention which comes to the theory
from classical non-relativistic point mechanics without magnetic fields where the canonical momenta are of course identical with the
physical momenta mv.
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3.3 · Ideal gases in the grand canonical ensemble

This should be proven also by the reader as a simple example using the notes about quantum field theory.

Now we can quantize the fields. As is discussed in the particle picture (see quantum field theory ch. 2) there
are two possible quantization procedures which take account on the indistinguishability of identical parti-
cles: Quantization with commutator relations (the particles are then called bosons) or with anti-commutator
relations (the particles are then called fermions).
Due to the canonical quantization formalism we introduce field operators ψ and Π instead of the classical “c-
number”-fields and define the anti-commutator- or commutator relations according to the analogue Poisson
brackets. If not mentioned otherwise in the following we treat fermions and bosons in parallel. The most
differences are signs and the upper signs belong to fermions, the lower to bosons:

[ψ(t , ~x),ψ(t , ~y)]± = [Π(t , ~x),Π(t , ~y)]± = 0,
1
i
[ψ(t , ~x),Π(t , ~y)]± = δ

(3)(~x − ~y). (3.3.8)

Now we like to calculate the thermodynamic properties of the ideal gas within a cubic box of length L. We
assume that L is big compared to the De Broglie wave lengths of the typical momenta of the particles within
the gas. Then we might neglect boundary effects which means that we may chose any boundary conditions
which are customary for the calculation. In the end of the calculation we shall look on the limit L →∞.
Then in equilibrium we expect the gas to be homogeneous and it is thus natural to use periodic boundary
conditions, i.e.,

ψ(t , ~x + L~ei ) =ψ(t , ~x) for i = 1,2,3. (3.3.9)

Then we can expand the the field operator in a Fourier series

ψ(t , ~x) =
∑

~n∈Z3

1p
V

a(~n)exp[−iω(~n)+ i~p(~n)~x]

a(~n) =
∫

V

d3~xp
V
ψ(t , ~x)exp[iω(~n)t − i~p(~n)~x]

with ~p(~n) =
2π
L
~n, ~n ∈Z3.

(3.3.10)

ω(~n)will be determined from the Heisenberg picture equations of motion for the field operators. To find these
we have firstly to determine the (anti-) commutator relations for the a out of the canonical relations (3.3.8).
From (3.3.10) we obtain

�

a(~n),a†(~n′)
�

± =
∫

V

d3~x ′p
V

∫

V

d3~xp
V

�

ψ(t , ~x),ψ†(t , ~x ′)
�

±×
×exp{−i[ω(~n)−ω(~n′)]t + i[~p(~n)− ~p(~n′)]}=

=
∫

V

d3~x
V

exp{i[~p(~n)− ~p(~n′)]}= δ (3)(~n− ~n′) :=
¨

0 for ~n 6= ~n′
1 for ~n = ~n′.

(3.3.11)

Now it is easy to express the various quantities in terms of the a(~n). One just has to apply (3.3.10) to the
quantum counterparts of the classical expressions and to integrate out the ~x-integral7. For the Hamiltonian
and the “normalization” we find

H =
1

2m

∑

~n∈Z3

~p2(~n)N(~n), N =
∑

~n∈Z3

N(~n) with N(~n) = a†(~n)a(~n). (3.3.12)

7The operator-ordering problem is in our case of non-relativistic quantum field theory not as serious as in the relativistic case. As
we shall see in both cases problem is solved by choosing the lowest energy value at 0 and the particle number to 0 for the same state.
At the end the operators have to be written in normal order, i.e., all a† have to be written to the left of all a
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Chapter 3 · Equilibrium Thermodynamics

To find the physical meaning of the operators a, a† and N(~n)we have to solve the eigenvector problem for the
N(~n). The first step is to show that the N(~n) commute. Since they are self-adjoint operators this tells us that
we can span the Hilbert space the field operators act on by a set of simultaneous eigenvectors of the N(~n).
This is done by direct evaluation of the commutator

�

N(~n), N(~n′)
�

=
�

a†(~n)a(~n),a†(~n′)a(~n′)
�

=

=a†(~n)
�

a(~n),a†(~n′)a(~n′)
�

+
�

a†(~n),a†(~n′)a(~n′)
�

a(~n) =

=a†(~n)
n

�

a(~n),a†( ~n′)
�

± a(~n)∓ a†(~n′)
�

a(~n),a(~n′)
�

±
o

+

+
¦

�

a†(~n),a†(~n′)
�

± a(~n′)∓ a†(~n′)
�

a†(n),a(~n′)
�

±
©

a(~n) = 0.

(3.3.13)

Thereby we made use of the identities

[A, BC]± = [A, B]±C∓B [A,C]± and [AB,C]± =A [B,C]±∓ [A, B]±C. (3.3.14)

Thus the N(~n) commute and thus we can solve the eigenvalue problem for each N(~n) separately. For this
purpose we write simply a, a† and N.

We shall solve firstly the problem for fermions. In this case N is a projection operator:

N2 = a†aa†a=
��

a†,a
	− aa†	a†a=N, (3.3.15)

where we have used (a†)2 = 0. Suppose |α〉 is an eigenvector of N with eigenvalue value α this means that
α2 = α and thus α = 0 or α = 1. Now we suppose that the eigenspace of N is not degenerate. We shall show
below that this conjecture is equivalent to the irreducibility of the representation of the field operators on
the Hilbert space.8 We have just to find how a and a† act on the eigenvectors |α〉. For this we calculate the
commutators

�

N,a†�= a†, [N,a] =−a. (3.3.16)

From this we find
Na |α〉= {[N,a]+ aN} |α〉= (α− 1)a |α〉 (3.3.17)

which means that a |α〉 is either a eigenvector of N with eigenvector α−1 or it is 0. From our conjecture that
the eigenspaces of N are not degenerate we conclude

a |1〉= |0〉 , a |0〉= 0 (3.3.18)

because a |0〉 cannot be different from 0. Otherwise it would be an eigenvector of N with eigenvalue−1 which
contradicts the projector properties of N. Then a |1〉 cannot be 0 because otherwise a would be 0 which is
not compatible with the anti commutator relations of a and this leads together with the conjecture that the
eigenspaces of N are non degenerate to the first equation (of course up to an arbitrary phase factor).

The correctness of the normalization for the first equation in (3.3.18) is also easily seen:

〈a1 |a1〉=
¬

1
�

�

�a†a
�

�

�1
¶

= 〈1 |N|1〉= 〈1 |1〉= 1. (3.3.19)

Thus a proper choice of the arbitrary phase of |0〉 leads to the first equation in (3.3.18).

Exactly the same arguments give
a† |0〉= |1〉 , a† |1〉= 0. (3.3.20)

8We want only mention that there are other approaches to quantum field theory which use explicitly a reducible representation
of the algebra known as Thermo Field Dynamics (TFD). In our approach (named Schwinger-Keldysh real-time formalism) we shall
find the “doubling of field degrees of freedom” on other grounds. Both formalism result in the same results in practice.
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3.3 · Ideal gases in the grand canonical ensemble

This shows that the a(~n) are destruction and a†(~n) creation operators for a fermion in a state of definite
momentum ~p(~n). The whole Hilbert space is spanned by

|N (~n)〉=∏

~n∈Z3

[a†(~n)]N (~n) |0〉 (3.3.21)

where N (~n) = 0,1 and |0〉 is the “vacuum state”, i.e., the state describing the situation that no particle is
present. We have also to fix the order of creation operators which means only the choice of a certain phase
for the states. The states are antisymmetric with respect to interchange of two one-particle states.

The physical meaning of all this is now clear: From the canonical quantization with anti-commutators there
cannot be more than 1 particle in a certain quantum state, i.e., fermions obey Pauli’s exclusion principle. The
states (3.3.21) may contain any total number of particles and the conserved quantity (3.3.7) is nothing else than
the total number of particles described by the state. This Hilbert space, describing particles with an arbitrary
number of particles, is known as the Fock space for fermions. The formalism above shows that it splits in
the orthogonal sum of the subspaces of a fixed number of particles. Each of these subspaces is conserved
within the time evolution because the Hamiltonian commutes with the number operator. This shows that
our formalism is completely equivalent with the 1st quantization formalism for fermions.

We shall not repeat the same construction for bosons. The only difference is that in any state may be any
number of particles and that the number states spanning the Fock space for bosons are given by:

|N (~n)〉=∏
~n

1
p

N (~n)!
[a†(~n)]N (~n) |0〉 with N (~n) ∈N := {0,1,2, . . .}. (3.3.22)

Now it is also easy to find the Heisenberg picture equation of motion for our free particle case:

∂tψ(t , ~x) = i [H,ψ(t , ~x)] . (3.3.23)

On the right-hand-side we write the Hamiltonian and the field in terms of annihilation and creation operators
according to eq. (3.3.12) and eq. (3.3.10) which using (3.3.16)9 leads to:

[H,ψ(t , ~x)] =−∑
~n∈Z3

1p
V

~p 2(~n)
2m

a(~n)exp[−iω(~n)+ i~p(~n)~x]ψ(t , ~x). (3.3.24)

Writing also the left-hand-side of eq. (3.3.23) in terms of the Fourier series (3.3.10) this gives the dispersion
relation for free Schrödinger fields:

ω(~n) =
~p2(~n)
2m

(3.3.25)

which shows also that our ansatz with time-independent annihilation operators in (3.3.10) is correct within
the Heisenberg picture we are using here.

Now we want to derive the macroscopic properties of ideal gases in equilibrium. For this purpose we chose
the grand canonical ensemble which is defined in terms of our information theoretical language as the choice
of the statistical operator fulfilling Jaynes’ principle of least prejudice consistent with the given average energy
E = 〈H 〉 and the average total number of particlesN = 〈N 〉. As we shall see this is a very good approximation
for a closed system of N particles at energy E within a box of volume V = L3. Here the approximation is
“good” in the sense that for a macroscopic number of particles the standard deviations (i.e. uncertainties) for
total energy and particle number are negligible compared to their values itself.

The grand canonical statistical operator is given by

R = exp[−Ω−βH−αN] (3.3.26)

9N(~n′) commutes with a(~n) for ~n 6= ~n′
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Chapter 3 · Equilibrium Thermodynamics

where we have made use of our general solution of the Jaynes’ principle (2.2.22). As we have proven in section
2.3 we can calculate the average energy and particle number if we know the grand canonical partition sum
as derivatives with respect to the according Lagrange parameters β and α. Thus our aim is to calculate this
partition sum which is done most conveniently with evaluating the trace using the particle number eigenstates
(3.3.21) for fermions or (3.3.22) for bosons

Z =Tr [exp(−βH−αN)] =
∏

~n∈Z3

∑

N (~n)

exp
��

−β~p
2(~n)
2m

−α
�

N (~n)
�

. (3.3.27)

The sum over N (~n) is simply done. In the case of fermions each N (~n) runs only over 0 and 1 giving always
a finite result while for bosons these numbers run from 0 to infinity which gives a geometric series which
is only convergent if the exponent is negative. As we shall see this fact gives rise to a completely different
behaviour of boson gases compared to fermion gases in the quantum regime.

Assuming that the mentioned convergence restriction for the bosonic case is fulfilled we can write the result
for both cases in one equation:

Z =
∏

~n∈Z3

�

1± exp
�

−β~p
2(~n)
2m

−α
��±1

. (3.3.28)

For the following it is more convenient to discuss the physical properties with help of the Massieu function
(the grand canonical potential)

Ω= lnZ =±∑
~n∈Z3

ln
�

1± exp
�

−β~p
2(~n)
2m

−α
��

. (3.3.29)

For both cases it is a necessary condition for this series to converge thatβ> 0. The range of α is not restricted
for fermions but for bosons one has to pay attention that the exponent does not vanish. In the limit of an
infinite volume we have to force α > 0 and as we shall see below this has the very interesting physical conse-
quence of the appearance of Bose-Einstein condensation in the quantum limit. This means that a macroscopic
number of the bosons contained in the gas is in the lowest energy state. This leads to the highly impressive
super-fluid behaviour of bosonic fluids as is 4He which is a macroscopic quantum effect.

For sake of completeness we add also spin degrees of freedom. The whole formalism explained above still
applies. The only difference is that the creation- and annihilation-operators contain an additional label σ
which runs over {−s ,−s + 1, . . . , s − 1, s} for particles of spin s . For instance for electrons s = 1/2.

Clearly we have to sum over σ in (3.3.29) additionally to the sum over ~n. In the case of free particles, i.e., ideal
gases the Hamiltonian does not contain the spin and thus this summation over the spin degrees of freedom
gives just a multiplication with g = 2s+1. Thus the correct grand potential for ideal gases including the spin
degrees of freedom is given by

Ω= lnZ =±g
∑

~n∈Z3

ln
�

1± exp
�

−β~p
2(~n)
2m

−α
��

. (3.3.30)

3.3.2 The ideal Fermi gas

In the case of Fermi gases the sum in (3.3.29) exists for α ∈R and β ∈R>0. Thus we can go without further
difficulties to the limit of an infinite box, i.e., L→∞. For large but finite L there are a lot of levels within a
small volume d3~p in momentum space:

~p(~n) =
2π
L
~n, ~n ∈Z3, dni =

L
2π

d pi ⇒D(~p)d3~p =
V
(2π)3

d3~p (3.3.31)

46



3.3 · Ideal gases in the grand canonical ensemble

where D(~p) is the density of quantum states at momentum ~p (shortly called the level density).

This shows that in the limit of a very big box containing the gas we can write the sum (3.3.30)

Ω= g
∫

d3~p
V
(2π)3

ln
�

1+ exp
�

−β ~p2

2m
−α

��

(3.3.32)

This integral can be evaluated up to a single integral by introducing spherical coordinates:

Ω=
gV
2π2

∫ ∞

0
d p p2 ln

�

1+ exp
�

−β p2

2m
−α

��

(3.3.33)

Unfortunately this integral cannot be calculated analytically with elementary functions. Nevertheless we can
calculate the behaviour of the gas in two important limits.

3.3.3 The classical limit

The most important quantum feature of the Fermi gas is Pauli’s exclusion principle which forbids two parti-
cles to occupy the same single-particle state. Thus we conclude that the gas should show classical behaviour
if statistically only a small number of particles is in a single state. This is the case either for a small number of
particles which is not true for macroscopic gases or at given particle number at high temperatures, i.e., small
β.

Formally the classical limit is obtained if exp(α)� 1.10 Integrating (3.3.33) by parts leads to

Ω=
gVβ
6π2m

∫ ∞

0
d p

p4

exp
�

β p2

2m +α
�

+ 1
(3.3.34)

and in the classical limit we can neglect the 1 in the denominator against the exponential function:

Ω=
gVβ
6π2m

exp(−α)
∫ ∞

0
d p p4 exp

�

−β p2

2m

�

. (3.3.35)

This integral can be evaluated by using again the trick of “generating functions”:

f (x) =
∫ ∞

0
d p exp(−x p2) =

p
π

2
x−1/2. (3.3.36)

Then we have

f ′(x) =−
∫ ∞

0
d p p2 exp(−x p2) =−

p
π

4
x−3/2,

f ′′(x) =
∫ ∞

0
d p p4 exp(−x p2) =

3
p
π

8
x−5/2.

(3.3.37)

For x =β/(2m) we find for the integral (3.3.35):

Ω= gV
�

m
2πβ

�3/2

exp(−α). (3.3.38)

10This can be shown by calculating the distribution of the particles over the states within the grand canonical ensemble. This task
is devoted to an exercise for the reader.
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From this we find the average particle number and energy by differentiation with respect to β or α respec-
tively, i.e.

N =−∂ Ω
∂ α
= gV

�

m
2πβ

�3/2

exp(−α), E =−∂ Ω
∂ β
=

3gV
2

�

m
2πβ

�3/2 1
β

exp(−α). (3.3.39)

The first equation shows of course that our considerations are valid only in the low density limit because
exp(−α)� 1.

Combining both equations (3.3.39) leads to the well known caloric equation of state for the ideal gas, namely

E = 3
2
N
β

. (3.3.40)

According to (3.2.13) the statistical quantities are connected with the macroscopic quantities by

T =
1
β

, α=−µβ (3.3.41)

where T is the temperature (measured in energy units which is due to our choice of kB = 1) and µ is the
chemical potential of the gas.

From (3.2.6) we obtain the entropy of the ideal gas

S =Ω+βE +αN . (3.3.42)

According to (3.2.7) the natural independent quantities for the entropy are E , N and V :

S =
5
2
N +N ln

�

gV
N

�mN
3πE

�3/2�

. (3.3.43)

This gives for the pressure according to (3.2.13) or (3.2.14):

p =
1
β

�

∂ S
∂ V

�

N ,E=const.
=

1
β

�

∂ Ω

∂ V

�

α,β=const.
=
N

Vβ
(3.3.44)

which may look more familiar in the form

pV =N T . (3.3.45)

This is nothing else than the equation of state for an ideal gas.

3.3.4 The Quantum Limit for a Fermi Gas

The quantum nature of the gas becomes most “visible” in the limit T →+0, which means β→∞.

So let us first come to the case T = 0 itself. Then we have to write from the very beginning α=−βµ and we
have to keep µ finite while letting β→∞. The quantum nature of the Fermi gas becomes most clear if we
calculate the distribution of the particles over the momentum states for arbitrary temperatures:

ρ(~p) =
1
βV

δΩ

δω(~p)
=

g

1+ exp
h

β
�

~p2

2m −µ
�i . (3.3.46)

This is the Fermi distribution with a factor g taking into account the degenaracy of the free particle’s state
due to the spin degrees of freedom11.

11For instance for electrons we have g = 2. The free electron gas theory applies for instance to the conducting electrons within a
metal. The electrons can approximately be seen to move freely due to the positive background they are situated.
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3.3 · Ideal gases in the grand canonical ensemble

For T → 0, i.e. β→∞ this becomes

ρ0(~p) = gΘ(µ0−
~p2

2m
) (3.3.47)

which shows clearly the fermionic character of the particles. Because only g of them can join the same
momentum state (due to different spin degrees of freedom) at 0 temperature they fill up all levels beginning
with the lowest until all particles are put in the box.

The average total number of particles is

N0 =−
�

∂ Ω

∂ α

�

β→∞
=−gV

∫

d3~p
(2π)3

ρ0(~p) =
gV
6π2
(2mµ0)

3/2 (3.3.48)

which gives the chemical potential µ0 at T = 0 as a function of the total number of particles and shows that
µ0 is rather big for macroscopic amounts of gases.

The mean total energy of the gas at 0 temperature is

E0 =
�

∂ Ω

∂ β

�

β→∞
=

gV
20π2

(2mµ0)
5/2. (3.3.49)

At not too high temperatures we can expand the thermodynamic quantities with respect to the small param-
eter 1/(µβ) which can be seen as follows. We have to calculate integrals of the form

F [ f ] =
gV
2π2

∫ ∞

0
dP P 2 f (P )

1

1+ exp
�

β
�

P 2

2m −µ
�� . (3.3.50)

Now we substitute x =β[P 2/(2m)−µ]:

F [ f ] =
gV
4π2

�

2m
β

�3/2∫ ∞

−µβ
dx
Æ

x +βµ f

 √

√

√
2m(x +µβ)

β

!

1
1+ exp x

. (3.3.51)

Now we calculate the particle number:

N = F [1] =
gV
4π2

�

2m
β

�3/2∫ ∞

−µβ
dx

p

x +µβ
1+ exp x

. (3.3.52)

Integration by parts gives

N = gV
6π2

�

2m
β

�3/2∫ ∞

−µβ
dx

exp x
(1+ exp x)2

(x +µβ)3/2. (3.3.53)

Now the first factor of the integrand is an even function in x which is exponentially damped for |x| → ∞
while the second factor is a slowly varying function where the first factor is big for large µβ. Thus on the
one hand we can take without much loss of precision the lower boundary of the integral to −∞ and on the
other hand we can expand the second factor (und thus the whole integral) in powers of 1/(µβ):

(x +µβ)3/2 = (µβ)3/2
�

1+
3
2

x
µβ
+

3
8

x2

µ2β2
+ · · ·

�

. (3.3.54)
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Using
∫ ∞

−∞
dx

exp x
(1+ exp x)2

=− 1
1+ exp x

�

�

�

�

�

∞

−∞
= 1,

∫ ∞

−∞
dx x2 exp x

(1+ exp x)2
=
π2

3
,

(3.3.55)

where the last integral is proven in appendix A, in (3.3.53) gives

N = gV
6π2
(2mµ)3/2

�

1+
π2

8
1

µ2β2
+O[(µβ)−4]

�

. (3.3.56)

The mean energy is calculated in the same way as the particle number with the result

E = gV
20mπ2

(2mµ)5/2
�

1+
5
8

�

π

µβ

�2

+O[(µβ)−4

�

. (3.3.57)

An important result for the free electron gas model for the metal electrons was the specific heat for the Fermi
gas

C =
1
V
∂ E
∂ T
=

g
16mµ2

(2mµ)5/2T → 0 for T → 0. (3.3.58)

Thus it is a direct consequence of the quantum character of the electron that explains why the electrons do
not contribute to specific heat of a metal at low temperatures.

We have to quantify what means “low temperatures”. As we have seen for T = 0 the electrons fill the energy
levels up to the fermi surface. For the specific heat only the excited electrons count and this means that the
smallness of C is a measure for the validity of the approximations done.

The exact evaluation ofN from (3.3.46) gives after the substitution x =βp2/(2m)

N = gV
4π2

�

2m
β

�3/2∫ ∞

0
dx

p
x

1+ exp(x +α)
(3.3.59)

and thus the quantity

Q =
4π2N

gV

�

β

2m

�3/2

=
∫ ∞

0
dx

p
x

1+ exp(x +α)
(3.3.60)

is a measure for the quantum behaviour of the gas, because the classical limit was shown to be given for
α →∞ and then Q is small while in the quantum limit, i.e., α → −∞ Q becomes big. One can estimate
that in the case of the conducting electrons of metals the temperature when the statistics becomes classical,
i.e., for Q ≈ 1, is Θ ≈ 105K≈ 8.6eV.

3.3.5 The ideal Bose gas

The grand partition sum for the ideal Bose gas was calculated in (3.3.30) with the result

Ω=−∑
~n∈Z3

ln
�

1− exp
�

−β~p
2(~n)
2m

−α
��

(3.3.61)

which is only sensible for α=−µβ> 012.

12This is true at least in the limit of an infinite volume because in this case for α < 0 or µ > 0 the integral corresponding to the
sum would not exist because of the singularity at p2/(2m) =µ
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3.3 · Ideal gases in the grand canonical ensemble

As we shall see soon this restriction of the chemical potential µ to negative values gives rise to the fascinating
phenomenon of Bose-Einstein condensation.

For sake of completeness we note that again for α� 0 we find again the same classical limit as in the case of
an ideal Fermi gas, namely the Boltzmann grand canonical sum (3.3.35) with the same conclusions already
drawn there. This is not surprising since the classical limit means that the quantum features of being bosons
or fermions become negligible because the statistical number of particles occupying one quantum state is
small.

Thus we can come immediately to the quantum limit of the ideal Bose gas. For the mean particle number
one finds by taking the derivative of (3.3.61)

N =−∂ Ω
∂ α
= g

∑

~n∈Z3

1

exp
�

β
~p2(~n)
2m +α

�

− 1
. (3.3.62)

Now we take the naive large volume limit where it seems that we could write an integral instead of the sum
as we did in the fermionic case:

N∫ =
gV
2π2

∫ ∞

0

P 2dP

exp
�

β P 2

2m +α
�

− 1
. (3.3.63)

Substitution of x =βP 2/(2m) gives

N∫ =
gV
4π2

�

(2m)
β

�3/2∫ ∞

0

dx
p

x
exp(x +α)− 1

(3.3.64)

We find that the integral exists for all α > 0 and is monotoneously decreasing with α. Even for α = 0 the
integral exists because the integrand is going like 1/

p
x for x ≈ 0 and thus the with respect to the lower

boundary improper integral exists.

If N∫ would be really the mean particle number of our gas this would mean that for a given temperature the
particle number is bounded

N∫ ≤ gV
4π2

�

(2m)
β

�3/2∫ ∞

0

dx
p

x
exp x − 1

. (3.3.65)

In other words this would mean that we were not able to cool down a certain given number of particles below
a certain temperature T > 0 which is not observed. The real bound for the temperature is T = 0!

To find the answer to this question we might look at the extreme limit T = 0. This means we have to think
about the problem to put N particles in a box such that the energy becomes a minimum. But this is simple
to do in the case of bosons, because all N particles are allowed to occupy the lowest energy state. This means
that even a “macroscopic number” of particles can be together in this state. This also means that in the limit
T = 0 a macroscopic system is in a pure quantum state.

Now for small T > 0 there also can be a huge number of particles in the lowest one particle state which is
not negligible against the fluctuations of the particle number. On the other hand the only restriction for the
approximation of the partition sum as an integral in the large volume limit was that the energy levels are
close together. Thus we conclude thatN∫ is the expectation value of the number of particles being not in the
ground state. Thus the correct mean number of particles is

N =Nc +N∫ =
g

expα− 1
+

gV
4π2

�

2m
β

�3/2∫

dx
p

x
exp(x +α)− 1

(3.3.66)

where we have taken the contribution for the mean number of particles in the ground stateNc from the sum
(3.3.62). This also shows that for α� 0 the integral alone is a good enough approximation because then the
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Chapter 3 · Equilibrium Thermodynamics

first summand on the right hand side, i.e., the mean number of particles in the ground state (shortly named
the condensate) becomes negligible. So in the classical limit the condensation is negligible. On the other
hand for small temperatures now the mean particle number is not bounded because the condensate term can
become big for α≈ 0 so that there is no restriction to the number of particles at low temperature.

For the grand canonical potential of course we have also to take the large volume limit with taking into
account the condensate of particles in the ground state:

Ω=−g ln[1− exp(−α)]− gV
4π2

�

2m
β

�3/2∫ ∞

0

p
x ln[1− exp(−x −α)]. (3.3.67)

3.4 Perturbation theory in the real-time formalism

In the previous section we have investigated in detail the equilibrium properties of ideal gases, i.e., non-
interacting non-relativistic and relativistic identical particles in canonical or, if there are conserved charges,
grand canonical ensembles.

As we know from relativistic vacuum quantum field theory the most interesting physical models are not
solvable exactly. The great success of quantum field theory is thus based on perturbation theory (which has
of course to be completed with renormalization theory in order to obtain finite results). Now we want to
derive the perturbation theory for the case of quantum statistics.

3.4.1 The Schwinger-Keldysh time contour

In order to have something simple at hand we shall use φ4-theory as a toy model. This is defined in terms of
the Lagrangian

L = 1
2
(∂µφ)(∂

µφ)− m2

2
φ2

︸ ︷︷ ︸

L0

− λ
4!
φ4

︸ ︷︷ ︸

−HI

(3.4.1)

where φ is a real scalar field. As in vacuum quantum field theory we shall use the interaction picture, where
the operators evolve in time with respect to H0. Thus the field operator’s equation of motion can be solved
exactly because these evolve like free fields and H0 is time independent. In the previous section we have shown
that

H0 =
∫

d3~pω(~p)N(~p) withω(~p) =
Æ

~p2+m2. (3.4.2)

The interaction part is time dependent in the interaction picture and in our case of φ4-theory given as

HI (t ) =
∫

d3~x
λ

4!
:φ4(x) : (3.4.3)

where we have implied normal-ordering in order to renormalize the vacuum energy to 0.

Using theorem 1 of chapter 2 the statistical operator obeys the time evolution according to

R(t ) =C(t , t0)R(t0)C
†(t , t0) with C(t , t0) = Tc exp[−i

∫ t

t0

dτHI (τ)]. (3.4.4)

Now we want to calculate the expectation value of an arbitrary quantity which depends on a single time
argument. This can also be a field operator, but for our arguments the dependence of these on ~x does not
matter at all. Since such quantities are built with help of field operators we know this operator including its
time dependence exactly. By definition we have

〈O(t )〉=Tr[R(t )O(t )]. (3.4.5)
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3.4 · Perturbation theory in the real-time formalism

Using the time evolution operator (3.4.4) this reads

〈O(t )〉=Tr[C(t , t0)R(t0)C
†(t , t0)O(t )]. (3.4.6)

Since under the trace we can write the first time evolution operator to the very right this can be read as

〈O(t )〉=Tr[R(t0)C
†(t , t0)O(t )C(t , t0)]. (3.4.7)

Using the hermiticity of HI and the fact that the ordering of operator products is just changed under self-
adjoint conjugation we have

C†(t , t0) = Ta exp[i
∫ t

t0

dτHI (τ)]. (3.4.8)

Thereby Ta denotes the anti-causal time-ordering which orders the operators with increasing time arguments
from left to right. Inserting this into (3.4.7) one sees that it can be written as a path-ordered product using the
Schwinger-Keldysh path shown in figure 3.1. With this time path the (3.4.7) reads

t
t f

C−

C+

tt0

C =C−+C+
Figure 3.1: The Schwinger-Keldysh time contour

〈O(t )〉=Tr
�

R(t0)TC exp[−i
∫

C
dτHI (τ)]O(t )

�

. (3.4.9)

Thereby TC is the contour ordering parameter which orders the operators according to the time arguments
on the contour from right to left. In the figure we have split the contour to the −- and +-branch. On the
former the operators are time-ordered (causal) on the latter anti-time-ordered (anti-causal). All times on the
upper branch are earlier than these on the lower. We have only to assure that t0 is less and t f is greater than
the “external time” t .

In order to clarify we describe in detail how one has to read (3.4.9). Since we write from left to right we have to
begin at the end of the contour. Using usual times (not the contour parameter) we have to take into account
that the integration along the lower part is backwards in time. Thus (3.4.9) can be split in an integration
along the lower branch where the operators are anti-time-ordered and we have an additional sign from the
direction of the integration. Then we integrate in usual direction from t to t f with time ordered operators.
At this point we have to insert O(t ) and then integrate again with time-ordered operator products from t0 to
t . As shown above the integrals along the +-branch is simply C†(t f , t0) while along the −-branch they are
the C-operator itself with the appropriate time arguments:

TC exp[−i
∫

C
dτHI (τ)]O(t ) =C†(t f , t0)C(t f , t )O(t )C(t , t0). (3.4.10)

Now we can use the composition property for the time evolution operator to cancel C†(t f , t ) from the +-
branch against C(t f , t ) from the −-branch so that we really obtain (3.4.9) as claimed.

It is also clear that one can extend the contour to the left by the same arguments as before. To calculate
expectation values for operator products with arbitrary time arguments it is customary to extend the contour
to the whole real axis.

So far all is well defined for an arbitrary statistical operator. This first step has shown how to calculate expec-
tation values in the interaction picture as expectation values with respect to the initial state (i.e. the statistical
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operator R(t0)). One obtains the perturbation theory by power expansion the contour-ordered exponential
function in (3.4.9) leading to diagram techniques comparable with the Feynman rules for the vacuum theory.
However for a general initial state R(t0) these diagram rules are very complicated since Wick’s theorem does
not reduce the problem to calculate contractions but one has to use a big set of free correlation functions to
describe all the correlations contained in the initial statistical operator.

Fortunately this is different for the equilibrium case. Now we shall go further for this case. For our real
scalar fields (i.e. self-adjoint field operators) there are no conserved charges. So we have to use the canonical
ensemble. The statistical operator is

R(t ) =
1
Z

exp[−βH(t )] with Z =Trexp[−βH(t )]. (3.4.11)

Contrary to the Heisenberg picture description used for the ideal gases in the previous section in the here
used interaction picture the statistical operator is time-dependent.

To go further we need the following

Theorem 6. We define the operator
U(t , t0) =A†(t , t0)C(t , t0) (3.4.12)

where A is the time evolution operator for the operators and C that for the states in the interaction picture, i.e.

A(t , t0) = exp[+i(t − t0)H0], C(t , t0) = Tc exp[−i
∫ t

t0

dτHI (τ)]. (3.4.13)

Thereby we have used the fact that H0, the Hamiltonian for the free fields, is time-independent in the interaction
picture.
If H is not explicitly time-dependent, then for the operator U the following holds

U(t , t0) = exp[−i(t − t0)H(t0)] (3.4.14)

and thus the initial statistical operator is given by the analytic continuation of U to complex times with negative
imaginary part −iβ:

R(t0) =
1
Z

exp[−βH(t0)] =
1
Z

U(t0− iβ, t0) =
1
Z

exp[−βH0]C(t0− iβ, t0). (3.4.15)

Proof. We use theorem 1 in chapter 2 to calculate the time derivative of U defined in (3.4.14), the arguments
in all operators are (t , t0) so that we can omit them for sake of simplicity:

∂t U = (∂t A)C+A∂t C =−iA†H0C− iA†HI (t )C. (3.4.16)

Inserting 1 = AA† between HI (t ) and C on the right term and using the fact that A is the time evolution
operator for the operators in the interaction picture, i.e.,

O(t ) =AO(t0)A
†. (3.4.17)

Applied to HI (t ) we obtain finally
∂t U =−iH(t0)U. (3.4.18)

By definition of A and C the initial condition for U is U(t0, t0) = 1. Since H is supposed to be not explicitly
time-dependent H(t0) is constant in time and thus the solution of the initial value problem for U given by
(3.4.18) is simply

U(t , t0) = exp[−i(t − t0)H(t0)] (3.4.19)

and inserting t = t0− iβ yields (3.4.15) which is crucial for perturbation theory at finite temperature in both
the imaginary- and the real-time formalism. Q.E.D.
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3.4 · Perturbation theory in the real-time formalism

Inserting (3.4.15) into (3.4.9) we obtain

〈O(t )〉=Tr
§

exp[−βH0]C(t0− iβ, t0)TC exp[−i
∫

dτHI (τ)]O(t )
ª

(3.4.20)

This formula shows immediately that we can write this in terms of the expectation value of a path-ordered
integral along the Schwinger-Keldysh-path extended with a piece running vertically down from t0 to t0− iβ
in the complex time plane (see 3.2). The expectation value of this path-ordered integral has to be taken with
respect to the canonical statistical operator for an ideal gas. As we shall see because of the fact that H0 is bilinear

t f
C−

C+

tt0

C ′ =C−+C++V
Re t

Im t

V

t0− iβ

Figure 3.2: The extended Schwinger-Keldysh time contour for thermal equilibrium
in the fields (i.e. a one-particle operator) for this statistical operator Wick’s theorem holds for the expectation
values in the usual form. This means that the Feynman rules can be taken from the vacuum case with the
following extensions: One has to use integrals along the extended Schwinger-Keldysh time path instead of
time integrals in the vacuum theory and instead of contractions with the vacuum state one has to use thermal
averages of contour-ordered products of two field operators with respect to the ideal gas statistical operator.
Different to the vacuum case is of course that normal-ordered products do not vanish when calculating these
averages.

We shall also see further on that in many cases the vertical part of the contour drops in the calculations and
we have to calculate the integrals only along the real-time path (3.1).

To show all this we shall use the rest of this section.

3.4.2 The Dyson-Wick series

As we shall see in the following chapters physical information about an interacting system can completely be
extracted with help of the Green’s functions as is also the case for the vacuum theory. The main difference
to vacuum theory is that in the case of a thermal background it does not make any sense to speak about
asymptotic states. Thus the physical quantities are not S-matrix elements but, for instance, the reaction of
the system to an external perturbation or the production rate of particles out of a heat bath (to speak in
equilibrium language).

The n-point Green’s functions we need to calculate such quantities perturbatively are defined as the thermal
averages of time contour-ordered field operator products:

iG(n)(x1, x2, . . . , xn) = 〈TC ′φ(x1)φ(x2) . . .φ(xn)〉 . (3.4.21)

Using (3.4.20) we can write this as

iG(n)(x1, . . . , xn) =
1
Z

Tr
�

exp(−βH0)TC ′ exp[−i
∫

C ′
dτHI (τ)]φ(x1) · · ·φ(xn)

�

. (3.4.22)
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These are the exact Green’s functions and cannot be calculated for the most of the physically interesting
interacting field theories as is even the case for vacuum quantum field theory. Thus we have to power expand
the exponential function in order to obtain a perturbation theory in powers of the coupling constant.

Doing so we see that the main task is to calculate the statistical average of time-ordered products of normal
ordered local field operator products13 with respect to the free Green’s function.

In order to find the Feynman rules to manage this calculations in a pictorial way (as in the vacuum case)
we have to apply Wick’s theorem. The operator version is proven in QFT 3.8. The only difference at the
operator level is that in the definition of contractions instead of time ordered field operator products our
contour ordered products enter:

φ.(x1)φ
.(x2) = 〈0 |TC ′φ(x1)φ(x2)|0〉 . (3.4.23)

With this redefinition we can write down Wick’s theorem in the same form as for the vacuum case:

TCUV · · ·XYZ = : UV · · ·XYZ :
︸ ︷︷ ︸

normal-ordered product without contractions

+

+ : U.V.W · · ·XYZ :+ : U.VW. · · ·XYZ :+ · · ·
︸ ︷︷ ︸

sum of all normal-ordered products together with one contraction

+

+
...

+ U.V..W... · · ·X...Y..Z.+ · · ·
︸ ︷︷ ︸

sum over all possible total contracted operator pairs

. (3.4.24)

It is clear that in the case that we have a product with an odd number of operators in the last line there is just
one operator left, in the case of an even number of operators the last line is the product of contracted pairs,
which is a c-number.

Now the problem is to show that the average of a normal-ordered product of field operators with respect to
the free Hamiltonian is a sum of products of averages for the normal-ordered product of two field operators.
For this it is sufficient to show that this is the case for the normal-ordered product of annihilation and creation
operators. But this is proven by writing out the trace in terms of the number operator basis for bosons (3.3.22):

Trexp(−βH0) : AB · · · :=
∞
∑

N (~p)=0

exp[−β∑
~p

N (~p)ω(~p)]



N (~p)
�

�: ABC · · · :��N (~p)� . (3.4.25)

Thereby A, B, . . . are arbitrary annihilation and creation operators, and we have used (3.4.2) for the case of a
finite quantization volume with periodic boundary conditions (of course we shall go to the infinite volume
limit at the end of the calculation).

Due to the definition of the trace operator the normal ordered product is “sandwiched” between the same
states, i.e. we have to calculate the diagonal elements only. Since we have a normal ordered product we act
on the ket of this matrix element with annihilation operators lowering the particle number with the given
momentum. The creation operators can be seen to act to the left on the bra as annihilation operators also
lowering the particle numbers. Since bra and ket are the same when calculating the trace the result is only
different from 0 if one has the same creation and annihilation operators.

13The normal-ordering comes from the renormalization of the free vacuum explained in detail in QFT section 3.4. Forφ4-theory
the interaction is HI =

∫

d3~xλ/4! :φ4(x) :
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3.4 · Perturbation theory in the real-time formalism

The most simple example is the thermal average of a normal ordered product of two operators:

Z0



a†(~p1)a(~p2)
�

0 =
∞
∑

N (~p)=0

exp



−β∑
~p

N (~p)ω(~p)





¬

N (~p)
�

�

�a†(~p1)a(~p2)
�

�

�N (~p)
¶

= δ (3)(~p1− ~p2)
∑

N (~p)=0

N (~p1)exp



−β∑
~p

N (~p)ω(~p)



 .

(3.4.26)

This sum can be calculated if we read the bosonic partition sum as a functional ofω(~p):

lnZ0[ω(~p)] =
∑

~p

ln
�

1− exp[−βω(~p)]	 . (3.4.27)

Then we find



a†(~p1)a(~p2)
�

0 =−δ (3)(~p1− ~p2)
1
β

δ

δω(~p1)
lnZ0 = δ

(3)(~p1− ~p2)n[ω(~p1)] (3.4.28)

where
n(x) =

1
exp(β|x|)− 1

(3.4.29)

is the Bose distribution function.

From the orthonormality of {��N (~p)�}we deduce immediately that of course the expectation values of normal-
ordered products exhibit also a pairing structure like the vacuum expectation values. Instead of the contrac-
tions one has to write expressions of the form (3.4.28). Thus the vacuum expectation value of a normal-
ordered product of field operators is the sum over all possible “thermal pairings”. But a glance on (3.4.24)
shows that these sum combines with the contractions.

This means that for calculating n-point functions we can apply Wick’s theorem as in vacuum quantum field
theory but we have to use the free contour Green’s function

i∆C ′(x1, x2) = 〈TC ′φ(x1)φ(x2)〉0 (3.4.30)

instead of the Feynman propagator. To prove this one has only to apply the thermal Wick theorem to (3.4.22)
and use the arguments of QFT 3.9 to show that the partition sum Z drops and one has only to sum over all
connected and disconnected diagrams which are linked to the external points (linked cluster theorem), i.e., the
Dyson-Wick series for n-point functions is given by

iG(n)(x1, . . . , xn) =

=
∞
∑

j=0

1
j !

®

TC ′
∫

C ′
d4y1 · · ·d4y j

�−iλ
4!

� j

:φ4(y1) : . . . :φ4(y j ) :φ(x1) ·φ(xn)
¸(1)

0

(3.4.31)

where we have used the notation of QFT section 3.9. 〈· · ·〉(1)0 means that one has to take the expectation value
according to the Feynman rules but leaving out all diagrams which contain closed sub-diagrams (i.e. such
sub-diagrams which are not linked to at least one of the external points x1, . . . , xn).

For sake of clarity we summarize the thermal Feynman rules for φ4-theory:

There are the following graphical elements:

With these graphical elements one calculates a contribution to iG(n)(x1, x2, . . . , xn) as follows: A diagram of
such a contribution consists of n external points labelled with x1, . . . , xn and k vertices. Only such diagrams
contribute where each vertex is linked at least to one external point. To obtain the full contribution to the
n-point function one has to sum over all possible topologies of such diagrams if one obeys the following rules
for extracting the analytical expression out of a given diagram:
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y
x1x2

= i∆C ′(x1, x2)=− iλ
4!

Figure 3.3: Graphical elements for the Feynman diagrams ofφ4-theory for the quantum field theory at finite
temperature

1. Write down a factor −iλ/4! for each vertex and a factor 1/k! for a diagram with k vertices.14

2. Count the number of ways to connect the vertices with the external points and the internal points
giving the diagram and multiply the analytical expression with this number.

3. Each line connecting two points, internal or external, stands for a contour Green’s function i∆C ′ . For
a line beginning and ending at the same point in space and time (tadpole contribution) there is an extra
rule to avoid tadpole singularities due to normal-ordering given in the next subsection.

4. Integrate over the internal points. Thereby each time-integral stands for a integration along the contour
C ′.

3.4.3 The free contour Green’s functions

Now we derive the free thermal propagator which we need for calculating perturbatively the n-point func-
tions.

There are two different possibilities to find this propagator. One is to use directly the plane wave representa-
tion of the field operator (see QFT (3.74)):

φ(x) =
∫

R3

d3~p
Æ

2ω(~p)(2π)3
[a(~p)exp(−i p x)+ a†(~p)exp(i p x)]p0=ω(~p)

withω(~p) =
Æ

~p2+m2 (3.4.32)

and the number eigenbasis (3.3.22) to calculate the trace in

i∆C ′(x, y) = 〈TC ′φ(x)φ(y)〉0 . (3.4.33)

The reader is warmly invited to do this calculation himself as an exercise.

Here we will use the other method: Firstly we prove some properties of the propagator (3.4.33) then we shall
use the free Klein-Gordon equation for the field operator

(�+m2)φ(x) = 0 (3.4.34)

and the equal-time commutation relation from canonical quantization

φ(t , ~x)
↔
∂ tφ(t , ~y) = iδ (3)(~x − ~y) (3.4.35)

to derive equations of motion for the free thermal Green’s function (3.4.33) and solve these with help of the
properties we shall derive now directly from its definition.

From translation invariance of the equilibrium state and the Lagrangian one sees immediately that the Green’s
function depends only on the difference of its arguments. Thus we write

i∆C ′(x) = 〈TC ′φ(x)φ(0)〉 , ∆C ′(x, y) =∆C ′(x − y). (3.4.36)

14The first factor comes from the interaction Lagrangian, the second from the Dyson-Wick series
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3.4 · Perturbation theory in the real-time formalism

To prove this one has just to use (3.4.32) and take into account that 〈aa〉0 =



a†a†
�

0 = 0 for any momentum
arguments and that the expectation value of a product of an annihilation with a creation operator contains
always a δ-distribution for the momenta.

The next property of the propagator is known as the Kubo-Martin-Schwinger condition for bosons often abbre-
viated as KMS-condition:

∆C (t − iβ, ~x) =∆C ′(t , ~x). (3.4.37)

This is proven by using the cyclic commutability of operator products under the trace and also under the
contour-ordering operator:

i∆C ′(t − iβ, ~x) = 〈TC ′φ(t − iβ, ~x)φ(0)〉0 =
= 〈TC ′ exp(βH0)φ(t , ~x)exp(−βH0)φ(0)〉0 =
=

1
Z0

Tr{exp(−βH0)TC ′φ(t , ~x)φ(0)}= i∆C ′(x).
(3.4.38)

This extends the definition range of the Green’s function from 0≤− Im t ≤β to the whole complex plane,
but as we shall see the Green’s function is an analytic function only in the open strip given by the original
range. It is these analytic structure we are after when calculating the Green’s functions with the equation of
motion method!

For this purpose it is more convenient to treat the time argument on various parts of the contour separately.
We start with the vertical part. In the following we write −, + or V to label where the time arguments are
located. The point t = 0, which we chose as the t0 of the general derivation of the contour method, lies on
all three parts of the contour by definition.

We start with times on the vertical part of the contour. It is convenient to switch to the parameterization
t = −iτ, where τ ∈ (0,β). This means switching to the imaginary-time formalism. Now the box operator
reads

�=−∂ 2
τ −∇2 =−�E . (3.4.39)

Herein �E stands for the four dimensional Laplacian. The E refers to Euclidean space time. But one should
keep in mind that the τ is restricted to (0,β) and the Green’s function has to be continued periodically due
to the KMS-condition (3.4.37).

Now we write for τ ∈R:

i∆V (xE ) = 〈Tτφ(xE )φ(0)〉0 with xE = (−iτ, ~x). (3.4.40)

This can be written in the form

i∆V (xE ) = 〈φ(0)φ(xE )+ [φ(xE ),φ(0)]Θ(τ)〉0 . (3.4.41)

Applying (3.4.34) and dtΘ(τ) = δ(τ) and the equal-real-time commutation relation (3.4.35) to this equation
we find the equation of motion for the Green’s function

(�E −m2)∆V (xE ) = +iδ (4)(xE ). (3.4.42)

This is together with the boundary conditions the Green’s function for a free Klein-Gordon field in Euclidean
space-time. From this equation follows that ∆V (xE ) is continuous at xE = 0, while integration over a small
τ-interval (−ε,ε) and letting ε→ 0 gives ∂τ∆(+0, ~x)− ∂τ(−0, ~x) = i.

In the interval (0,β) the function is analytic in τ because there the operators have a fixed order in (3.4.41).
Thus we shall integrate (3.4.42) in this interval. Due to the KMS-Condition the boundary conditions for this
region read

∆V (+0, ~x) =∆V (β− 0, ~x), ∂τ∆V (+0, ~x)− ∂τ∆V (β− 0, ~x) = i. (3.4.43)
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Chapter 3 · Equilibrium Thermodynamics

This equations can be simply integrated taking the Fourier transform with respect to ~x:

∆V (xE ) =
∫

d3~p
(2π)3

exp(i~p~x)∆̃V (τ, ~p) (3.4.44)

and (3.4.42) reads
[∂ 2
τ −ω2(~p)]∆̃V (τ, ~p) = iδ(τ). (3.4.45)

For τ ∈ (0,β) the right-hand-side vanishes and the general solution of the equation is

∆̃V (τ, ~p) =Aexp[ω(~p)τ]+B exp[−ω(~pτ)]. (3.4.46)

The boundary conditions (3.4.43) finally determine the constants A and B :

∆̃V (τ, ~p) =− i
2ω(~p)

�

n[ω(~p)]exp[ω(~p)τ]+ [1+ n[ω(~p)]]exp[−ω(~p)τ]	 for τ = it ∈ (0,β). (3.4.47)

This representation is known as the Mills representation for the propagator.

The periodic continuation can be obtained using a Fourier series representation:

∆̃V (τ, ~p) =
1
β

∞
∑

−∞
exp(−iωnτ)∆V (ωn , ~p) withωn =

2πn
β

. (3.4.48)

Theωn are known as the Matsubara frequencies for bosons. With help of (3.4.47) one finds

∆V (ωn , ~p) =
∫ β

0
dτ exp(iωnτ)∆̃V (τ, ~p) =− i

ω2
n + ~p2+m2

. (3.4.49)

This looks like a Euclidean propagator but with discrete energiesωn .

For time arguments on the real time axis we start with the analytic Wightman functions

i∆+−(x) = 〈φ(x)φ(0)〉 , i∆−+(x) = 〈φ(x)φ(0)〉 (3.4.50)

which shows that∆+− is the analytic continuation of∆V to real values for the time argument. Thus for the
Mills representation we have only to set τ = it in (3.4.47):

i∆̃(t , ~p) =
1

2ω
{n(ω)exp(iωt )+ [1+ n(ω)]exp(−iωt )} (3.4.51)

where we useω as abbreviation forω(~p) =
Æ

~p2+m2.

The Fourier transform of this is

i∆+−(p) =
∫

dt ˜i∆
+−
(t , ~p)exp(i p0 t ) =

=
2π
2ω
{n(ω)δ(ω+ p0)+ [1+ n(ω)]δ(ω− p0)}=

= 2πδ(p2−m2) [Θ(p0)+ n(ω)] .

(3.4.52)

From∆−+(x) =∆+−(−x) we find immediately

i∆−+(p) = 2πδ(p2−m2) [Θ(−p0)+ n(ω)] . (3.4.53)
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3.4 · Perturbation theory in the real-time formalism

For the calculation of the time-ordered propagator

∆̃−−(t , ~p) =Θ(t )∆̃+−(t , ~p)+Θ(−t )∆̃−+(t , ~p) (3.4.54)

we use the Fourier transform of products
∫

dt f (t )g (t )exp(it p0) = [ f ∗ g ](p0) (3.4.55)

which is a convolution integral:

[ f ∗ g ](l0) =
∫

dt
∫

d p0

2π

∫

dk0

2π
f̃ (p0) g̃ (k0)exp[−it (p0+ k0− l0)] =

∫

dk0

2π
f̃ (l0− k0) g̃ (k0). (3.4.56)

Formal integration by parts (using Θ′ = δ in the sense of distributions) leads to the Fourier transform of the
Θ-distribution:

Θ̃(p0) =
∫

dtΘ(t )exp(it p0) =
i
p0

(3.4.57)

but this has not a proper meaning without defining what is meant by integrating this over p0 with a test
function. To define this properly it is most convenient to see it as the weak limit of an analytic function. For
that purpose define

Θ̃ε(p0) =
i

p0+ iε
with ε > 0. (3.4.58)

The Fourier transform of this function, which is for each ε > 0 a regular function in a neighbourhood of the
real axis, can be obtained by closing the integration path with a big half circle in the lower (for t > 0) or the
upper (for t < 0) half of the complex p0-plane. Using the residuum theorem one finds

Θε(t ) = i
∫

d p0

2π
Θ(p0)exp(−it p0) =Θ(t ) (3.4.59)

which shows that for ε→+0 in the weak sense the regularization (3.4.58) for (3.4.57) gives the correct result.

We write (3.4.54) in the form

∆̃−−(t , ~p) =Θ(t )[∆̃+−(t , ~p)− ∆̃−+(t , ~p)]
︸ ︷︷ ︸

∆̃R(t ,~p)

+∆̃−+(t , ~p) (3.4.60)

and perform the Fourier transformation of the retarded propagator with help of (3.4.56), (3.4.52-3.4.53) and
(3.4.58):

i∆R(p) = i[Θ ∗ (∆+−−∆−+)](p) = i
p2−m2+ iε sign p0

. (3.4.61)

Thus we have finally

i∆−−(p) = i
p2−m2+ iε sign p0

+ 2πδ(p2−m2)[Θ(−p0)+ n(ω)]. (3.4.62)

The last propagator is

∆̃++(t , ~p) =Θ(−t )∆̃+−(t , ~p)+Θ(t )∆̃−+(t , ~p) = ∆̃+−(t , ~p)− ∆̃R(t , ~p) (3.4.63)

and its Fourier transform

i∆++(p) =− i
p2−m2+ iε sign p0

+ 2πδ(p2−m2)[Θ(p0)+ n(ω)]. (3.4.64)
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Chapter 3 · Equilibrium Thermodynamics

It should be emphasized that for some calculations it is important to be careful with the δ-distribution aris-
ing in the free Green’s functions. The problems become obvious when a product of δ-distributions at the
same point occur in a calculation. In such cases our calculations show that one should use the following
regularization for the δ-distribution:

2πiδε(x) =
1

x − iε
− 1

x + iε
=

2iε
x2+ ε2

, with ε > 0. (3.4.65)

The reader should show that the weak limit ε→+0 is really the δ-distribution.

To see that this is the correct regularization for the Green’s functions the reader should calculate∆+−(p) for
t = x0− iε with ε > 0 which uses the fact that ∆+− is the analytic continuation of ∆V as done above. This
calculation shows that one also has to substitute p0 instead ofω in the Bose factors n.

The regulated free Green’s functions read:

i∆−−(p) = i
p2−m2+ iε sign p0

+ 2πδε(p
2−m2)[Θ(−p0)+ n(p0)],

i∆++(p) =
−i

p2−m2+ iε sign p0
+ 2πδε(p

2−m2)[Θ(p0)+ n(p0)],

i∆−+(p) = 2πδε(p
2−m2)[Θ(−p0)+ n(p0)],

i∆+−(p) = 2πδε(p
2−m2)[Θ(p0)+ n(p0)].

(3.4.66)

The last problem we have to solve is to calculate the thermal contraction of two fields at the same space-time
point. Because this problem arises in the Feynman rules if we contract two field operators as they are written
in the Hamiltonian we have to normal-order them:

∆TP =



:φ2(x) :
�

0 . (3.4.67)

For this purpose we have to use (3.4.32) because normal-ordering is defined in terms of annihilation and
creation operators. The calculation is straight-forward and left as an exercise for the reader. The last step is
to use (3.4.28) to obtain

i∆TP = 2
∫

R3

d3~~p
Ç

2ω(~~p)(2π)3
n[ω(~p)] =

∫

d4x
(2π)4

n(p0)2πδ(p
2−m2). (3.4.68)

Thus the regulated form in Fourier space is

i∆TP = 2πδε(p
2−m2)n(p0). (3.4.69)

3.5 The generating functional

The perturbation theory can also be formulated in terms of generating functionals. This is an important tool
for quantum field theory. In QFT chapter 4.5 we have used the path integral methods to find the generating
functional. Now we shall derive the same for thermal quantum field theory with help of the operator formal-
ism. The functional method has the advantage that one can derive certain classes of diagrams (for instance
the connected Green’s functions or the generating functional for the proper vertex functions).

The idea bases on theorem 4 in chapter 2.3. We introduce a c-number external current J and define the vacuum
expectation value

Z[J ] = Z
�

TC ′ exp
�

i
∫

C ′
d4J (x)φ(x)

��

. (3.5.1)

62



3.5 · The generating functional

With help of theorem 4 (ch. 2.3) and the definition of the Green’s function (3.4.21) it is immediately clear
that we can express these functions as functional derivatives with respect to J :

iG(n)(x1, . . . , xn) = 〈TC ′φ(x1) · · ·φ(xn)〉= 1
in

1
Z

δnZ[J ]
δJ (x1) · · ·δJ (xn)

�

�

�

�

�

J=0

(3.5.2)

and the Dyson-Wick series (3.4.22) can be summarized in the important formula:

Z[J ] = exp
�

−i
∫

d4xH I

�

δ

δJ (x)

��

Z0[J ] (3.5.3)

where Z0[J ] is the generating functional for the free theory.

Fortunately we can calculate this generating functional exactly. It is given by

Z0[J ] =Tr
�

exp(−βH0)TC ′ exp
�

i
∫

C ′
d4xJ (x)φ(x)

��

. (3.5.4)

We can apply directly the thermal Wick’s theorem.

First we expand the exponential

Z0[J ] = Z0

�

TC ′ exp
�

i
∫

C ′
d4xJ (x)φ(x)

��

0
=

= Z0

�

TC ′
�

1+
i2

2!
〈J1J2φ1φ2〉12+

i4

4!
〈J1 · · · J4φ1 · · ·φ4〉1...4+ · · ·

��

0

(3.5.5)

where we have used the fact that the thermal expectation value of an odd number of field operators vanishes
due to Wick’s theorem. We have also introduced the shorthand notation

∫

C ′
d4x1d4x2 · · ·d4xn f (x1, x2, . . . , xn) = 〈 f12...n〉12...n (3.5.6)

which is convenient for the functional methods.

Since the expression in the expectation value of each term is completely symmetric in the space-time points
we have to integrate over we have just to count the number of contractions:

iG(2k)
0 (x1, . . . , x2k ) = 〈TC ′φ1φ2 · · ·φ2k〉0 . (3.5.7)

We denote the number of possible contractions of 2k field operators with P (2k). For contracting φ1 there
are 2k − 1 possible partners. For each of these possibilities there are P [2(k − 1)] contractions for the other
operators. Thus we get

P (2k) = (2k − 1)P [2(k − 1)]⇒ P (2k) = (2k − 1)!! := 3 · 5 · 7 · · · (2k − 1). (3.5.8)

Inserting this into (3.5.5) we obtain

Z0[J ] = Z0

∞
∑

k=0

�

i2k

(2k)!
(2k − 1)!!(i 〈∆12J1J2〉12)

k
�

(3.5.9)

where we have written∆12 =∆(x1− x2) for convenience. Now the series can be rewritten in the form

Z0[J ] = Z0

∞
∑

k=0

�

1
k!

�

− i
2
〈∆12J1J2〉12

�k
�

= Z0 exp
�

− i
2
〈J1∆12J2〉12

�

. (3.5.10)
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The reader is warmly invited to re-derive the Feynman rules for φ4-theory with help of this result making
use of (3.5.3).

Comparing this with the case of vacuum quantum field theory in QFT chapter 4.5 we see that the theorems 2
and 3 about the generating functionals for connected Green’s functions and the one-particle irreducible (1PI)
amputated diagrams (also called proper vertex functions) hold because these were derived independent from
the use of path integral methods. The only input is the generating functional Z which is only different from
the vacuum case by the fact that instead of time-ordering we use the ordering along the extended Schwinger-
Keldysh path C ′.
Thus we can immediately write down the results of these theorems. The interested reader may look in QFT
chapter 4.6 for the proofs!

Theorem 7 (Connected Green’s Functions). The functional

iW [J ] = ln{Z[J ]}⇔ Z[J ] = exp{iW [J ]} (3.5.11)

is the generating functional for connected Green’s functions:

G(n)c (x1, . . . , xn) =
�

1
i

�n δnW [J ]
δJ (x1) · · ·δJ (xn)

�

�

�

�

�

J=0

. (3.5.12)

These are depicted as diagrams with n external points which do not split in the product of disconnected pieces.

Clearly this is a sensible subclass of diagrams since the Green’s functions can be written as sums over products
of connected Green’s functions.

Theorem 8 (The Effective Action). By performing a functional Legendre transformation of the generating func-
tional of the connected Green’s functions W

Γ [ϕJ ] =W [J ]−
∫

C ′
d4xϕJ (x)J (x) with ϕJ (x) =

δW [J ]
δJ (x)

(3.5.13)

one obtains a generating functional for the proper vertex functions.
Proper vertex functions are defined as 1PI connected diagrams where the propagators connecting the external points
with the rest of the diagram are omitted. 1PI means that the diagram keeps to be connected if one cuts any single
line.
Especially the negative functional inverse of the two-point connected Green’s function is given by

Γ (2)J (x1, x2) =−
δ2Γ [ϕJ ]

δϕJ (x1)δϕJ (x2)
. (3.5.14)

The convention for the n-point proper vertex functions is as follows

Γ (n)J (x1, . . . , xn) = i
δnΓ [ϕJ ]

δϕJ (x1) · · ·δϕJ (xn)
. (3.5.15)

Finally we mention that the original theory with J = 0 is defined by the stationary condition

δΓϕ

δϕ(x)
=−J != 0. (3.5.16)
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3.6 · Real-time Feynman rules in momentum space

Now we can show one of the important features of the real-time formalism, namely that the generating func-
tional (3.5.10) factorizes in a part containing the integrals along the imaginary and one along the real time
path.

For this purpose we note

〈J1J2∆12〉12 =
�∫

C
d4x1

∫

C
d4x2+ 2

∫

C
d4x1

∫

V
d4x2+

∫

V
d4x1

∫

V
d4x2

�

∆12J1J2. (3.5.17)

We have to show that the mixed integral vanishes. But this is clear because if one time is on the vertical part
but the other is on the real part we integrate an analytic function along the closed real path which means that
the whole integral vanishes. Thus we have

Z0[J ] = Z0ZC0 [J ]Z
V
0 [J ] with

ZC0 [J ] = exp
�

− i
2

∫

C
d4x1d4x2∆12J1J2

�

and

ZV0 [J ] = exp
�

− i
2

∫

V
d4x1d4x2∆12J1J2

�

.

(3.5.18)

This shows that for connected Green’s functions with at least one external real time one has to take into account
only the real-time closed time path, i.e., the original Schwinger-Keldysh contour15.

This is so important because then one can use the usual momentum representation for the real-time formal-
ism. That means if one likes to calculate real-time propagators one can use all the techniques of vacuum
quantum field theory.

On the other hand it is clear that if one wants to calculate equilibrium bulk properties which means to cal-
culate perturbative corrections to the potential of a free gas Ω0 = lnZ0 only the imaginary time path plays a
role because then one has to calculate closed diagrams an for J = 0 the theory is translation invariant, i.e. the
last integral is over a analytic one point function which is independent of x. Thus the real time path cancels.
This tells us that we may use the techniques of the imaginary-time formalism which is Euclidean quantum
field theory with the difference that one has to take sums over the Matsubara frequencies instead of energy
integrals.

3.6 Real-time Feynman rules in momentum space

In this section we shall give the real-time Feynman rules customary for practical purposes. The Schwinger-
Keldysh contourC is extended over the whole axis as explained above and we go to the momentum space for
both time and space. For this purpose we rewrite the integrals in the space-time version of the Feynman rules
in terms of usual time integrals, i.e., we use the four Green’s functions given in (3.4.66) in their momentum
space version. Generally an integration over a function defined along the contour is given by

∫

C
d4x f (x) =

∫

d4x f−(x)−
∫

d4x f+(x). (3.6.1)

This shows how to reformulate the Feynman rules in terms of the “matrix Green’s functions” in the space-
time version. Firstly we have to introduce a sign on the inner space-time point in order to define on which
part of the contour it lies. Due to the change of the direction of the time integration along the+-part we have
to define the −-vertex as usual to be −iλ/4! and the +-vertex as +iλ/4! (this explains also the use of ± for the
parts of the contour).

15Proof: Using theorem 7 we realize that the generating functional iW is given by iW = lnZ + lnZC [J ]+ lnZV [J ]
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For the propagator lines we have to introduce an arrow to define which Green’s function∆i j is meant where
i , j =±. The graphs are calculated in the same way as before but one uses±-signs for inner vertex points and
the external points and the n-point functions split in the according 2n parts labelled by n indices±. Of course
now the contour integrals alongC ′ in the Feynman rules have to be substituted by usual integrals over space
and time. But this has to be paid with the price that one has to sum over ± for the inner vertex points.

Since in the equilibrium case the free Green’s functions depend only on the difference of their space time
arguments, one can use the theorem about the Fourier transform of convolution integrals

F (x) =
∫

d4y f (x − y)g (y)⇔ F̃ (p) = f̃ (p) g̃ (p) with f̃ (p) =
∫

d4x f (x)exp(i p x). (3.6.2)

and a simple calculation shows that the Feynman rules in momentum space are given by the basic diagram-
matical building blocks shown in figure 3.4:

1. Calculate the symmetry factor of the diagram as explained above for the space-time Feynman rules.

2. Write down the analytic expression according to the rules given in figure 3.4. On each vertex take
care of four momentum conservation and integrate over the residual internal momenta, i.e., the loop
momenta.

3. Sum over the ±-labels of all vertices.

± =± iλ
4!

k
j k

= iD j k
0C (k)

Figure 3.4: Graphical elements for the real-time Feynman diagrams ofφ4-theory for the quantum field theory
at finite temperature.

3.7 Self-energies

The self energy is defined in terms of the real-time matrix Green’s functions

Ĝ =
�

G−− G−+
G+− G++

�

, ∆̂=
�

∆−− ∆−+
∆+− ∆++

�

(3.7.1)

where Ĝ denotes the matrix of the exact Green’s functions and ∆ the same for the free Green’s functions
(both in momentum space).

The self energy is defined as
Σ̂= ∆̂−1− Ĝ−1 (3.7.2)

and this means it is the sum over all truncated 1PI diagrams with two external points containing at least one
loop.

Now for the exact as well as for the free Green’s functions the following relations hold

G+−+G−+ =G−−+G++, ∆+−+∆−+ =∆−−+∆++. (3.7.3)

The proof follows directly from the definition of the exact or free Green’s functions as expectations values of
C -contour ordered products of field operators.

Using this relation we can write the Green’s functions in “retarded representation” as follows

Ĝ′ = R̂−1ĜR̂=
�

0 GA

GR F

�

with R̂=
1p
2

�

1 1
−1 1

�

, R̂−1 = R̂†. (3.7.4)
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3.7 · Self-energies

Herein the matrix elements are defined as

GR =G−−−G−+ =G+−−G++,

GA=G−−−G+− =G−+−G++,
F =G+−+G−+ =G−−+G++.

(3.7.5)

The same holds of course for the free propagators. Thereby GR denotes the retarded, GA the advanced prop-
agator and F a symmetrized correlator.

Direct inversion of the transformed Green’s function matrices on the one hand and the transformation of the
self-energy matrix on the other gives

Σ̂′ = R̂−1Σ̂R̂=
�

Ω ΣR

ΣA 0

�

(3.7.6)

with the relations

Σ−++Σ+− =−Σ−−−Σ++, ΣR =Σ−−+Σ−+, ΣA=Σ−−+Σ+−, Ω=−Σ−+−Σ+−. (3.7.7)

From the definition of the self energy (3.7.2) one derives the Dyson-Schwinger equation and transformation
with R̂

Ĝ′ = ∆̂′+ ∆̂′Σ̂′Ĝ′. (3.7.8)

Writing down this explicitly one can read off that the retarded and advanced Green’s functions are built
with the retarded and advanced self energies ΣR and ΣA. This must be the case because a retarded function
cannot contain advanced parts! Thus we have usual Dyson-Schwinger equations for the retarded and advanced
functions and a little more complicated relation for the correlator

GR =
∆R

1−∆RΣR
=

1
p2−m2−ΣR+ iε sign p0

,

GA=
∆A

1−∆AΣA
=

1
p2−m2−ΣA− iε sign p0

,

F =
F0+∆

RGAΩ+ F0GAΣA

1−∆RΣR
.

(3.7.9)

We see that it is much more convenient to solve the matrix Dyson-Schwinger equation in terms of retarded
and advanced Green’s functions and non-causal correlators than to solve the matrix equation directly. For
later use we list the according free Green’s functions with the appropriate ε-regulators:

∆R(p) =
1

p2−m2+ iε sign p0
,

∆A(p) =
1

p2−m2− iε sign p0
,

F0(p) = 2π[1+ n(p0)]δε(p
2−m2).

(3.7.10)

This result is obtained by using the definitions (3.7.5) and the free Green’s functions (3.4.66) with the regulated
δ-distribution (3.4.65). Further we have used the important formula

1
x ± iε

=P 1
x
∓ iπδ(x) (3.7.11)

where P tells us to take the Cauchy’s principal value when one applies this distribution to a test function
defined along the real axis. The proof is left to the reader as an exercise. (Hint: One has to close the integration
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path along the real axis by a big semi-circle). This formula plays a very important role in physics. For instance
in classical electrodynamics it relates the fraction index to the absorption coefficient for electro-magnetic
waves in a medium in terms of the so called Kramers-Kronig relations. The deeper reason for its applicability
in physics is of course the analytic structure of retarded functions. We shall investigate this structure in detail
later.

3.8 Tadpole self-energy and the Dyson-Schwinger equation

Now we come to a first example which is trivial only from a naive point of view but turns out to be a little
involved if one is not careful in the use of the distributions contained in the Green’s functions. As will turn
out the correct regularization of the δ-distribution arising in the free propagators is crucial in order to get rid
of undefined products of these.

We just calculate the most simple one-loop contribution to the self energy in φ4-theory, which is given by
the tadpole shown in figure 3.5.

i j
=−iΣi j

TP

Figure 3.5: The 1-loop tadpole contribution to the self-energy. The i j run over + and −. The bars on the
external legs reflect the fact that the self-energy is truncated, i.e., the propagators according to the external
legs have to be omitted.

To calculate this diagram we first look after its symmetry factor: Since it is of first order in the perturbation
(or which is in our case equivalent to being first order in λ) the factor from the power expansion of the
exponential function is 1/1! = 1 and there is a factor 1/4! from the interaction Hamiltonian. Now we have
to count the number of possible contraction leading to the very diagram. The contraction is made over two
fields with external points times four fields in the interaction Hamiltonian. There are 4 ways to contract the
field φ(x1) with one internal field φ(y). Now there are 3 possibilities left to do the same with φ(x2). The
remaining two fields have to be contracted with each other (thus there is only one possibility for that). The
symmetry factor is thus given by 4 · 3/4!= 1/2.

Taking into account that the contractions of the external fields giving propagators for the external legs have
to be omitted and that the two fields building the loop are normal-ordered the Feynman rules give

−iΣ−− =− iλ
2

∫

d4 p i∆TP(p). (3.8.1)

Now we have just to insert (3.4.67) where we can use the non-regulated δ-distribution directly because there
are no problems with products. Integrating over the δ-distribution and a little use of algebra results in

Σ−− = λ

16π3

∫

d3~p
n(ω)
ω

withω =
Æ

~p2+m2. (3.8.2)

Thanks to the exponential from the Bose-distribution this result is perfectly finite. This is the case because we
have used the normal-ordered form of the propagator for the tadpole. This is equivalent to a mass renormal-
ization in the vacuum. If we omit normal-ordering (for instance when using path integrals) and use the naive
Feynman rule with the propagator ∆−− this is reflected by the fact that we can write the −−-propagator in
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terms of the vacuum Feynman propagator and the tadpole propagator

i∆−−(p) = i
p2−m2+ iε sign p0

+ 2π[Θ(−p0)+ n(p0)]δε(p
2−m2) =

=
i

p2−m2+ iε
+ 2πn(p0)δε(p

2−m2)
(3.8.3)

where we have used (3.7.11) in order to express the free propagator in terms of the free Feynman propagator
(which is the time-ordered propagator) and the normal-ordered piece due to the heat bath which is propor-
tional to the Bose distribution n.

If we use this propagator instead of the special tadpole Feynman rule we have to renormalize the vacuum
contribution which leads to a quadratically divergent term. This can be done with help of the usual vacuum
techniques for regularization16 and renormalization of the mass term (here we adopt the physical renormal-
ization scheme where the whole vacuum contribution has to be absorbed into the physical mass in order
to keep the pole of the propagator at p2 = m2, i.e., to keep m the physical mass). It is important that the
associated counter terms in the Lagrangian are temperature-independent. The temperature-dependent part is
finite. We end with the result we also have found using the normal-ordering description where the vacuum
piece is renormalized away from the very beginning.

This shows that the normal-ordering description is equivalent to a renormalization of the vacuum. On the
other hand we can use Feynman rules without using the normal-ordering concept because there in higher
orders infinities for the mass arise and have to be absorbed into the bare mass leading to a finite result for the
physical mass. The physically more important result of this little exercise shows that the mass is substituted
by an effective mass, in other words the effective physical parameters of the particles change due to the interaction
of these with the particles which are in the heat bath.

Clearly the off-diagonal elements of the tadpole self-energy vanish and the ++-component is the negative of
the −−-component. Thus we can simply write

Σ̂TP =
�

µ2 0
0 −µ2

�

with µ2 =Σ−−TP =
λ

16π3

∫

d3~p
n(ω)
ω

. (3.8.4)

The integral can be simplified by introduction of spherical coordinates. The angular part gives just a factor 4π
because the integral is independent of the angles. The P = |~p|-integration can be substituted by integration
overω finally resulting in

µ2 =
λ

4π2

∫ ∞

m
dω
p
ω2−m2

exp(βω)− 1
. (3.8.5)

Only in the case of massless bosons, i.e., m = 0 this can be calculated analytically giving the result

µ2|m=0 =
λ

24β2
=
λ

24
T 2. (3.8.6)

Now we want to solve the Dyson-Schwinger equation (3.7.8). We have

Σ̂′TP =
�

0 µ2

µ2 0

�

⇒GR(p) =
1

p2−m2−µ2+ iε sign p0
, GA(p) =GR∗(p). (3.8.7)

Using this result in the equation for F and plugging in the definition for δε (3.4.65) we find after a little
rearrangement of the various terms:

F =−2πi[1+ n(p0)]δε(p
2−m2−µ2) (3.8.8)

16The most convenient and mathematically convincing one is the dimensional regularization invented by ’t Hooft and Veltman
(1972).
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Comparing (3.8.7) and (3.8.8) with the vacuum results (3.7.10) we see that indeed the tadpole contribution
to the self-energy has the physical meaning of a (temperature-dependent!) effective mass term: The particles
at finite temperature are dressed with heat bath particles and obtain (among other effects beyond the tadpole
contribution) from this cloud a bigger effective mass compared to the mass in vacuum.

3.9 Absence of ambiguities

Due to the δ-distributions in the free thermal propagators on the first glance one could think that there
may arise some trouble applying the Feynman rules. As we shall show now this is not the case provided
one is working with the regularised expressions (3.4.66) with the “causal regularisation” (3.4.65) for the δ-
distribution. We shall show this on two simple examples.

3.9.1 Dyson series with tadpole self-energy revisited

The first is the already treated resummation of the Dyson series with a tadpole self-energy. We did this in
the previous section by using the analytic properties and the fact that retarded and advanced Green’s func-
tions are resummed by the retarded and advanced functions themselves. This reduced the summation of the
Dyson series to a simple geometric series for the retarded or advanced function, and we could reconstruct the
other components of the matrix Green’s function by using the analytic properties. The result was that the
resummed Green’s function in this case is simply the free one with an effective temperature dependent mass
M 2 = m2+Θ, where Θ =Σ−− is the tadpole self-energy.

Now we want to rederive this simple fact from the original matrix formalism in ±-representation. Here it is
important first to sum the series and then to take the ε-regulator to 0 in the sense of a weak limit.

For that purpose it is more convenient to write (3.4.65-3.4.66) in the form

δε(p
2−m2) =

1
2πi
[∆∗F (p)−∆F (p)] ,

∆−−(p) =∆F (p)− 2πin(p0)δε(p
2−m2),

∆++(p) =−∆∗F (p)− 2πin(p0)δε(p
2−m2)

∆−+(p) =−2πi[Θ(−p0)+ n(p0)]δε(p
2−m2)

∆+−(p) =−2πi[Θ(p0)+ n(p0)]δε(p
2−m2)

(3.9.1)

with the Feynman propagator

∆F (p) =
1

p2−m2+ iε
. (3.9.2)

The first contribution to the Dyson series reads

∆̂1 = ∆̂Σ̂Ĝ =µ2
�

∆2
F + n(p0)(∆

2
F −∆∗2F ) (∆2

F −∆∗2F )[Θ(−p0)+ n(p0)]
(∆2

F −∆∗2F )[Θ(p0)+ n(p0)] −∆∗2F +(∆
2
F −∆∗2F )n(p0)

�

. (3.9.3)

Since

∆2
F =

∂

∂ m2
∆F (3.9.4)

we have according to (3.9.1)
∆2

F −∆∗2F = 2πiδ ′ε(p
2−m2). (3.9.5)
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Via induction one proves quickly

Ĝn = ∆̂(Σ̂∆̂)
n =

=µ2n
�

∆n+1
F + n(p0)(∆

n+1
F −∆∗n+1

F ) (∆n+1
F −∆∗n+1

F )[Θ(−p0)+ n(p0)]
(∆n+1

F −∆∗n+1
F )[Θ(p0)+ n(p0)] −∆∗n+1

F +(∆n+1
F −∆∗n+1

F )n(p0)

� (3.9.6)

and

∆n+1
F =

1
n!

∂

∂ m2
∆F . (3.9.7)

Damit ergibt die Summe
n
∑

n=0
Ĝn =

n
∑

n=0

µn

n!
∂

∂m2

∆̂=
�

G−− G−+
G+− G++

�

, (3.9.8)

where the G i j are defined as ∆i j cf. (3.9.1) but with m2 substituted by M 2 = m2+µ2 as we have expected.
This shows that there are no ambiguities with products δ-distributions and Feynman propagators or powers
of δ-distributions. It is only important that one uses the causally regularized δ-distributions and takes n(p0)
and not n(

Æ

~p2+m2) in the Feynman rules.

3.9.2 Two-loop tadpole

Our next example is closely related to the previous one but shows that the same cancellation of badly defined
expressions takes place also within loop integrals.
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3.10 Φ-derivable Approximations

As we have seen in the previous section on hand of the example of the tadpole contribution for the self energy
perturbation theory breaks down for high temperatures because this contribution goes like gT 2 which is large
for large T . Thus a resummation scheme is recommended. Now in literature there is known a variational
method which keeps track of nice features like conservation laws and thermodynamic consistency.

This functional method starts with the addition of a bilocal classical source term to the classical action. In
terms of path integrals (see QFT chapter 1 and 4 for an introduction in the vacuum case) the generating
functional for non-connected Green’s functions, which is identical with the partition sum when taking our
extended Keldysh contour, reads:

Z[J ,K] =N
∫

Dφexp
�

iS[φ]+ i 〈Jφ〉+ i
2
〈K12φ1φ2〉12

�

. (3.10.1)

Defining W [J ,K] via Z = exp(iW ) we know that this is the generating functional of connected Green’s
functions with respect to J for a theory which contains also the bilocal source K . The definition of the
effective action is generalised by not only taking the Legendre transformation with respect to ϕ and J but also
with respect to G and ϕ:

Γ [ϕ,G] =W [J ,K]−〈J1ϕ1〉1−
1
2
〈(ϕ1ϕ2− iG12)K12〉12 . (3.10.2)

Now we like to derive the general diagrammatic properties for this Baym functional with help of the path
integral formalism.

From the general features of the path integral one derives

δ2Z
δJ1δJ2

=−〈TC ′φ1φ1〉= 2i
δZ
δK12

. (3.10.3)

Substituting Z = exp(iW ) we obtain

δW
δK12

=
1
2
[ϕ1ϕ2+ iG12] with ϕ1 =

δW
δJ1

, G12 =−
δ2W
δJ1δJ2

. (3.10.4)

To obtain a diagrammatical analysis we derive saddle-point expansion of the path integral. To this end we
shift the integration variable by an arbitrary field ϕ:

Z[J ,K] =exp
�

iS[ϕ]+ i 〈 j1ϕ1〉1+
i
2
〈K12ϕ1ϕ2〉

�

×

×
∫

Dφ′ exp
�

i
2




G−1
12 φ

′
1φ
′
2

�

12+ iSI [φ
′,ϕ]+ i




j1φ
′
1

�

�

︸ ︷︷ ︸

Z1[ j ]

. (3.10.5)

Here we used the following abbreviations:

G−1
12 =

δ2S[ϕ]
δϕ1δϕ2

+K12 :=D−1
12 +K12,

SI [φ
′,ϕ] = S[φ′+ϕ]− S[ϕ]−

�

δS[ϕ]
δϕ1

�

1
− 1

2

�

δ2S[ϕ]
δϕ1δϕ2

φ′1φ
′
2

�

12
,

j1 = J1+
δS[ϕ]
δϕ1

+ 〈K12ϕ2〉2 .

(3.10.6)
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Now we chose J and K such that ϕ and G become the exact mean field and propagator cf. (3.10.4). From the
mean field definition it follows that we have to chose j = j ′ such that

δZ1[ j
′]

δ j ′
= 0. (3.10.7)

This means that the expectation value of the field φ′ for the field theory defined by vanishes by definition.
In this way Z1[ j ] determines completely Z[J ,K] and can be treated with well-known standard techniques
(see QFT section 4.6.5) leading to loop expansions or perturbative expansions as a formal power series with
respect to the coupling constant.

We do not need to repeat the steps leading to the loop expansion. This derivation is given in QFT section
4.6.5. We simply repeat the result up to order ħh, i.e., up to one loop:

W1[ j ]|ϕ′=0 :=−i lnZ1[ j ]|ϕ=0 = Γ1[ϕ
′ = 0] =

i
2

Tr ln(M 2G−1)+Φ[ϕ,G]. (3.10.8)

This is an exact result which defines the functional Φ. Up to now the only fact we know about it is that
within the diagrammatic interpretation Φ contains point vertices defined by the classical interaction action
functional SI [ϕ,φ] and lines representing the operator G. All diagrams in Γ1 are one-particle irreducible, i.e.,
they cannot be disjoined by cutting only one line. The parameter M in (3.10.8) is an arbitrary mass scale
which will be eliminated at the end when we are renormalising the mean energy to 0 for the vacuum case.

All we have to do now is to use (3.10.8) in (3.10.5) together with the definition (3.10.6) to obtain the final
result for the Baym functional (3.10.2):

Γ [ϕ,G] = S[ϕ]+
i
2


D−1
12 (G12−D12)

�

+
i
2

Tr ln(M 2G)+Φ[ϕ,G]. (3.10.9)

Now we like to investigate our theory at vanishing external sources J and K . From the definition of the
functional by the double Legendre transformation (3.10.2) we obtain immediately the equations of motion for
the mean field ϕ and the exact propagator G:

δΓ [ϕ,G]
δϕ1

= J1
!= 0,

δΓ [ϕ,G]
δG12

= iK12
!= 0.

(3.10.10)

With help of (3.10.9) this can be expressed in terms of the Φ-functional:

δS[ϕ]
δϕ

+
1
2

®

δD−1
1′2′

δϕ1
G1′2′

¸

1′2′
+
δΦ[ϕ,G]
δϕ1

!= 0.

G−1
12 −D−1

12
!= 2i

δΦ

δG12
.

(3.10.11)

The first line is the equation of motion for the mean field. While the first term provides the classical part of
the equation (in our case of a scalar field it is of the Klein-Gordon type), the second term is a local one-loop
quantum correction depending on the exact propagator in form of a tadpole contribution. Both contribution
together build the mean field level. The third contribution consists of diagrams with at least two loops and
goes in general beyond the mean field level, i.e., it generates the non-local quantum contributions to the field
equation of motion.

The second line shows another important property of the Φ-functional: Since G is the full propagator and
D is the free propagator at presence of the mean field the right hand side of the equations is the self-energy
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iΓ2 = +

−iΣ= +

Figure 3.6: The Hartree-Fock approximation in non-relativistic quantum theory. The dashed line represents
the interaction potential. Note that this is not a propagator and thus the diagrams for iΓ2 need not be 2PI
with respect to cutting these lines. The thick lines represent exact propagators iG and the thin eliminated
lines stand for amputated legs in the corresponding self-energy diagrams. Using only the first diagram one
obtains the Hartree approximation. Both together give the Hartree-Fock approximation. In literature one
finds often the names direct and exchange term for these both self-energy diagrams

expressed as functional of the mean fields and the exact propagator. In the corresponding diagrams lines
represent exact rather than perturbative propagators and thus cannot contain any self-energy insertions in
any propagator line. This class of diagrams is known as skeleton diagrams. The Φ-functional thus generates
all (amputated) skeleton self-energy diagrams. Now the functional derivation (up to a factor i) of a diagram
contained in Φmeans to open any propagator line contained in this diagram, which leaves always a amputated
self-energy diagram, and to add all these contributions. As we have argued above all these diagrams must be
pure skeletons and thus must not disjoin if one cuts two lines. This is only possible if this is also the case for
the closed diagrams which constitute Φ itself. Thus we can summarise our path integral analysis as follows:

Theorem 9. The Φ-functional is diagrammatically represented by the sum of all closed two-particle irreducible
(2PI) diagrams with at least two loops. While the vertices are given by the interaction part SI [φ,ϕ] of the classical
action at presence of a background field ϕ cf. (3.10.6) the propagator lines stand for exact propagators iG.
The self-energy is obtained from the Φ-functional by opening any line of the diagrams which contribute to Φ in the
described way. All these diagrams belong to the skeleton class of self-energy diagrams and expresses the self-energy
in terms of exact propagators. Together with the Dyson equation (second line of (3.10.11)) this results in a closed
self-consistent equation of motion for the exact propagator while the mean field is determined by the first line of
(3.10.11).

Now it is clear that we are not able to solve the so far exact self-consistent equations of motion. But instead
of taking an arbitrary approximation for a self-consistent calculation we approximate Γ2 by just truncating
the series of diagrams contributing to it at a certain loop order. Since we know that for the solutions of
the equations of motion (3.10.11) this means an approximation for the effective action we can be sure that
our self-consistent approximation fulfils the conservation laws which result from Noether’s theorem from a
symmetry, which is linearly realized on the fields (see QFT section 4.6). This is the case for the space-time
symmetries and the most global gauge symmetries (leading to the conservation of charges) but not for the
local gauge theories because the quantum analogue of gauge invariance for the gauge fixed classical action is
BRST-invariance and this is a non-linearly realized symmetry.

We should finally mention that in the original works about the above explained formalism due to Luttinger
and Ward and Baym and Kadanoff a slightly modified functional Γ2 is named Φ and this gave the method the
name Φ-derivable approximations.
As a last remark we report the fact that for the non-relativistic case the well known self consistent field methods
in atomic and nuclear physics (also known as Hartree and Hartree-Fock approximations) is equivalent with
taking the approximation depicted in figure 3.6 for the generating functional.
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1
2·3!

+

1
8

1
2·4!

+ · · ·

+iΓ2 =

+

Figure 3.7: The first diagrams contributing to the 2PI generating functional Γ2. The bold lines represent again
the exact propagator iG and the needles the mean field ϕ

3.11 A simple example: Gap-equations for φ4-Theory

Now we come to a first simple example of the above derived self-consistent scheme, namely φ4-theory with
the most simple approximation we consider for the functional Γ2. We just keep the “eight”-diagram shown as
the first drawing in fig. 3.7.

From this a straight forward calculation give the equations of motion for the mean field ϕ and the self-energy.
In our case we assume thermal equilibrium and from homogeneity it follows ϕ = const.:

ϕ(m2+Σ+
λ

6
ϕ2) = 0, Σ=

iλ
2

∫

dd l
(2π)d

G(l )+ΣCT. (3.11.1)

Here and in the following we can restrict ourselves to calculate the −−-self-energy alone because the off-
diagonal elements of the self-energy vanish for our tadpole-approximation and thus the Green’s functions
never mix within Dyson’s equation. Of course the self-energy is also independent of p but diverges quadrat-
ically due to UV-divergences.

The aim of the following is to show how to renormalise this theory for different cases with temperature
independent counter terms. For that purpose we look at different cases.

3.11.1 Massive particles

This is the most simple case. The theory exhibits an unbroken symmetry against “field reflection” φ→−φ
and thus we have ϕ = 0. The self-consistent propagator is of the form

G(p) =
1

p2−M 2+ iε
− 2iπn(p0)δ(p

2−M 2) with M 2 = m2+Σ. (3.11.2)

Since the propagator is of the same form as a free one (but with a temperature dependent effective mass M ) it
is easy to calculate the self energy with dimensionally regularised standard integrals (see QFT chapter 6). The
result is

Σ=− λ

32π2
M 2

�

1
ε
− γ + 1+ ln

�

4πµ2

M 2

�

+O(ε)
�

+
λ

2

∫

d4 l
2π4

δ(p2−M 2)2πn(p0)+ΣCT (3.11.3)

where 2ε= 4− d and “ΣCT” stands for the counter terms which renormalise this divergent result.
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Now the problem is to show that we can chose the counter terms independent of the state of the system, i.e.
independent of the temperature, although the infinite term ∝ M 2/ε depends on temperature. Since M 2 =
m2+Σ one part is independent of temperature and can be subtracted as a mass counter term in the Lagrangian.
In φ4-theory we have also a coupling constant renormalisation. From the viewpoint of perturbation theory
it is clear that there must occur vertex counter terms because of sub-divergences. The question is now how
to determine the vertex counter term within the self-consistent scheme.

To see this we use again our generating functional. In principle the equations of motion are given by setting
the external auxiliary sources J and K to 0 resulting in a closed set of equations of motion for the self-energy
and the mean field. Nevertheless these conditions also dictate consistency conditions for the higher order
vertex functions.

For this purpose we use the defining equations (3.10.1) and (3.10.2) to rearrange the identity

δK12

δK34
=

1
2
(δ13δ24+δ14δ23) := I12;34 (3.11.4)

with help of the functional chain rule as follows:

−1
4

I12;34 =
�

δ2Γ

δG12δG56

δ2W
δK56δK34

�

56
. (3.11.5)

From the definition of the generating functional (3.10.1) we find using the Feynman-Kac formula for path
ordered products:

1
Z

δ2Z
δK12δK34

=−1
4
〈TCφ1φ2φ3φ4〉=−

i
4

G(c ,4)
34;56 (3.11.6)

which is the sum of all connected four-point functions without vacuum sub-diagrams.

Using the definition for W in (3.10.4) we find

i
δ2W

δK12δK34
=

1
4

�

G14G23+G24G13− iG(c)12;34

�

(3.11.7)

where G(c) is the connected four point Green’s function.

Now we like to express this in terms of the 2PI functional Γ (2). For this purpose we have to differentiate the
definition (3.10.9) two times with respect to G. As an intermediate step we need the derivative of G−1. This
is simply done as follows:




G−1
12 G23

�

2 = δ13⇒
δG−1

12

δG56
=−
G−1

12 G−1
34 I23;56

�

23 . (3.11.8)

With help of this result we find

δ2Γ

δG12δG56
=− i

2




G−1
14 G−1

23 I34;56
�

34+
δ2Γ2

δG12δG56
︸ ︷︷ ︸

:= 1
4 Γ̃12;56

. (3.11.9)

Putting this into (3.11.5) one obtains

iG(c)1234 = i
¬

G15G26G37G48Γ̃5678

¶

5678
+

1
2

¬

G15G26Γ̃5678G(c)7834

¶

5678
. (3.11.10)

This is one of various forms of the Bethe-Salpeter-equation which is depicted in figure 3.8.
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= +iΓ̃ iΓ̃iG(c) iG(c)

Figure 3.8: The consistency condition of Bethe-Salpeter type. Herein bold lines stand for the self-consistent
propagator, the box for the connected four-point function and the circle for the effective Bethe-Salpeter kernel
which is the sum of connected amputated diagrams which are 1PI in the channel under consideration. It
should be kept in mind that G(c) is not amputated, i.e. external legs stand for self-consistent propagators.

+
p4 p2

p1p3

+ + · · ·

p = p1+ p2 = p3+ p4

iG(c)4 (p) =

Figure 3.9: The dinosaur-diagram chain determining the connected four-point function consistent with the
lowest order Γ2-functional for φ4-theory.

For our choice of the Γ2-functional the four-point vertex G(c)4 is given by the chain of “dinosaur-diagrams”
shown in figure 3.9.

We define λ to be the coupling at zero momentum transfer in the scattering amplitude given by G(c)4 in the
vacuum. This can be obtained by renormalising the vacuum dinosaur diagram at p = 0 to 0. Since it is
logarithmitically divergent (which is seen immediately from power counting and Weinberg’s theorem) this is
a sufficient condition to render it finite.

Fortunately we need to calculate it only for T = 0. Looking at (3.11.3) in that case the unique solution of
our self-consistent tadpole approximation is Σ = ϕ = 0 since the explicitly temperature dependent second
integral vanishes in the limit T → 0. So for the vacuum we have to calculate the dinosaur diagram with the
free Feynman propagators. For our purposes we need to calculate it only for p = 0:

Γ vac
4 (p = 0) =−δλ= λ2

32π2

�

1
ε
− γ − ln

�

m2

4πµ2

��

. (3.11.11)

The full counter term structure for the self-energy is depicted in figure 3.10.

Plugging this into (3.11.3) we immediately find the finite self-consistent equation

M 2 = m2+Σ= m2+
λ

32π2

�

M 2 ln
�

M 2

m2

�

+m2−M 2
�

+
λ

4π2

∫ ∞

M

p

ω2−M 2n(ω). (3.11.12)

The numerical result for this equation is shown in figure 3.11. The approximation breaks down at bigλ and/or
T due to the first terms on the right hand side of eq. (3.11.12) originating from the quantum fluctuations
because then there exists no real solution for M 2.

3.12 Massless particles

This case is only slightly different from the massive case in the previous section. Here an arbitrary scale
enters the game because there is no natural one there except the temperature itself. The perturbative result
is finite in dimensional renormalisation because the temperature independent part of the tadpole vanishes
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+ΣCT = −Σλδλδm2

Figure 3.10: The counter terms for the self-consistent self-energy. In the second diagram we have written the
loop integral in terms of the self-energy.
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Figure 3.11: The numerical solution for (3.11.12). Both the perturbative (dashed line) and the self-consistent
(solid line) are shown. As parameters m = 200MeV and λ= 40 were chosen.

for m → 0 as can be seen from (3.11.3). Thus only the coupling constant renormalisation remains. This
cannot be taken at the renormalisation point p = 0 because the branch cut of the function starts exactly at
p2 = 0. In addition the real part goes∝ ln p2 for p2 ≈ 0. Thus we have to chose an arbitrary momentum
scale p2 =−Λ2 < 0 as the renormalisation point. Nevertheless there is no ambiguity in this result because a
change of the renormalisation scale from Λ to Λ′ is nothing than a finite change of the coupling constant and
this has to be adapted to experiment in any case. The finite equation obtained from this calculation is

Σ=M 2 =
λ

32π2
M 2

�

1+ ln
�

M 2

Λ2

��

+
λ

4π2

∫ ∞

M

p

ω2−M 2n(ω). (3.12.1)

The numerical solution for this case is shown in figure 3.12.

Also in this case for too high couplings and/or temperatures the approximation breaks down because there
is no real solution for M 2.

3.12.1 The spontaneously broken case

As our last example we look on the case that our mass parameter is m2 =−m̃2 < 0. Then the solution ϕ = 0
is not longer a stable solution in the vacuum. The renormalised self-consistent equations of motion are now
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Figure 3.12: The numerical solution for (3.12.1). Both the perturbative (dashed line) and the self-consistent
(solid line) are shown. As parameters Λ= 100MeV and λ= 40 were chosen.

given by

ϕ
�

λ

3!
ϕ2− m̃2+Σ

�

= 0,

Σ=
λ

32π2

�

M 2 ln
�

M 2

2m̃2

�

−M 2+ 2m̃2
�

+
λ

4π2

∫ ∞

M
dω

p

ω2−M 2n(ω)

with M 2 =
λ

2
ϕ2+Σ− m̃2.

(3.12.2)

Here again we only had to renormalise the vacuum case with the same techniques as in the unbroken cases.
The only difference is that in addition to the tadpole subdivergence also the ϕ2-term has to be renormalised
due to the coupling constant renormalisation. To set the renormalisation scheme also in this case we define
Σvac = 0 which fixes the mass renormalisation. Then we have ϕvac = 3m̃2/λ and the mass of the excitations
from this condensate which now are the real particles of the theory is 2m̃2 > 0. The coupling constant again
is defined at s = 0 to be λ in the vacuum.

3.12.2 The self-consistent effective potential

To see explicitly the symmetry restoration we also calculate the self-consistent effective action. We define
this as the action which is calculated by iterating the gap equation (3.12.2) for the fixed mean field ϕ. As
the numerical calculation shows for low temperatures the potential does not exist for too low mean fields ϕ
because there is no stable real solution for the gap equation at all.

Usually for the calculation of bulk properties of a thermodynamical system, as is the effective potential, it is
customary to use the imaginary time formalism. The reason is simply that when doing the last integration
over a one-point function with respect to space-time variables the complete real-time contour is cancelled
because the real part of the extended Schwinger-Keldysh contour is closed. In our case of thermal equilibrium
the one-point functions are constant and by using the thermal limit of the finite volume definition used in
the beginning of this chapter when we were calculating the properties of ideal gases, it is clear how to derive
the expression for the effective action:
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Using the definition (3.10.9) together with our tadpole approximation defined by the first-order “8-diagram”
in figure 3.8 the only problem is to express the Matsubara frequency sums in terms of our already calculated
real-time quantities. Thereby in any integral we have to omit the last integration over space time to get the
effective Lagrangian instead of the effective action.

Let us start with the expression

Γ (1) =− i
2


D−1
12 (G12−D12)

�

12 . (3.12.3)

We have to calculate only the integral over x2 (for the time variable along the complete extended Schwinger-
Keldysh-contour) while we fix x1 with its time part on any point of the contour (the final integral does not
depend on it because the integral must be a constant due to translation invariance). So we fix it on the vertical
part of the contour and thus we have also to do the integration over x0

2 only along the vertical part of the
contour. Now we remember that in the imaginary time-formalism we have always “time-ordering” along
the complex path and thus the Schwinger-Dyson-equation is solved as in the vacuum case which means that
D−1 =Σ+G−1 which leads to

L (1)
eff
=

i
2
〈Σ12G21〉2 =

Σ

2β

∑

ω

∫

d3~p
(2π)3

1
p2

E +M 2
(3.12.4)

where we have used the Fourier representation for the imaginary time propagator (3.4.49) (remember that
the self-consistent propagator G is a free one with the effective mass M ) and the fact that in our tadpole
approximation the self-energy is constant.

The remaining Matsubara sum and integral is proportional to our tadpole self-energy. Of course using the
imaginary time Feynman rules we find that

Σ=
λ

2

∑

ω

∫

d3~p
(2π)3

1
p2

E +M 2
(3.12.5)

and using this in (3.12.4) we get

L (1)
eff
=
Σ2

λ
. (3.12.6)

Note that we have of course renormalised this result due to our physical renormalisation condition.

The next contribution we consider is the functional trace which comes from the logarithmic part of the
effective action. In our case the calculation is very simple because from the path integral formulation for this
trace we know that it is the thermodynamical potential Ω = lnZ of an ideal gas consisting of particles with
the effective mass M . This potential can be calculated most easily within the operator formalism with help of
the number state basis as we have seen in the beginning of the chapter. Note that then also this contribution is
renormalised due to the normal ordering description within the operator formalism which means not more
than fixing the vacuum energy to 0. The final result for this contribution is thus

L (2)
eff
=

1
2β

∑

p0

∫

d3~p
(2π)3

ln(p2
E +M 2). (3.12.7)

The remaining part is only the “8-diagram” of figure 3.8 mentioned above. According to the imaginary time
Feynman rules we have

iL (2)
eff
=− iλ

8β2

�

∑

p0

∫

d3~p
(2π)3

1
p2

E +M 2

�2

+CT. (3.12.8)

Again according to (3.12.5) this can be written in terms of the renormalised self-energy:

L (2)
eff
=−Σ

2

2λ
. (3.12.9)
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Figure 3.13: The evolution of the effec-
tive potential with temperatures between
150MeV and 180MeV. The potential is
fixed to Veff(ϕ = 0) = 0 for all temperatures.

Finally we have to calculate the functional trace which is obtained most conveniently with help of the parti-
tion sum of an ideal gas consisting of particles with mass M :

Z0(M ) =
1

p

Det(−iG−1)
=N

∫

Dφexp
�

i
2




G−1
12 φ1φ2

�

12

�

(3.12.10)

where we have to integrate along the extended Schwinger-Keldysh time contour while the fields over which
the path integral is taken have to obey periodic boundary conditions. According to our study of partition
sums this can be solved most easily within the operator formalism where by implying normal ordering the
same time we have plugged in the vacuum renormalisation which gives

L (3)
eff
=
Ω0(M )
βV

=

=−
∫

d3~p
β(2π)3

ln[1− exp(−βω)] =

=− 1
2π2β

∫ ∞

M
dω(ω2−M 2) ln[1− exp(−βω)].

(3.12.11)

Now in order to get finally the effective potential we just have to write down our results (3.12.6), (3.12.9) and
(3.12.11) together with the free Lagrangian:

Veff(ϕ) =−
µ2

2
ϕ2+

λ

4!
ϕ4− Σ

2

2λ
+

1
2π2β

∫ ∞

M
dω(ω2−M 2) ln[1− exp(−βω)]. (3.12.12)

We have plotted this self-consistent effective action in figure 3.13

This shows explicitly how the first order phase transition comes about: For low temperatures (especially at
T = 0) there is only one stable minimum at ϕ 6= 0 which is the broken phase. This minimum goes down until
ϕ = 0 happens to become also a minimum above the first critical temperature Tc1. The minimum at ϕ 6= 0
remains the absolute minimum for a while. One can also see that there is a barrier between the two states
showing up as a maximum in between these.

At a certain temperature (the second critical temperature Tc2) both minima are at the same level (here fixed
to 0). Above this temperature the minimum at ϕ = 0 becomes the stable one but there remains an unstable
minimum at ϕ 6= 0.
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Figure 3.14: The self-consistent solutions of the equations for M (left) and ϕ (right). The parameters were
m̃ = 200MeV and λ= 40). The stable minimum of the effective potential is drawn with a solid, the unstable
one with a dashed line. It shows that there is a first critical temperature at Tc1 ≈ 158MeV, while the 2nd is
Tc2 ≈ 173MeV. For T < Tc1 only the symmetry-broken phase is an equilibrium state, for Tc1 < T < Tc2 the
symmetric phase (ϕ = 0) is another local minimum above the stable one. This unstable minimum is separated
from the stable minimum at ϕ 6= 0 by a potential wall. In this region the system may be under-cooled or over-
heated. For Tc2 < T < Tc3 the symmetric phase becomes the stable one while the broken one remains an
unstable minimum of the self-consistent effective potential. Above Tc3 the 2nd minimum vanishes and only
the symmetric phase is an equilibrium state.

Finally above the third critical temperature Tc3 the unstable minimum vanishes completely and the symmetric
phase is the only stable equilibrium state.

This behaviour is depicted in figure 3.14 where the stable and the unstable minima of the effective potential
are plotted against the temperature. These were calculated by finding numerically the minimum of the self-
consistent effective potential.

Now we can also understand the qualitative physical behaviour of such a system: Suppose we start with an adi-
abatic heating17 at a low temperature where only the broken phase (order parameter ϕ 6= 0) is an equilibrium
state. Now coming in the range Tc1 < T < Tc3 the system will stay in the broken phase. For Tc2 < T < Tc3
this is the unstable phase. This phenomenon is known as over-heating the system and any small perturbation
which makes it possible for the system to overcome the little gap showing up as the maximum in the effective
action and will result a rapid change to the symmetric stable state ϕ = 0 18. Heating up the system above Tc3
in any case the system will switch to the symmetric state.

Now suppose the opposite case of starting at temperatures above Tc3 when the system is in the symmetric
phase and lowering this temperature adiabatically. Cooling down to the range Tc1 < T < Tc3 will keep
the system in the symmetric state. While for Tc2 < T < Tc3 this is the stable state for Tc1 < T < Tc2 this
describes an under-cooled system which will be brought to the stable broken state by a perturbation overcoming
the potential wall separating the stable from the unstable minimum. Lowering the temperature below Tc1
switches the system in any case to the broken phase.

17Remember that “adiabatic” is used in these notes in the sense that the change of state is done so slowly that the system always
remains in an equilibrium state with increasing temperature.

18This behaviour is feared by chemists when boiling liquids because it may damage the whole apparatus!

82



3.12 · Massless particles

As we have seen the transition from one to the other phase is characterised by a discontinuous change of the
order parameter ϕ (and caused by that of course also the effective mass M ). This is called a 1st-order phase
transition. As we have also discussed at length there are certain regions of the parameter space where both
phases are possible equilibrium states separated by a potential wall but of course only one is stable.

Contrary to this in the case of a 2nd-order phase transition the order parameter changes continuously and only
the derivatives of the potential (for instance the specific heat) show discontinuities.
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Appendix A

The imaginary time Feynman rules and other series
summations

A.1 The Feynman rules

Although in these notes we use the real-time technique it is also important to know the imaginary time
method. Especially if one likes to calculate bulk properties like pressure, entropy and other thermodynamical
potentials the imaginary time formalism is much less complicated than the real-time formalism. On the other
hand for calculating dynamical effects (for instance at first order linear response to an external perturbation or
production and absorption rates) the real-time formalism is at place. Of course both formalisms are equivalent
and to switch from one to the other is just a question of analytic continuation. But this can be a tedious task
especially if one likes to do numerical calculations.

Our approach of the extended Schwinger-Keldysh contour unifies both points of view and the both for-
malisms can be split due to the factorization of the generating functional Z for disconnected Green’s function.

It is very easy to obtain in the same way the imaginary time formalism by writing down the path integral
formulation along the imaginary time path.

Let us use again the example of bosons to explain that. From the KMS-condition we know that we have to
integrate over all fields with periodic boundary conditions φ(t + iβ, ~x) = φ(t , ~x). Since the vertical part
of the contour is not “doubled” like the real part we have no matrix structure and the Feynman rules look
very similar to Euclidean vacuum quantum field theory. The only difference arises when we go to Fourier
space: Instead of integrating over the energy variable p0 we have to sum over the bosonic Matsubara frequencies
ωn = 2πkT with k ∈Z.

The pictorial elements of the Feynman rules are the same as in vacuum theory. In our conventional the
four-vertex in φ4-theory stands for −iλ/24 as in the vacuum theory but the line has to be substituted by
i∆V . Instead of integrating over d4 p/(2π)4 one has to sum over 1/β

∑

ωn
. The last integration in the case of

closed diagrams gives the nonsense result β(2π)3δ(0) which is cured by taking a finite quantization volume
with periodic boundary conditions as explained in chapter 3 in detail. This shows that the factor has to be
substituted by βV and the corresponding intensive quantities (i.e. densities in this case) are well defined in
the limit of infinite matter.

A.2 How to calculate Matsubara sums

The rough explanation in the previous section shows that within the imaginary-time formalism there arises
the problem of summing over Matsubara frequencies. It is also important to show that the theory can be
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rendered finite order by order in perturbation theory by just renormalizing the temperature-independent
part of the diagrams, such that the counter terms in the Lagrangian remain independent of the state (in our
this means independent of temperature).

Fortunately both tasks, calculating the sum in a practically way and how to split in the vacuum and the
temperature part, can be solved by calculating the sum with help of complex contour integrals.

To this end suppose we like to sum a series of the form

s =
∞
∑

k=−∞
f (2πik). (A.2.1)

We take the function f to be analytic in ranges defined precisely below and such that the series converges.

The idea of writing this as an complex integral is to multiply it with a meromorphic function which has
simple poles at 2πik with residuum one and use a contour enclosing these poles. Such a function is given by
the Bose distribution:

g (z) =
1

exp z − 1
(A.2.2)

Of course this function has simple poles with residuum 1 at the desired points:

Res
z→2πik

g (z) = lim
δ→0

δ g (2πik +δ) = 1. (A.2.3)

Now we chose the integration contour as shown in figure A.1.

C

Im z

Re z

Figure A.1: The Matsubara contour. The dots show the simple poles of g .
If now the function f has no poles in an open strip around the imaginary axis from Cauchy’s residuum
theorem one obtains

∫

C
dz f (z)g (z) = 2πi

∞
∑

k=−∞
f (2πik). (A.2.4)

Now we can rewrite this in a straight forward way as an integral along the imaginary axis:

∫

C
f (z)g (z) =

∫ i∞+ε

−i∞+ε
dz

f (z)
exp(z)− 1

−
∫ i∞−ε

−i∞−ε
dz

f (z)
exp(z)− 1

=

=
∫ i∞+ε

−i∞+ε
dz
�

f (z)
exp z − 1

+
f (−z)

exp(−z)− 1

�

.

(A.2.5)
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This can be put in a somewhat more convenient form by the simple fact that the residuum theorem can be
applied the same way for g (−z) leading to

∫

C
dz f (z)g (x) =−

∫

C
dz f (z)g (x (A.2.6)

and so
∫

C
f (z)g (z) =

1
2

∫

C
f (z)[g (z)− g (−z)]. (A.2.7)

Doing the same manipulations as in (A.2.5) this reads

∫

C
f (z)g (z) =

1
2

∫ i∞+ε

−i∞+ε
[ f (z)+ f (−z)][g (z)− g (−z)]. (A.2.8)

A little bit of algebra leads to

∫

C
dz f (z)g (z) =

1
2

∫ i∞+ε

−i∞+ε
[ f (z)+ f (−z)]+

∫ i∞+ε

−i∞+ε
dz

f (z)+ f (−z)
exp z − 1

. (A.2.9)

Together with (A.2.4) this gives the

∞
∑

k=−∞
f (2πin) =

1
2πi

∫ i∞+ε

−i∞+ε
dz

f (z)+ f (−z)
2

+
1

2πi

∫ i∞+ε

−i∞+ε
dz

f (z)+ f (−z)
exp z − 1

. (A.2.10)

To give the explicit form for the sum over Matsubara frequencies we just take f (z) = h(z/β) and substitute
z =βx on the right hand side of (A.2.10):

1
β

∞
∑

k=−∞
h(iωk ) =

1
2πi

∫ i∞+ε

−i∞+ε
dx

h(x)+ h(−x)
2

+
1

2πi

∫

dx
h(x)+ h(−x)
exp(βx)− 1

(A.2.11)

where we have writtenωk = 2πik/β for the bosonic Matsubara frequencies.

The important point of this summation formula is, that it splits into a temperature independent and a depen-
dent part. The first leads to the vacuum part of the diagrams and gives rise to the usual infinities of the diagram
known from vacuum quantum field theory, and all the regularization and renormalization techniques can be
taken from the vacuum case. The second one contains the Bose distribution function and as we shall see in
the next section on a simple example this gives a finite contribution because the distribution function works
like a cut-off for high momenta.

A.2.1 The tadpole self-energy revisited

A.3 Series summations

In this part we use the same technique as for summing over Matsubara frequencies for calculating some series
we need for the treatment of ideal gases in chapter 3.

We need only to change the contour in the complex plane to sum series from 1 to∞:

∞
∑

n=1
f (2πin) =

1
4πi

∫

C ′
dz

f (z)
exp z − 1

with f (z) = f (−z) (A.3.1)

where the contourC ′ is given in figure A.2: Thereby f has to be regular in an open strip around the imaginary
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Im z

Re z

C

Figure A.2: Integration path in (A.3.1).

axes except in z = 0 where f may have a singularity. Clearly the semi-circles closing the path on both sides
do not contribute to the integral if f is such that the series converges. From this analytic properties of f it
is immediately clear that we can deform this path to a small circle containing only the singular point z = 0
oriented in mathematical negative direction (i.e., clock-wise). Thus using the residuum theorem we find

∞
∑

n=1
f (2πin) =−1

2
Res
z→0

f (z)
exp z − 1

. (A.3.2)

We apply this formula to the series

Sk =
∞
∑

n=1

1
nk

for k ∈ 2N>0. (A.3.3)

Here we have

f (z) =
�

2πi
z

�k
(A.3.4)

and this function has only a pole of order k in z = 0 which means that it fulfills ther analyticity assumptions
for (A.3.2).

The residuum can now be evalutated as follows:

∞
∑

n=1

1
nk
=− (2πi)k

2
g (k)(0)

k!
with g (z) =

z
exp z − 1

. (A.3.5)

Note that g is analytic in z = 0.

Here we list the result for some k1

∞
∑

n=1

1
n2
=
π2

6
,

∞
∑

n=1

1
n4
=
π4

90
,

∞
∑

n=1

1
n6
=
π6

945
. (A.3.6)

The alternating sums can be obtained from that making use of

∞
∑

n=1

1
(2n)k

=
1
2k

∞
∑

n=1

1
nk
⇒

∞
∑

n=1

(−1)n+1

nk
=
�

1− 1
2k−1

� ∞
∑

n=1

1
nk

. (A.3.7)

1To calculate the derivatives Mathematica was a helpful tool!
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We apply these formulas to the calculation of some integrals we need in chapter 3 for ideal gases:

Ik =
∫ ∞

−∞
dx xk exp x

(1+ exp x)2
= 2

∫ ∞

0
xk exp x
(1+ exp x)2

for even postive integer k. (A.3.8)

Integration by parts gives

Ik = 2k
∫ ∞

0
dx

xk−1

1+ exp x
= 2k

∫ ∞

0
dx

xk−1 exp(−x)
1+ exp(−x)

. (A.3.9)

Expanding in a geometric series and integrating gives

Ik = (2k)(k − 1)!
∞
∑

n=1

(−1)n+1

nk
. (A.3.10)
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