# The Early Universe A Journey into the Past

#### Hendrik van Hees

Texas A&M University

March 16, 2006



Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

## Outline

Gravity: Einstein's General Theory of Relativity

Cosmology: History of the Universe

What is the Universe made of?

## Galileo and falling bodies



- Galileo Galilei: all bodies fall at the same speed
- force needed to accelerate
  a body is proportional to
  its mass: F = ma
- gravitational force also proportional to mass:
   F = mq
- acceleration independent of mass: a = g

#### Hendrik van Hees

The Early Universe: A Journey into the Past

Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

### Newton and the universality of gravitation





- Newton: Force pulling an apple on earth of same kind as force holding the moon in its orbit around the earth
- same mathematical laws apply to planets and sun
- Newton could explain motion of heavenly bodies from one universal law of gravity

## Einstein and the equivalence principle



- observer cannot decide by any experiment whether his elevator is at rest in earth's gravitational field or accelerating in empty space
- Gravity exactly equivalent to accelerating reference frame





## Is Einstein's General Theory of Relativity right?

Precession of Mercury's perihelion (closest point to the sun)





## Is Einstein's General Theory of Relativity right?

Gravitational red shift



- ► loses energy when moving from heavy body ⇒ frequency lowered
- ► could be tested on earth by high-precision spectroscopy ⇒ GTR works right!





GPS would not work if not corrected for relativistic effects!

## The cosmological principle



#### Hendrik van Hees

The Early Universe: A Journey into the Past

Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

## The cosmological principle

 cosmological principle: space filled homogeneously and isotropically with matter (on large scales)



#### General Relativity: the large-scale structure of space-time

 solution of Einstein's equations with this symmetry depending on density and type of matter

- space hyperbolic, flat, or spherical (curvature)
- spatial distances of objects at rest can be time dependent
- observation (Hubble 1929): universe expanding
  - light emitted from stars: known spectra of chemical elements
  - light travelling through expanding universe: wavelengths become larger due to expansion of scale
  - apparent "velocity" of galaxies proportional to distance ("Hubble law")
- Early universe: dense and hot
- Big Bang!

Hendrik van Hees The Early Universe: A Journey into the Past

Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

#### Hubble expansion

Recession velocity: v = Hd



 $1 \ \mathrm{Mpc} = 3.1 \cdot 10^{22} \ \mathrm{m} = 3.3 \cdot 10^{6} \ \mathrm{ly}$ 

### History of the universe

- based on known physics: Standard model of particle physics...
- ▶ ... and guesses about "new physics": inflation, super strings



in the following: what is the matter content of the universe?

Hendrik van Hees

The Early Universe: A Journey into the Past

Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

## The Cosmic Microwave Background

- ▶ hot and dense charged particles ⇒ lot of photons!
  - photons in thermal equilibrium with matter
- after about 400,000 years
  - universe cooled down ( $T \approx 3000$  K)
  - electrically neutral atoms form
  - photons decouple
  - ► Hubble expansion ⇒ wavelengths grow
  - Alpher, Bethe, Gamow (1949): we should see a thermal background of photons in micro-wave range!
  - cosmic microwave background discovered by Penzias and Wilson (1965)

## The Cosmic Microwave Background



nearly perfect black-body spectrum (Planck 1900)
 CMB photons in equilibrium at T = 2.725 K

Hendrik van Hees The Early Universe: A Journey into the Past

Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

## Fluctuations in the CMBR

- small density fluctuations of matter before decoupling
- photons have to run through regions of different gravitation
- different temperature  $\Rightarrow$  temperature fluctuations  $\delta T/T \simeq 10^{-5}$



### Total amount of energy in the universe

- ▶ high-density region contracts under self-gravity at timecale *R*
- ▶ at the same time hubble expansion at rate H<sub>CMB</sub>
- maximum anisotropy expected at a scale  $R \simeq H_{\text{CMB}}$
- $\blacktriangleright$  calculate  $H_{CMB}$  assuming total energy content of the universe
- space flat at critical density  $\Rightarrow \Omega = \rho / \rho_{\text{crit}}$



Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

### How much matter is in the universe?



- ► *D<sub>L</sub>*: distance of galaxy
- z: redshift  $\lambda_{here} = (1+z)\lambda_{star}$
- If H = const = H<sub>0</sub> ⇔ straight line in lower panel
- ▶ bending of this line tells us how H changed with time
   ⇒ how much matter is in universe
- best fit (given  $\Omega_{\text{total}} = 1 \Leftrightarrow k = 0$ )  $\Omega_{\text{matter}} = 0.3$
- What's the rest of 0.7?
- What kind of matter?

## What kind of matter is in the universe?

- known nuclear physics tells us about reaction rates, Γ, of creation and destruction of light elements d, <sup>3</sup>He, <sup>4</sup>He, <sup>7</sup>Li
- stops when  $\Gamma < H$  (~ 1 sec after big bang)



- measure abundancies of light elements in nebulae
- $\Omega_{\text{baryons}} = 0.04 \pm 0.02$
- Nature of  $\sim 25\%$  unknown  $\Rightarrow$  "dark matter"
- "dark matter" also seen from motion of stars in our galaxy!

#### Hendrik van Hees

The Early Universe: A Journey into the Past

Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

## What's the "rest"?



- $\Omega_{\text{tot}} \simeq 1$ ,  $\Omega_{\text{matter}} \simeq 0.3$  $\Rightarrow 70\%$  of energy content missing
- Iook again at Hubble expansion
- ► ⇒ Universe must expand accelerated today!
- only kind of energy, known so far Einstein's cosmological constant
- introduced 1918 to get static universe as solution of his equations
  - "It's my biggest blunder!"
- However  $\Omega_{\Lambda} \simeq 0.7$

## Conclusion: We know only 4% of the matter!



- best fit values from WMAP March 2006
- 4% baryonic matter (known)
- 22% dark matter, only guesses what it might be (Supersymmetry?)
- 74% dark energy: THE enigma of modern physics!

Hendrik van Hees

The Early Universe: A Journey into the Past

Gravity: Einstein's General Theory of Relativity Cosmology: History of the Universe What is the Universe made of?

### Summary

