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Schwinger-Keldysh Formalism
#2

• Initial statistical operator ρi at t = ti

• Time evolution of expectation values of observables:

〈O〉 = Tr[ρ(t)O(t)]

• Feynman rules

• Difference to vacuum: Contour-ordered Green’s functions
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• In equilibrium: ρ = exp(−βH)/Z with Z = Tr exp(−βH)

• Imaginary part of the time contour
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• Fields periodic (bosons) or anti-periodic (fermions)



The Φ-Functional
#3

• Introduce local and bilocal auxiliary sources

• Generating functional

Z[J, K] = N

∫

Dφ exp

[

iS[φ] + i {J1φ1}1 +

{

i

2
K12φ1φ2

}

12

]

• Generating functional for connected diagrams

Z[J, K] = exp(iW [J, K])

• The mean field and the connected Green’s function

ϕ1 =
δW

δJ1
, G12 = −

δ2W

δJ1δJ2
⇒

δW

δK12
=

1

2
[ϕ1ϕ2 + iG12]

• Legendre transformation for ϕ and G:

Γ[ϕ, G] = W [J, K] − {ϕ1J1}1 −
1

2
{(ϕ1ϕ2 + iG12)K12}12

• Exact saddle point expansion:

Γ[ϕ, G] =S[ϕ] +
i

2
Tr ln(−iG−1) +

i

2

{ �
−1
12 (G12 −

�
12)

}

12

+ Φ[ϕ, G] ⇐ all 2PI diagrams with at least 2 loops

�
12 =

(

−2 − m2 −
λ

2
ϕ2

)−1

δ(x1 − x2)



Equations of Motion
#4

• Physical solution defined by vanishing auxiliary sources:

δΓ

δϕ1
= −J1 − {K12ϕ2}2

!
= 0

δΓ

δG12
= −

i

2
K12

!
= 0

• Equation of motion for the mean field ϕ

−2ϕ − m2ϕ −
λ

3!
ϕ3 −

i

2
ϕ {G(x, x)}x +

δΦ

δϕ
= 0

• for the “full” propagator G ⇒ Dyson’s equation:

2
δΦ

δG12
= −i(

�
−1
12 − G12

−1) := −iΣ

• Closed set of equations of for ϕ and G



“Diagrammar”
#5

• φ4-theory
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(∂µφ)(∂µφ) −

m2
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φ2 −

λ

4!
φ4

• 2PI Generating Functional

iΦ = ++ + · · ·

1
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• Mean field equation of motion
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i(2 + m2)ϕ =
x

1
3!

• Self-energy

x2
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x2x1

1
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−iΣ12 =
x1 = x2
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Properties of the Φ-Functional
#6

Why using the Φ-functional?

• Series of diagrams for Φ truncated at a certain loop order

☞ Linearly realized Noether symmetries are respected

☞ Conserving Approximations (mod. anomalies)

• In equilibrium iΓ[ϕ, G] = lnZ(β) (thermodynamical poten-
tial)

• consistent treatment of Dynamical quantities (real time for-
malism) and thermodynamical bulk properties (imaginary
time formalism) like energy, pressure, entropy

• Real- and Imaginary-Time quantities “glued” together by
Analytic properties from (anti-)periodicity conditions of the
fields (KMS-condition)

• Self-consistent set of equations for self-energies and mean
fields



Problem of Renormalization
#7

Infinities and Renormalization

• UV-Divergences

☞ Need a renormalization technique for numerical solution of
the self-consistent equations

• In terms of perturbation theory: Resummation of all self-
energy insertions in propagators

☞ Self-consistent diagrams with explcit nested and overlapping
sub-divergences

☞ Additional nested and overlapping sub-divergences from self-
consistency

• Conjecture from Weinberg’s theorem, BPHZ-renormalization

☞ At finite temperatures:
Self-consistent scheme rendered finite with local counterterms
independent of temperature

• Analytic properties

☞ subtracted dispersion relations

• Φ-Functional technique

☞ Consistency of counterterms



Self-Consistent Tadpole I
#8

The tadpole approximation

Φ = −iΣ =

• Here: Only time-ordered propagator needed

• The renormalized tadpole d = 2ω = 2(2 − ε):

−iΣ = −
iλ

2

∫

ddp

(2π)d
µ2εiG(p) + CT

• Self-energy constant in p

☞ temperature dependent effective mass

• Dyson’s equation can be resummed:

iG(p) =
i

p2 − M2 + iη
+ 2πn(p0)δ(p

2 − M2)

with M2 = m2 + Σ, n(p0) =
1

exp(β|p0|) − 1

• Use standard formulae for dimensional regularized Feynman
integrals:

Σinf = −
λ

32π2
M2

[

1

ε
− γ + ln

(

4πµ2

M2

)]

(1)

• Does one need temperature dependent counter terms
(∝ λM2/ε)?



Self-Consistent Tadpole II
#9

Counterterms

• Solution: We do not only need an overall but
also a vertex counter-term for sub-divergence:

+ +
−iΣ =

−iδm2−iΣreg i δλ
λ Σreg

How to determine the vertex counterterm?

• From equations of motion

☞ consistency condition of “Bethe-Salpeter-type”:

+=

= + + · · ·+

iT
(c)
2 =

• Renormalize the “Dinosaur diagram”

☞ vertex counterterm

iΓ(4) =



The Finite Equation
#10

The counterterms

• Renormalization conditions (physical scheme)

☞ Γ
(4)
vac(0) = 0, Σvac(m

2) = 0

• Counterterms:

δm2 =
λ

32π2
m2

[

1

ε
− γ + 1 + ln

4πΛ2

m2

]

δλ = −
λ2

32π2

[

1

ε
− γ + 1 + ln

4πΛ2

m2

]

• Counterterms are independent of temperature and adjusted
in vacuum

Self-consistent equation (gap equation)

M2 = m2 +
λ

32π2
M2 ln

M2

m2
+

λ

2

∫

d4p

(2π)4
2πδ(p2 − M2)n(p0)



Numerical Results
#11
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Numerical solution of the self-consistent tadpole equation compared
to the perturbative result for m = 140MeV and λ = 50



Spontaneously Broken Symmetry
#12
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• Stable (tree-level) vacuum at φ = ϕ = 6µ2

λ . Particles have

m2 = +2µ2 > 0

• Have to take the Mean Field ϕ into account and solve the
coupled equations for both ϕ = const and Σ = const. The
renormalization procedure is the same as in the unbroken case.

• Parameters from linear the σ-model: µ = 400MeV, λ = 100
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The Sunset Diagram
#13

The vacuum part

1
2·4!

1
3!

iΦ = −iΣ =⇔

• Overall and sub-divergences to all orders perturbation theory

☞ Subtracted dispersion relations for vacuum divergences

++2 +2

⇒
⇒ ⇒

• Counterterms of tadpole-type → const. and the overall sub-
traction → O(p2) (mass- and wave function renormalization)

☞ Simple subtractions in dispersion relation



Algorithm
#14

Strategy for the vacuum

• Starting with perturbative propagators calculate imaginary
part of the retarded self-energy (finite!):

ImΣR =
Σ−+ − Σ+−

2i

• Real part from twice subtracted dispersion relation:

ΣR(s) =(s − m2
ren)2

∫

∞

0

dz

π

ImΣR(z)

(z − s + iεσ(p0))(z − m2
ren)2

+

+ Σ′

R(m2
ren)(s − m2

ren) + ΣR(m2
ren)

• Dyson’s equation for the retarded propagator

GR =
1

p2 − m2 − ΣR + iεσ(p0)

and plug it into the next calculation for Im ΣR.

• Iterate this procedure until the ΣR does not change anymore



The Sunset Diagram for T > 0
#15

Renormalization of vacuum sub-divergence

⇒ iΓ
(4)
vac =

Algorithm

• Calculate renormalized Γ
(4)
vac with already given self-consistent

vacuum propagator (blue)

• Renormalization condition: Γ
(4)
vac(s = 0) = 0.

• Calculate ImΣR with the full thermal propagator

• Subtract the vacuum part and 3× the “bad diagram”

• Dispersion relation without subtraction for the rest

☞ Only pure vacuum subtractions in this part

• Full retarded “bad diagram” with vacuum subtracted Γ(4)-
insertion

☞ finite

☞ Only vacuum sub-divergence subtracted

• Result: explicit overlapping divergences of the sunset diagram
are completely subtracted with pure vacuum counter terms



Results for the Vacuum Sunset Diagram
#16
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Perturbative Result for the Sunset Diagram at T > 0
#17
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Self-consistent Result for the Sunset Diagram at T > 0
#18
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The Analytic Green’s Function
#19

The imaginary part of the contour

• So far real-time formalism

• Entropy, pressure, mean energy,· · ·

• Analytic propagator

• Branch of analytic continuation of GMatsubara

GC(p0, ~p) =

∫

dz′

π

ρ(z′, ~p)

z′ − p0
with

∀z ∈ R : R 3 ρ(z, ~p) = −ρ(−z, ~p) = − ImGR(z, ~p)

• Causality structure of GR and GA

GC(p0 ± i0) = −GR/A(p) for p0 ∈ R

• Matsubara-propagator

GM (iωn, ~p) = GC(iωn, ~p) with ωn =
2πi

β
n = 2πinT, n ∈ Z



Matsubara Sums
#20

Summing over Matsubara frequencies

• F (z): analytic in an open strip around imaginary axis

1

β

∑

n∈Z

F (iωn) =
1

2πi

∫ i∞+ε

−i∞+ε

dx[F (x)+F (−x)]

[

1

2
+

1

exp(βx) − 1

]

• F(z): also analytic away from the real axis

Imx

Rex

1

β

∑

n∈Z

F (iωn) =
1

2πi

∫

∞

−∞

dx
1

2
[F (x − iεσ(x)) − F (x + iεσ(x))]+

+
1

2πi

∫

∞

−∞

dxn(x)[F (x − iεσ(x)) − F (x + iεσ(x))]



The Entropy
#21

Thermodynamical properties

• Expectation values from thermal quantum field theory:
Z(β, V ) = Tr exp(−βH)

⇒ ε =
1

V
〈H〉 = −

1

V
∂β lnZ,

1

V
d(β lnZ) = −εdβ

• Define thermodynamical quantities:
P =

ln Z

βV
, s = β(P + ε) ⇒ dP = sdT

• Solution of the real time Φ-derived self-consistent equations

lnZ = iΓ ⇒ P = iΓ ⇒ s = i∂T Γ

• Stationarity with respect to GR: Need to derive only with
respect to explicit temperature dependency

s = − 2

∫

p0>0

d4p

(2π)4
∂T n(p0)

{

Im ln[−G−1
R (p)] + Im(ΣRGR)

}

+

+ i

{

δΦ[ϕ, G]

δn

}
∣

∣

∣

∣

GR,ϕ fixed

∂T n

• Especially for 2-point Φ-functionals

s = − 2

∫

p0>0

d4p

(2π)4
∂T n(p0)

{

Im ln[−G−1
R (p)] + (ImΣR)(ReGR)

}



Result for Tadpole Resummation
#22
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Conclusion and outlook
#23

Conclusions

• Self-consistent Φ-derivable models can be renormalized and
solved numerically

• Applications for the consistent treatment of particles and res-
onances with finite mass widths possible

• Applicable as well for dynamics as for thermodynamical quan-
tities

• Consistent schemes for transport equations for such particles
and resonances

Outlook

• Problem with Goldstone’s theorem and phase transitions
(Linear Σ-model)

• Development of numerics for more complicated cases beyond
two-point level (ladder summations)

• Big fundamental problem:

• Most important physical theories involve gauge fields

☞ Standardmodel

☞ (Phasetransitions in QCD and electro-weak Theory)

☞ Effective meson theories (vector dominance and dileptons)

• Does there exist a gauge-invariant scheme?


