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Schwinger-Keldysh Formalism

e Initial statistical operator p, at t = t;

e Time evolution of expectation values of observables:
(0) = Tr[p(t)O(¢)]

e Feynman rules

e Difference to vacuum: Contour-ordered Green’s functions
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e In equilibrium: p = exp(—FH)/Z with Z = Trexp(—FH)

e Imaginary part of the time contour
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e Fields periodic (bosons) or anti-periodic (fermions)



The ®-Functional

e Introduce local and bilocal auxiliary sources

e Generating functional

Z[J, K] = N/quexp [iS[sb] +i{Jid1} + {%K12¢1¢2}1J

e Generating functional for connected diagrams
217, K] = exp(iW[J, K])

e The mean field and the connected Green’s function
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e Legendre transformation for ¢ and G:

Clp,G] = WIJ, K] ~ {pri}y = 5 {192 +Gr) Kz}

e Exact saddle point expansion:
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F[QO, G] :S[gp] + 5 Tr ln(—lG 1) + 5 {.@121 (Glg — .@12)}12
+ ®[p, G] < all 2PI diagrams with at least 2 loops



Equations of Motion

e Physical solution defined by vanishing auxiliary sources:

or |
0p1 = —J1 = {Ki202}, =0
or 1 !
— 1K, =0
0Gyy 27

e FEquation of motion for the mean field ¢
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e for the “full” propagator ¢ = Dyson’s equation:
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e C(losed set of equations of for ¢ and &



“Diagrammar”

o ¢*theory
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e 2PI Generating Functional

i = 9 + ®9 o + 9 P

1 1
2-3! 2-4!

0|

e Mean field equation of motion
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e Self-energy
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Properties of the ®-Functional

Why using the ®-functional?

Series of diagrams for ® truncated at a certain loop order
Linearly realized Noether symmetries are respected

Conserving Approximations (mod. anomalies)

In equilibrium il'[p, G] = In Z(B) (thermodynamical poten-
tial)

consistent treatment of Dynamical quantities (real time for-
malism) and thermodynamical bulk properties (imaginary
time formalism) like energy, pressure, entropy

Real- and Imaginary-Time quantities “glued” together by
Analytic properties from (anti-)periodicity conditions of the
fields (KMS-condition)

Self-consistent set of equations for self-energies and mean
fields



Problem of Renormalization

Infinities and Renormalization

UV-Divergences

Need a renormalization technique for numerical solution of
the self-consistent equations

In terms of perturbation theory: Resummation of all self-
energy insertions in propagators

Self-consistent diagrams with explcit nested and overlapping
sub-divergences

Additional nested and overlapping sub-divergences from self-
consistency

Conjecture from Weinberg’s theorem, BPHZ-renormalization

At finite temperatures:
Self-consistent scheme rendered finite with local counterterms
independent of temperature

Analytic properties

subtracted dispersion relations

®-Functional technique

Consistency of counterterms



Selt-Consistent Tadpole I

The tadpole approximation
b = Q —1X =
_.—
Here: Only time-ordered propagator needed
The renormalized tadpole d = 2w = 2(2 — ¢€):
i\ d9p

iy == Qe .
i > (27r)d’u iG(p) + CT

Self-energy constant in p
temperature dependent effective mass

Dyson’s equation can be resummed:
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with M? =m? + X, n(pg) =
P0) = P Blpol) 1

Use standard formulae for dimensional regularized Feynman
integrals:

A 1 47t pi?
Sinf = —o—M? | = — v +1 1
' 3272 L 7+m<1\42 )] (1)

Does one need temperature dependent counter terms
(o AM?/€)?




Self-Consistent Tadpole 11

Counterterms

Solution: We do not only need an overall but
also a  vertex counter-term  for  sub-divergence:
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1 oL t—i—+
ey Ty —idm?

How to determine the vertex counterterm?

From equations of motion

consistency condition of “Bethe-Salpeter-type”:

iT2(c) = = 9 + o
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Renormalize the “Dinosaur diagram”
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vertex counterterm



The Finite Equation

The counterterms

e Renormalization conditions (physical scheme)

O 1822(0) = 0, Syac(m?2) =0

e Counterterms:

A 1 4t A?
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e Counterterms are independent of temperature and adjusted
in vacuum

Self-consistent equation (gap equation)

M2 =m? + 276 (p* — M*)n(po)
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Numerical Results
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Numerical solution of the self-consistent tadpole equation compared
to the perturbative result for m = 140MeV and A = 50
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Spontaneously Broken Symmetry

1 oo Ay
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2= L(0,0) @O+~
Stable (tree-level) vacuum at ¢ = ¢ = %. Particles have

m? = 4212 > 0

Have to take the Mean Field ¢ into account and solve the
coupled equations for both ¢ = const and > = const. The
renormalization procedure is the same as in the unbroken case.

Parameters from linear the o-model: = 400MeV, A = 100
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The Sunset Diagram

The vacuum part

i®d— @ o) &S —1 = —0 o—
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e Overall and sub-divergences to all orders perturbation theory

[1 Subtracted dispersion relations for vacuum divergences

o o o o o o e o > o o

e Counterterms of tadpole-type — const. and the overall sub-
traction — O(p?) (mass- and wave function renormalization)

[1 Simple subtractions in dispersion relation



Algorithm

Strategy for the vacuum

Starting with perturbative propagators calculate imaginary
part of the retarded self-energy (finite!):
Yot — 3T
21

ImER =

Real part from twice subtracted dispersion relation:

Yr(s) =(s —mpy,)? /Ooo 4 I 2p(2) +

ren 2

T (2 — s +ieo(po))(z — miep)?

- E/R(?n?en)(s o m?en) -+ 2R(Tnfen)

Dyson’s equation for the retarded propagator

1

Gr —
B2 —m? — X +ieo(po)

and plug it into the next calculation for Im X z.

[terate this procedure until the > does not change anymore
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The Sunset Diagram for IT' > 0

Renormalization of vacuum sub-divergence
' |
' |
(4
l —=iri =X X

Algorithm

Calculate renormalized I\(,iz; with already given self-consistent

vacuum propagator (blue)

Renormalization condition: F\(,il(s =0)=0.
Calculate Im X g with the full thermal propagator
Subtract the vacuum part and 3x the “bad diagram”
Dispersion relation without subtraction for the rest

Only pure vacuum subtractions in this part

O

Full retarded “bad diagram” with vacuum subtracted I'(%)-

insertion
finite

Only vacuum sub-divergence subtracted

Result: explicit overlapping divergences of the sunset diagram
are completely subtracted with pure vacuum counter terms



1

0.8
0.6
04 p[GeV]

T .
Q0
o o
D1 o
- °_
b < 3
% sg
S o2
— S
@)
—
-
) - =
b) OM
= 3
+o
- L F
SO I
75 3 2
> °© >
~ © o
= A
S <A
= i S
O, ..
d o 2
>



Perturbative Result for the Sunset Diagram at T’ > (
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Self-consistent Result for the Sunset Diagram at T > 0
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The Analytic Green’s Function

The imaginary part of the contour

So far real-time formalism

Entropy, pressure, mean energy,: - -

Analytic propagator

Branch of analytic continuation of G'zfatsubara

c(po,p) = /de 20

T 2 —po
VzeR:R 3 p(z,p) = —p(—2,p) = —ImGg(z,D)

Causality structure of Gr and G4
G (po £10) = —GRrya(p) for po € R

Matsubara-propagator

2
G v (iwn, p) = Ge(iwn, p) with w,, = %n = 2minT, n € Z



Matsubara Sums

Summing over Matsubara frequencies

e F(z): analytic in an open strip around imaginary axis

1 1 [loote 1 1
— Y Fliw,) = — dz|F F(— —
P g [ A5
e F(z): also analytic away from the real axis
Imz
A
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23 Flion) =5 [ da3[F(e — ieo(@)) - Flo + ico(a))}+
n R dan(z)[F(z —ieo(x)) — F(x + ieo(z))]

21 J_ o




The Entropy

Thermodynamical properties

e Expectation values from thermal quantum field theory:
Z(8,V) = Tr exp(—FH)

1 1 1
=—(H)=——03In2, — InzZ) =—
= &= (H) OslnZ, ;d(fInZ) = —edf
e Define thermod%ngmical quantities:
P = A s=p(P+¢)=dP =sdT

e Solution of the real time ®-derived self-consistent equations
InZ =1I"'= P=1l' = s = 107"

e Stationarity with respect to Gr: Need to derive only with
respect to explicit temperature dependency

= /po>o (SWZ)DAL Orn(po) {Im ln[—Gﬁ,l(p)] + Im(zRGR)} +

“[%)

e Especially for 2-point ®-functionals

8Tn
GRr,p fixed

T / >0 (gi];m(po){Imln[—GR1<p>]+<ImER><ReGR>}



Result for Tadpole Resummation
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The entropy density for the free gas and for the selfconsistent
tadpole resummation. The parameters were m = 138MeV and

A = 50.
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Conclusion and outlook

Conclusions

Self-consistent ®-derivable models can be renormalized and
solved numerically

Applications for the consistent treatment of particles and res-
onances with finite mass widths possible

Applicable as well for dynamics as for thermodynamical quan-
tities

Consistent schemes for transport equations for such particles
and resonances

Outlook

Problem with Goldstone’s theorem and phase transitions
(Linear Y-model)

Development of numerics for more complicated cases beyond
two-point level (ladder summations)

Big fundamental problem:

Most important physical theories involve gauge fields
Standardmodel

(Phasetransitions in QCD and electro-weak Theory)
Effective meson theories (vector dominance and dileptons)

Does there exist a gauge-invariant scheme?



