Reonances in the medium

Hendrik van Hees

Goethe-Universität Frankfurt and FIAS

$$
\text { July 16, } 2013
$$

based on
HvH, PRD 65, 025010 (2001); PhD thesis 2000
Ivanov, Knoll, Voskresensky, NPA 657, 413 (1999); NPA 672, 313 (2000) Knoll, Ivanov, Voskresensky, Ann. Phys. 293, 126 (2001)

FIAS Frankfurt Institute for Advanced Studies

Outline

(1) Warm-up: Resonance in quantum mechanics
(2) Φ-derivable approximations
(3) Transport equations
(4) Summary

What's a resonance?

- quantum mechanics 101: Particle in a potential pot
- wave packet with energy around transmission-resonance peak
- nearly no reflection

What's a resonance?

- quantum mechanics 101: Particle in a potential pot
- wave packet with energy around resonance peak
- nearly no reflection; stays a while in pot

$$
\mathrm{t}=0.00 \mathrm{a} \cdot \mathrm{u} .
$$

Schwinger-Keldysh real-time formalism

- calculate expectation values of observables
- statistical operator defines state at initial time, $t_{i} \Rightarrow$ "in-in formalism"
- time evolution

$$
\left.\begin{array}{rl}
\langle O\rangle(t)= & \operatorname{Tr}[\hat{\rho}\left(t_{i}\right) \underbrace{\mathcal{T}_{a}\left\{\exp \left[+\mathrm{i} \int_{t_{i}}^{t} \mathrm{~d} t^{\prime} \mathbf{H}_{I}\left(t^{\prime}\right)\right]\right\}}_{\text {anti time-orderd }} \\
& \underbrace{\mathbf{O}_{I}(t)}_{\text {time-ordered }} \\
\underbrace{}_{c}\left\{\exp \left[-\mathrm{i} \int_{t_{i}}^{t} \mathrm{~d} t^{\prime} \mathbf{H}_{I}\left(t^{\prime}\right)\right]\right\}
\end{array}\right] .
$$

- Schwinger-Keldysh real-time contour:

Baym's Φ functional

- write generating functional for Green's functions as path integral
- introduce local and bilocal sources

$$
Z[J, K]=N \int \mathrm{D} \phi \exp \left[\mathrm{i} S[\phi]+\mathrm{i}\left\{J_{1} \phi_{1}\right\}_{1}+\left\{\frac{\mathrm{i}}{2} K_{12} \phi_{1} \phi_{2}\right\}_{12}\right]
$$

- generating functional for connected Green's functions

$$
W[J, K]=-\mathrm{i} \ln Z[J, K]
$$

- functional Legendre transform

$$
\boldsymbol{\Gamma}[\varphi, G]=W[J, K]-\left\{\varphi_{1} J_{1}\right\}_{1}-\frac{1}{2}\left\{\left(\varphi_{1} \varphi_{2}+\mathrm{i} G_{12}\right) K_{12}\right\}_{12}
$$

- loop expansion

$$
\begin{aligned}
\boldsymbol{\Gamma}[\varphi, G]= & S_{0}[\varphi]+\frac{\mathrm{i}}{2} \operatorname{Tr} \ln \left(-\mathrm{i} G^{-1}\right)+\frac{\mathrm{i}}{2}\left\{D_{12}^{-1}\left(G_{12}-D_{12}\right)\right\}_{12} \\
& +\Phi[\varphi, G] \Leftarrow \text { all closed 2PI interaction diagrams } \\
D_{12}^{-1}= & -\square-m^{2}
\end{aligned}
$$

Baym's Φ functional

- equations of motion

$$
\frac{\delta \boldsymbol{\Gamma}}{\delta \varphi_{1}}=-J_{1}-\left\{K_{12} \varphi_{2}\right\}_{2} \stackrel{!}{=} 0, \quad \frac{\delta \mathbb{\Pi}}{\delta G_{12}}=-\frac{\mathbf{i}}{2} K_{12} \stackrel{!}{=} 0
$$

- mean field

$$
-\square \varphi-m^{2} \varphi:=j=-\frac{\delta \Phi}{\delta \varphi}
$$

- "full" propagator $G \Rightarrow$ Dyson equation:

$$
-\mathrm{i}\left(D_{12}^{-1}-G_{12}^{-1}\right):=-\mathrm{i} \Sigma=2 \frac{\delta \Phi}{\delta G_{21}}
$$

- retarded Green's function for homogeneous system in momentum space

$$
G_{\mathrm{ret}}(p)=\frac{1}{p^{2}-m^{2}-\Sigma_{\mathrm{ret}}(p)}
$$

- spectral function

$$
A(p)=-2 \operatorname{Im} G_{\text {ret }}(p)=-2 \frac{\operatorname{Im} \Sigma_{\text {ret }}(p)}{\left[p^{2}-m^{2}-\operatorname{Re} \Sigma_{\mathrm{ret}}(p)\right]^{2}+\left[\operatorname{Im} \Sigma_{\mathrm{ret}}(p)\right]^{2}}
$$

Properties of Φ-derivable approximations

- truncations of Φ functional $\Rightarrow \Phi$-derivable approximations

$$
\begin{aligned}
& -x=+x_{x}^{x}+\theta^{x}+\cdots \\
& -A^{0}+O^{\star}+
\end{aligned}
$$

- conservation laws for expectation values of conserved quantities
- in thermal equilibrium $\mathrm{i} \Gamma=\ln Z$
- thermodynamic consistency: bulk properties like pressure, energy, entropy in accordance with dynamics
- same result from partition sum as from Green's functions!
- " Φ derivability" sufficient and necessary scheme!

Transport equations

- start from Φ-derivable Dyson equation for Green's function

$$
\begin{aligned}
\left(\square_{1}-\square_{2}\right) D^{12}\left(x_{1}, x_{2}\right) & =\int_{\mathcal{C}} \mathrm{d} x_{3}\left[\Sigma\left(x_{1}^{1}, x_{3}\right) D\left(x_{3}, x_{2}^{2}\right)-D\left(x_{1}^{1}, x_{3}\right) \Sigma\left(x_{3}, x_{2}^{2}\right)\right] \\
& =\operatorname{Coll}\left(x_{1}^{1}, x_{2}^{2}\right)
\end{aligned}
$$

- assume smallness of space-time gradients in "collective macroscopic" variable $R=\left(x_{1}+x_{2}\right) / 2$
- Wigner transform of any two-point function, F

$$
F\left(x_{1}, x_{2}\right)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \exp \left[-\mathrm{i} p \cdot\left(x_{1}-x_{2}\right)\right] \tilde{F}\left(\frac{x_{1}+x_{2}}{2}, p\right) .
$$

- assume space-time gradients wrt. R to be "small" \Rightarrow gradient expansion \Rightarrow "coarse graining"

$$
2 p \cdot \frac{\partial}{\partial R} \mathrm{i} D^{12}(R, p)=\operatorname{Coll}^{12}(R, p)
$$

Gradient expansion of collision term

$$
2 p \cdot \frac{\partial}{\partial R} \mathrm{i} D^{12}(R, p)=\operatorname{Coll}^{12}(R, p)
$$

- if Φ beyond pure two-point level \Rightarrow memory + spatial correlations
- simplify further by introducing $\mathrm{Colll}_{\mathrm{loc}}^{12}$: diagrams evaluated at reference point R
- usual momentum Feynman rules with $D_{12}(R, p)$
- to have exact conservation laws add $1^{\text {st }}$-order ∂_{R} correction

$$
D\left(\frac{x_{i}+x_{j}}{2}, p\right) \simeq D(R, p)+\frac{1}{2}\left[\left(x_{i}+x_{j}\right)-R\right] \cdot \frac{\partial}{\partial R} D(R, p)
$$

- for local Green's functions and self-energies

$$
\mathrm{i} D^{12}(R, p)=f(R, p) A(R, p), \quad A(R, p)=-2 \operatorname{Im} D_{\text {ret }}(R, p)
$$

- as in equilibrium with off-equilibrium phase-space distrib. $f(R, p)$
- usual local Dyson equation for retarded Green's function

$$
D_{\mathrm{ret}}(R, p)=\frac{1}{p^{2}-m^{2}-\Sigma_{\mathrm{ret}}(R, p)}
$$

Diagrammar for gradient expansion

$$
\begin{aligned}
& \underset{i}{ }=\frac{1}{2}\left(\partial_{i}+\partial_{j}\right) G(i, j) \rightarrow \partial_{X} G(X, p), \\
& i \leftarrow- \\
& i
\end{aligned}
$$

- arbitrary two-point function $M\left(x_{1}, x_{2}\right)$ with internal points x_{3}, \ldots

$$
\begin{aligned}
\diamond\{M(1,2)\}=\diamond \text { M } \equiv \Delta M=\frac{\delta M\left(x_{1}, x_{2}\right)}{\delta i G\left(x_{4}, x_{3}\right)}
\end{aligned}
$$

- collision term \Rightarrow convolusion integral

$$
\begin{aligned}
\diamond\{C(X, p)\} & =\diamond \text { A } \\
& =\{A(X, p), B(X, p)\}+A(X, p) \diamond\{B(X, p)\}+\diamond\{A(X, p)\} B(X, p)
\end{aligned}
$$

Diagrammar for gradient expansion

- transport equation in Kadanoff-Baym form

$$
p \cdot \frac{\partial}{\partial R} \mathrm{i} D^{12}(R, p)+\left\{\operatorname{Re} \Sigma_{\mathrm{ret}}, \mathrm{i} D^{12}\right\}_{\mathrm{pb}}+\left\{\mathrm{i} \Sigma^{12}, \operatorname{Re} D_{\mathrm{ret}}\right\}_{\mathrm{pb}}=C_{\mathrm{loc}}^{12}+C_{\mathrm{mem}}^{12}
$$

- then Noether currents exactly conserved also after gradient expansion
- problem: $2^{\text {nd }}$ Poisson bracket ("back-flow term") cannot be represented in test-particle Monte Carlo
- Botermans-Malfliet ansatz

$$
\mathrm{i} \Sigma^{12}(R, p)=-f(R, p) \Gamma(R, p), \quad \Gamma(R, p)=-2 \operatorname{Im} \Sigma_{\text {ret }}
$$

- valid up to $1^{\text {st }}$-order gradients
- Caveat: in conservation laws from BM ansatz

$$
A(R, p) \rightarrow \mathcal{B}(R, p):=\frac{\partial}{\partial p_{0}}\left[2 \operatorname{Im} \ln \left(D_{\text {ret }}^{-1}\right)-\operatorname{Re} G_{\mathrm{ret}} \Gamma\right]
$$

- for narrow resonances (BW approximation) $\mathcal{B} \simeq \frac{1}{2} A^{2} \Gamma$
- for test-particle off-shell method \Rightarrow see W. Cassing's talk
- Caveat: possible trouble with tachyons
- transition to semi-class. particle picture $\leftrightarrow \mathrm{WKB} /$ eikonal approximation
- particle velocity \Rightarrow group velocity superluminal around resonance
- no trouble in wave picture (see Sommerfeld+Brillouin 1913!)

Application: Lifetime of an "off-shell resonance"

- in transport codes: resonances propagated as particles
- subject to decay with probability $\exp (-\Gamma \Delta t)$
- but $\Gamma=\Gamma(M)$ (vacuum) or even $\Gamma=\Gamma(M, \vec{p})$ (in med)
- in virial expansion (formally expansion of D around $D_{\text {vac }} \Rightarrow$ "thermodynamics" in terms of S matrix [Dashen, Ma, Berstein 1969]
- correct lifetime from KB equations [Leupold, NPA $995,377(2001)]$

$$
\tau=2 p_{0} \mathcal{B}_{\mathrm{vac}}=\frac{\partial \delta}{\partial p_{0}}
$$

- also from resonant wave propagation [Danielewicr, Pratt, PRC 53,24 (1996)] \Rightarrow "delay time": $\partial \delta / \partial E$

Application: Lifetime of an "off-shell resonance"

- example: Δ (1232) (from [Leupold, NPA $695,377(2001))$

Summary

- propagation of instable resonances great challenge for transport
- start from self-consistent Φ derivable approximations
- approximate Kadanoff-Baym equations for Wigner transformed single-particle GF
- gradient expansion \Rightarrow coarse-grained dynamics
\Rightarrow semi-classical transport equations
\Rightarrow positive phase-space distributions
- Kadanoff-Baym form: exact conservation laws for Noether currents for complete $1^{\text {stt-order gradient expansion }}$
- Botermans-Malfliet form: feasibility as test-particle MC
- finite width \Rightarrow "off-shell potential"
- Caveat: danger of superluminal particles; pragmatically solved in GiBUU, pHSD (...?)
- has intuitive physical interpretation (at least in simplifying limits)

