Medium Modifications of Hadrons and Electromagnetic Probes

Hendrik van Hees

Texas A&M University

March 17, 2006

Hendrik van Hees Medium Modifications of Hadrons and Electromagnetic Prob

Outline

QCD and Chiral Symmetry

Electromagnetic Probes

Challenges for experiment (and theory)

QCD and ("accidental") Symmetries

Theory for strong interactions: QCD

$$\mathscr{L}_{\mathsf{QCD}} = -\frac{1}{4} F^{\mu\nu}_a F^a_{\mu\nu} + \bar{\psi}(\mathrm{i}\not\!\!D - \hat{M})\psi$$

Particle content:

- ▶ ψ : Quarks, including flavor- and color degrees of freedom, $\hat{M} = \text{diag}(m_u, m_d, m_s, ...) = \text{current quark masses}$
- A^a_{μ} : gluons, gauge bosons of SU(3)_{color}

QCD and ("accidental") Symmetries

Theory for strong interactions: QCD

$$\mathscr{L}_{\mathsf{QCD}} = -\frac{1}{4} F^{\mu\nu}_a F^a_{\mu\nu} + \bar{\psi}(\mathrm{i}\not\!\!D - \hat{M})\psi$$

Particle content:

- ψ : Quarks, including flavor- and color degrees of freedom, $\hat{M} = \text{diag}(m_u, m_d, m_s, \ldots) = \text{current quark masses}$
- A^a_{μ} : gluons, gauge bosons of SU(3)_{color}

Symmetries

- fundamental building block: local SU(3)_{color} symmetry
- in light-quark sector: approximate chiral symmetry
- chiral symmetry most important connection between QCD and effective hadronic models

Phenomenology from Chiral Symmetry

- In vacuum: Spontaneous breaking of chiral symmetry
- ► ⇒ mass splitting of chiral partners

Phenomenology from Chiral Symmetry

- In vacuum: Spontaneous breaking of chiral symmetry
- ► ⇒ mass splitting of chiral partners

▶ at high temperature/density: restoration of chiral symmetry ▶ Lattice QCD: $T_c^{\chi} \simeq T_c^{\text{deconf}}$

Finite Temperature/Density: Idealized Theory Picture

▶ partition sum: $Z(V, T, \mu_q, \Phi) = \text{Tr}\{\exp[-(\mathbf{H}[\Phi] - \mu_q \mathbf{N})/T]\}$

Finite Temperature/Density: Idealized Theory Picture

▶ partition sum: $Z(V, T, \mu_q, \Phi) = \text{Tr}\{\exp[-(\mathbf{H}[\Phi] - \mu_q \mathbf{N})/T]\}$

Hendrik van Hees Medium Modifications of Hadrons and Electromagnetic Prob

Why Electromagnetic Probes?

- γ, ℓ[±]: no strong interactions
- reflect whole "history" of collision
- chance to see chiral symm. rest. directly?

Why Electromagnetic Probes?

- γ, ℓ[±]: no strong interactions
- reflect whole "history" of collision
- chance to see chiral symm. rest. directly?

Vector Mesons and electromagnetic Probes

► photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f})$

Vector Mesons and electromagnetic Probes

- ► photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f})$ $\Pi_{\mu\nu}^{<}(q) = \int d^{4}x \exp(iq \cdot x) \langle J_{\mu}(0) J_{\nu}(x) \rangle_{T} = -2f_{B}(q_{0}) \operatorname{Im} \Pi_{\mu\nu}^{(\text{ret})}(q)$ $q_{0} \frac{dN_{\gamma}}{d^{4}xd^{3}q^{i}} = \frac{\alpha_{\text{em}}}{2\pi^{2}} g^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}^{(\text{ret})}(q) \Big|_{q_{0} = |\vec{q}|} f_{B}(q_{0})$ $\frac{dN_{e^{+}e^{-}}}{d^{4}xd^{4}k} = -g^{\mu\nu} \frac{\alpha^{2}}{3q^{2}\pi^{3}} \operatorname{Im} \Pi_{\mu\nu}^{(\text{ret})}(q) \Big|_{q^{2} = M_{e^{+}e^{-}}^{2}} f_{B}(q_{0})$
 - to lowest order in α : $e^2 \Pi_{\mu\nu} \simeq \Sigma^{(\gamma)}_{\mu\nu}$
 - derivable from partition sum $Z(V, T, \mu, \Phi)$!

Vector Mesons and chiral symmetry

► vector and axial-vector mesons ↔ correlators of the respective currents

$$\Pi^{\mu\nu}_{V/A}(p) := \int \mathrm{d}^4x \exp(\mathrm{i}px) \left\langle J^{\nu}_{V/A}(0) J^{\mu}_{V/A}(x) \right\rangle_{\mathsf{ret}}$$

Vector Mesons and chiral symmetry

► vector and axial-vector mesons ↔ correlators of the respective currents

$$\Pi^{\mu\nu}_{V/A}(p) := \int \mathrm{d}^4x \exp(\mathrm{i} p x) \left\langle J^{\nu}_{V/A}(0) J^{\mu}_{V/A}(x) \right\rangle_{\mathrm{ret}}$$

► Ward-Takahashi Identities from chiral symmetry ⇒ Weinberg-sum rules

$$f_{\pi}^{2} = -\int_{0}^{\infty} \frac{\mathrm{d}p_{0}^{2}}{\pi p_{0}^{2}} [\operatorname{Im} \Pi_{V}(p_{0}, 0) - \operatorname{Im} \Pi_{A}(p_{0}, 0)] -\frac{\pi}{2} \alpha_{s} \langle \mathscr{O}_{\chi \mathsf{SB}} \rangle = -\int_{0}^{\infty} \frac{\mathrm{d}p_{0}^{2}}{\pi} [\operatorname{Im} \Pi_{V}(p_{0}, 0) - \operatorname{Im} \Pi_{A}(p_{0}, 0)]$$

spectral functions of vector (e.g. ρ) and axial vector (e.g. a₁) directly related to order parameters of chiral symmetry!

Vector Mesons and chiral symmetry

Vector Mesons and chiral symmetry

Models

 different models with chiral symmetry: equivalent only on shell ("low-energy theorems")

- different models with chiral symmetry: equivalent only on shell ("low-energy theorems")
- model-independent conclusions only in low-temperature/density limit (chiral perturbation theory) or from lattice-QCD calculations

- different models with chiral symmetry: equivalent only on shell ("low-energy theorems")
- model-independent conclusions only in low-temperature/density limit (chiral perturbation theory) or from lattice-QCD calculations
- use phenomenological hadronic many-body theory (HMBT) to assess medium modifications of vector mesons

- Phenomenological HMBT [Chanfray et al, Herrmann et al, Rapp et al, ...] for vector mesons
- $\pi\pi$ interactions and baryonic excitations

- Phenomenological HMBT [Chanfray et al, Herrmann et al, Rapp et al, ...] for vector mesons
- $\pi\pi$ interactions and baryonic excitations

- ► Baryon (resonances) important, even at RHIC with low net baryon density n_B-n_{B̄}
- ▶ reason: $n_B + n_{\bar{B}}$ relevant (CP inv. of strong interactions)

The meson sector (vacuum)

most important for ρ-meson: pions

Hendrik van Hees

Medium Modifications of Hadrons and Electromagnetic Prob

The meson sector (matter)

- ▶ Pions dressed with N-hole-, Δ -hole bubbles
- Ward-Takahashi vertex corrections mandatory!

The meson sector (contributions from higher resonances)

Hendrik van Hees Medium Modifications of Hadrons and Electromagnetic Prob

The baryon sector (vacuum)

- P = 1-baryons: p-wave coupling to ρ: N(939), Δ(1232), N(1720), Δ(1905)
- P = −1-baryons: s-wave coupling to ρ: N(1520), Δ(1620), Δ(1700)

Photoabsorption on nucleons and nuclei

Photoabsorption on nucleons and nuclei

Dilepton rates: Hadron gas \leftrightarrow QGP

- in-medium hadron gas matches with QGP
- similar results also for γ rates
- "quark-hadron duality"?
- does it work with chiral model?
- hidden local symm.+baryons? [Harada, Yamawaki et al.]

Dilepton rates at SpS

New NA60 Dimuon Data

 intermediate mass range: Mixing of Π_V with Π_A (Dey, Eletsky, loffe '90)

$$\Pi_V^{(T)} = (1 - \boldsymbol{\epsilon}) \Pi_V + \boldsymbol{\epsilon} \Pi_A,$$

$$\epsilon = \frac{1}{2} \frac{\mathcal{T}_{\pi}(T, \mu_{\pi})}{\mathcal{T}_{\pi}(T_c, 0)} \propto \mathbf{\mathcal{P}}$$

- ► Fireball model ⇒ time evolution
- absolute normalization!
- good overall agreement with data
- sensitive to ω and ϕ !
- ω : similar model as for ρ
- ▶ φ: less well known; width assumed ≈ 80 MeV

New NA60 Dimuon Data

- 2π contributions+ ρB interactions from Rapp+Wambach '99
- intermediate mass range: Mixing of Π_V with Π_A

New NA60 Dimuon Data

- Chiral reduction formalism (Steele, Yamagishi, Zahed '96)
- based on chiral symmetry and Veltman-Bell master equations
- ▶ virial expansion \Leftrightarrow medium modifications from vacuum correlators (restricted to low π/B densities)

New NA60 Dimuon Data

- underestimates medium effects on the ρ (due to low-density approximation? No broadening!)
- intermediate masses: mixing less pronounced
- indication of chiral restoration?

New NA60 Dimuon Data

• underestimates medium effects on the ρ

(due to low-density approximation? No broadening!)

- intermediate masses: Less effect of mixing
- indication of chiral restoration?

New NA60 Dimuon Data (semicentral)

Challenges for Experiment

- Direct signature for chiral restoration: spectra for ρ and a₁ mesons degenerate
- $\pi^{\pm}\gamma$ invariant mass spectrum $\leftrightarrow a_1$ spectral function

Х	$\Gamma_{X \to \pi \gamma [MeV]}$
a_1	0.64
ρ	0.07
ω	only $\pi^{0}\gamma!$
a_2	0.3
$\pi(1300)$???

Challenges for Experiment

- Direct signature for chiral restoration: spectra for ρ and a₁ mesons degenerate
- $\pi^{\pm}\gamma$ invariant mass spectrum $\leftrightarrow a_1$ spectral function

ω -spectral function from CBELSA/TAPS

Challenges for Experiment

• $\pi\pi \to
ho \to \pi\pi\gamma$ not enough to explain enhancement

- ▶ New development (Liu/Rapp work in progress): $\pi K \rightarrow K^* \rightarrow \pi K \gamma$
- Consistency with dileptons

Challenges for Theory

Need a fully chiral model

- How to treat (axial-) vector mesons (gauge model?)
- Approximation scheme for both dynamical properties (spectral functions) and thermodynamic bulk properties (phase diagram)?

Conclusions

- ► chiral symmetry: important feature to connect QCD↔ hadronic effective models
- important property of (s)QGP: How is chiral symmetry restored?
- electromagnetic probes may provide most direct insight
 - invariant-mass spectra for chiral partners: here ρ and a_1
 - ▶ low-energy photons ↔ dileptons (puzzle?)
- a lot to do also for theory
 - consistent chiral scheme for hadrons
 - self-consistent treatment of (axial-) vector particles
 - equation of state including in-medium modifications vs. statistical models with "free hadron properties"