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The Model

| The p-mesons I

» Renormalizable model for massive p-mesons = Higgs-Kibble-formalism

for Gauge theories

» Start with a SU(2) duplett with gauged symmetry group

1 1
4 =3 Tr(F ) + §(DHCI>)TD“<I> —V(®)

. . 2
» Mexican hat potential V(@) = —£-0T® + 2(0TD)?

» Physical gauge (around the stable vacuum):
» p-fields become massive m? = g?u®/(4))
» Three ®-degrees of freedom become p degrees of freedom

» One P-degree of freedom gives a massive “Higgs-particle”



The Model

| The Pions I

» Introduce Pions as adjoint representation, i.e., SO(3)-triplett

1 A A
Sy ==(D,7) - (D'7F) — Z2(7)? - 27200
2 8 4
» Consistency condition:
2m?
m721. = —2° )\3
g

| Unitary Gauge - Physical Vertices I I

rm< % 7 p-interactions
Z”Z % pp-interactions

7 self interactions



The Model

| Unitary Gauge - Physical Vertices 11 I

g LT éé% p-Higgs-interactions

° ° Higgs-Higgs-interactions

< \/ m-Higgs interactions

| Remarks about Quantization I

v v v v v.Y

Unitary gauge contains only physical dof. = manifestly unitary
To get renormalizable gauge = Introducing R¢-gauges ('t Hooft)
R¢-gauge: manifestly renormalizble

R¢-gauge: Faddeev-Popov-ghosts

BRST-invariance = S-Matrix gauge invariant

R¢-gauge has unitary gauge as limit = Renormalized theory also
unitary



The Model

| The Photon I

» Extending the gauge group to U(1) x SU(2)

» U(1) unbroken = One of the four gauge bosons remains massless =
photon

» Equations of Motion = Pions couple to photons only through p =
Vector-Meson-Dominance

| The Form Factor I

» Electromagnetic Form Factor of the Pion:

m e
Tt e
F(k*) =
T €
at e

» Feynman rules: I,y = i5a3Mp26/g =

"~ [s — m2 — RelL,(s)]2 + [ImIL,(s)]?

[F(s)|*



Fit of the parameters

| Form factor and Phase Shift I

» Using dimensional regularization and renormalization of the

one-loop-self-energy diagrams
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Data: Amendolia et al. Phys. Lett. 138B (1984) 454
Barkov et al. Nucl. Phys. B256 (1985) 365



Fit of the parameters

| Total 777~ elastic cross-section I

» Four m-vertex

A(S,t,U) ab5cd +
Fade(p17 oo 7p4) - + (t, S, U)5a65bd +
+ (U ) ad5bc

» With the invariants s = (p; + ps)?, t = (p1 — p3)? and u = (p; — ps)?
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» Feynman rules = invariant transition amplitude:
Myi(s,t) = A(s, t,u) + A(t, 8, u) [u=am2 —s—t

» Total cross section:

. ! /0 [Myi(s,t)|?
Otot — i\S,
8T 64m s(s — Amy) 4m? —s !




Fit of the parameters

» With the parameters from the fitting to phase-shift and form-factor:

Otot
[mbarn] [

100
80
60

40

20

03 04 05 06 07 08 09 1
V/5(GeV]
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» Data from: Forgatt, Petersen, Nucl. Phys. B129 (1977) 89
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Selfconsistent approximations

| The Functional I

» Introduce a bilocal source term in addition to the local source term into
the Z-functional:
i

Z|J, K] = N/ngexp [iS[gb] +i(J1d1), + 5

<K12¢1¢2>12] W= iz

» S is the classical action of the field theory along the time axis (vacuum)
or the Schwinger-Keldysh contour (thermal FT)

Im ¢

A

H
t; ‘ Ly
e ‘ 3 Re t
v A
Y A
C=x_+ K +.H
t; —if3

» Functional Legendre transformation wrt. both J and K:

Cle, Gl = WL K] = (1), = 5 (7100 +iG1)Kashys

. SWI[J, K

with 1:%and
G, = SCWILE] . (W] K] 1
S VIP Y 0K, 27177

» Define ® =1I'5 to be then 2PI vacuum diagrams with at least 1 loop:

Ll G] = Slel + 5 TrIn(DG™) + 5 (25! (G2 — 1)), + @, €]



Selfconsistent approximations

| Diagramatics I

» Equations of motion: J =K =0

6T, G] ) 6S; i /095 6®[p, G
= .y Ly _
50 0 < ( m )90 + 50 + 5 5 G1a Y + 5 0
Ty, G , o _ 0(i®|p, G

» Simple example: ¢*-theory:

1 _1 1
8 2-3! 241
with @ = ¢(x) =iG(z,y)
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—ij(z) = + + 4.
- T
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Selfconsistent approximations

| Generating functional I

» &[G, D]: sum over all 2P1 closed diagrams with at least two loops

» Variation with respect to Green’s functions = self energies fulfilling

Dyson’s equations

01d , 01D ,
o0~ b= 5G T =
D — D() —+ D()HPD G - Go + Gosz

» Sum up to a certain loop order = Selfconsistent effective approximation
» Respects all conservation laws basing on global symmetries

» In thermal field theory: Thermodynamically consistent approximation



Renormalization

| Renormalizing the selfconsistent approximation I

» Can be seen as resummation of all self energy insertions = Infinities to

all orders

» Renormalizable theory = finite by renormalizing parameters already

present in Lagrangian

» Physical renormalization conditions
Yr(m2) = 053, (m2) =0, 11,(0) = 95I1,(0) = 0

» Analytical properties of Green’s functions

G(s) = = /OOO dm?A(m?, s)A(m?) with A(s) = —ImG(s)

0

» A(m?,s): Feynman-propagator = integral kernels = can be

renormalized using standard techniques

» self consistent finite set of coupled integral equations solvable

numerically by iteration

» Tadpole in vacuum absorbed into mass renormalization
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Finite Temperature

| Quantum Field Theory at finite Temperature I

» Using the modified Schwinger Keldysh contour for equilibrium
Im ¢

A

e - Re t

| /A
C=H_+H A M

t — i3

» Timeordering in vacuum — contour ordering

» Path integral formalism: Generating functional Z factorizes in real time

and imaginary time part.
» Calculate (O) = Tr[exp(—8H)O)]
» Wick’s theorem = Path ordered Green’s functions — Matrix Formalism

» Trace = (Anti-)Periodicity of fields — KMS condition



Finite Temperature

| Analytic Properties of Green’s Functions I

» The 2-point Green’s functions can be expressed in terms of the spectral

function:

e Oodk?o?ikioA(po,)
G )= [ R an) A ),

G == [T e A0

T pi—kE—i

~(p) = 2[B(po) + n(po)]Alpo, §) = 2[1 + f(lo)]A(p),
iG™ " (p) = 2[0(=po) + n(po)] A(po, 7) = 2 (lo) A(p).
with A(p) = —Im Gr(p) = sign poA(p)
1
and f(z) = exp(Br) — 1 n(z) = f(|z[)

» Feynman rules for imaginary part:

Gt — G+
ImGgr = 1
mGy = S (1
» Self energies and Dyson equation
1 ) YL
R(p) p2 - m2 _ ER7 mapr 2

» Causality = Kramers-Kronig-Relations (Dispersion relations):

. e dZ/ Imf f ZO k
f(z)_/_oow(z’—z V(2" — zp)" Z (2= 20)"

» Crucial: Subtractions ONLY in vacuum parts of the self energies!




Il and p at finite Tempererature

| The selfconsistent equations I

» Breaking of Lorentz invariance due to temperature:

I, = -lIr0,, — 11,0/, with:
PuPv
@ v = Guv — )
K K p2
0 ifpu=0o0rv=20
_511 + p;# for M,V < {17 273} ’

L T
oL, =e,, -0l

T _
SHES

» Dyson equation for transverse gauge (Landau gauge):
L T
O, B 0.,
pom? =T, p?—m? =T

po— _
G, =

» Calculate iteratively: Imaginary part of self energies

2 m2

I I, (p) = — 2 [ W?; P £10) — £l + po)] An (1 + ) A-(1)

2 ‘Q—Q 7\ 2
ImHT L(p) =— g /dﬂ%[]c(lo) — f(lo + po)]Ax(l + p)Ax (1)

Im £(p)y = / QS (1) — f(lo + po))(2py + L)(2py + 1) x

@“” +07 (DA (D] Ax(l + p)

» Calculate real parts for the temperature part with a

without



Dilepton Rate

| The Dilepton Rate I

» Kadanoff-Baym-Equations: Exact result for strong coupling;:

d‘R
dy/sdP?

Ap(V5,0)fB(Vs)

sy (213 g2 s

» Dilepton Production Rate

d*R

=[GV
dy/sd3P
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» T'=150MeV, 200MeV



Conclusions and Outlook

| Conclusions I

» Selfconsistent treatment of all particles with width is possible
» Medium modification of the widths and masses

» At T > 0: contributions below light cone — “Screening”

| Work to do I

» To avoid trouble with unphysical states in vector-particle propagators:
Apply € > 1 (“Unitary Gauge”)

» Other way: Give up the gauge model and generate the p from an
effective pion model which does not contain unphysical states at all

» Exploit non-abelian part of the p-interaction
» Include other particles (A1, w, N, A, ...)

» Question of theoretical interest: Is it possible to extend the

selfconsistent approximation scheme to a gauge invariant one?



