Resonance Recombination model for Quarks in the Quark-Gluon Plasma

Hendrik van Hees

Justus-Liebig Universität Gießen

November 5, 2009

Outline

Motivation

Heavy-quark diffusion in the QGP

- Resonance model for elastic quark scattering
- Fokker-Planck equation and Langevin simulations
- Nonphotonic electrons at RHIC

Transport approach to quark coalescence

- Constituent-quark number and KE_T scaling
- Meson spectra

4 Conclusions

Motivation

- Strongly interacting medium in relativistic heavy-ion collisions (HICs)
 - (ideal) hydrodynamics describes low- p_T spectra of hadrons
 - collective radial and elliptic flow
 - medium close to local thermal equilibrium
 - very small viscosity \Rightarrow strongly coupled Quark-Gluon Plasma (sQGP)
- Possible explanation for strong interactions in QGP close to T_c : formation of hadron-like resonances
- successful description of non-photonic e^{\pm} data at RHIC
 - heavy-quark diffusion in QGP \Leftrightarrow Fokker-Planck (FP) equation
 - ${\ensuremath{\, \circ }}$ non-perturbative elastic collisions close to T_c
 - facilitated by resonance formation
 - $\bullet\,$ coalescence $+\,$ fragmentation to D and B-mesons
 - simultaneous description of e^{\pm} - R_{AA} und v_2

[HvH, V. Greco, R. Rapp, Phys. Rev. C **73**, 034913 (2006)] [HvH, M. Mannarelli, V. Greco, Phys. Rev. Lett. **100**, 192301 (2008)]

Motivation

- Success of quark-coalescence models
 - recombination of quarks to hadrons at the QGP phase transition
 - describes observed constituent-quark number scaling of elliptic flow:

$$v_2^{\text{hadrons}}(p_T) \simeq n_q v_2^{(\text{quarks})}(p_T/n_q)$$

- \Rightarrow recombination of comoving quarks to hadrons
- describes large baryon/meson ratio in HICs compared to pp collisions
- Shortcomings
 - violates energy conservation
 - violates 2nd Law of Thermodynamics
 - CQNS better with $\text{KE}_T = m_T m = \sqrt{p_T^2 + m^2} m$ than with p_T
- Resonance-recombination model
 - based on kinetic theory: $q\bar{q} \leftrightarrow R$
 - detailed balance
 - fulfills energy-momentum conservation
 - obeys 2nd law of thermodynamics
 - [L. Ravagli, HvH, Ralf Rapp, Phys. Rev. C 79, 064902 (2009)]

Motivation

• Constituent-Quark Number Scaling: $v_2(p_T)$ vs. $v_2(\text{KE}_T)$

[Adare et al (PHENIX Collab.), Phys. Rev. Lett. 98, 162301 (2007)]

Heavy Quarks in Heavy-Ion collisions

hard production of HQs described by PDF's + pQCD (PYTHIA)

C SUBORN SQGP

HQ rescattering in QGP: Langevin simulation drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP

Hadronization to D,B mesons via quark coalescence + fragmentation V. Greco, C. M. Ko, R. Rapp, PLB **595**, 202 (2004)

 $\begin{array}{l} \text{semileptonic decay} \Rightarrow \\ \text{``non-photonic'' electron observables} \\ R_{AA}^{e^+e^-}(p_T), \ v_2^{e^+e^-}(p_T) \end{array}$

Elastic pQCD processes

• Lowest-order matrix elements [Combridge 79]

• Debye-screening mass for *t*-channel gluon exch. $\mu_g = gT$, $\alpha_s = 0.4$ • not sufficient to understand RHIC data on "non-photonic" electrons

Hendrik van Hees (JLU Gießen)

7 / 22

Non-perturbative interactions: Resonance Scattering

• General idea: Survival of D- and B-meson like resonances above T_c • elastic heavy-light-(anti-)quark scattering

• D- and B-meson like resonances in sQGP

- parameters
 - m_D = 2 GeV, Γ_D = 0.4...0.75 GeV
 m_B = 5 GeV, Γ_B = 0.4...0.75 GeV

T-matrix

- resonance formation at lower temperatures $T \simeq T_c$
- melting of resonances at higher $T! \Rightarrow sQGP$
- P wave smaller
- resonances near T_c : natural connection to quark coalescence

[Ravagli, Rapp 07; Ravagli, HvH, Rapp 08]

- model-independent assessment of elastic Qq, $Q\bar{q}$ scattering
- problems: uncertainties in extracting potential from IQCD in-medium potential V vs. F?

Hendrik van Hees (JLU Gießen)

- FP equation equivalent to stochastic Langevin process
- Langevin process: friction force + Gaussian random force
- From models for heavy-light-quark scattering:
 - A: friction (drag) coefficient
 - B_{0,1}: diffusion coefficients
- to implement flow of the medium
 - use Lorentz boost to change into local "heat-bath frame"
 - use update rule in heat-bath frame
 - boost back into "lab frame"

Time evolution of the fire ball

 Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

- Isentropic expansion: S = const (fixed from N_{ch})
- QGP Equation of state:
- for semicentral collisions (b = 7 fm): $T_0 = 340 \text{ MeV}$, QGP + mixed phase lifetime $\simeq 5 \text{ fm}/c$.
- flow field $ec{v}_{\perp}(ec{r}_{\perp}) \propto r_{\perp};$ \perp isobars (confocal ellipses)

Hendrik van Hees (JLU Gießen)

Initial conditions

- need initial p_T -spectra of charm and bottom quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming $\delta\text{-function fragmentation}$
 - exp. non-photonic single- e^{\pm} spectra: Fix bottom/charm ratio

Spectra and elliptic flow for heavy quarks

•
$$\mu_D = gT$$
, $\alpha_s = g^2/(4\pi) = 0.4$

- resonances ⇒ c-quark thermalization without upscaling of cross sections
- Fireball parametrization consistent with hydro

Nonphotonic electrons at RHIC

Hendrik van Hees (JLU Gießen)

November 5, 2009 14 / 22

Non-photonic electrons at RHIC

- T-matrix model for charm and bottom
- quark coalescence+fragmentation $\rightarrow D/B \rightarrow e + X$

Resonance-Recombination Model

• transport approach for hadronization by $q + \bar{q} \hookrightarrow \text{meson resonance}$ $\frac{\partial}{\partial t}f_{\pmb{M}}(t,p) = -\frac{\Gamma}{\gamma_n}f_{\pmb{M}}(t,p) + g(p) \Rightarrow f_{\pmb{M}}^{(\mathsf{eq})}(p) = \frac{\gamma_p}{\Gamma}g(p)$ $g(p) = \int \frac{\mathrm{d}^3 p_1 \mathrm{d}^3 p_2}{(2\pi)^6} \int \mathrm{d}^3 x f_q(x, p_1) f_{\bar{q}}(x, p_2) \sigma(s) v_{\mathsf{rel}} \delta^{(3)}(p - p_1 - p_2)$ $\sigma(s) = g_{\sigma} \frac{4\pi}{k_{\rm cm}^2} \frac{(\Gamma m)^2}{(s - m^2)^2 + (\Gamma m)^2}$ T=180 MeV, β₀=0.55 10^{0} $\begin{array}{c} {\rm E}\,{\rm dN/d}^3 {\rm b}\,{\rm (GeV}^{-3}) \\ {\rm 10}^{-2} \\ {\rm 10}^{-3} \end{array}$ 10^{-4} resonance recombination 10-5 3 4 5 pT (GeV)

[L. Ravagli, R. Rapp, Phys. Lett. B 655, 126, (2007); L. Ravagli, HvH, R. Rapp arXiv:0806.2055 [hep-ph]]

Hendrik van Hees (JLU Gießen) Resonance recombination in the QGP

Constituent-quark number scaling (p_T)

Hendrik van Hees (JLU Gießen)

KE_T scaling of quarks

• usual coalescence models: factorization ansatz

$$f_q(p, x, \varphi) = f_q(p, x) [1 + 2v_2^q(p_T)\cos(2\varphi)]$$

• CQNS usually not robust with more realistic parametrizations of v_2

• here: *q* input from relativistic Fokker-Planck-Langevin simulation

Constituent-quark number scaling (KE_T)

• usual coalescence models: factorization ansatz

$$f_q(p, x, \varphi) = f_q(p, x) [1 + 2v_2^q(p_T)\cos(2\varphi)]$$

• CQNS usually not robust with more realistic parametrizations of v_2 • here: q input from relativistic Fokker-Planck-Langevin simulation

Hendrik van Hees (JLU Gießen)

November 5, 2009 19 / 22

- $q-\bar{q}$ input: Fokker-Planck-Langevin
- meson output: resonance-recombination model

Data from [A. Adare et al. (PHENIX) PRL 98, 232301 (2007); S. S. Adler et al. (PHENIX) PRC 72, 014903 (2005); J. Adams et al. (STAR) PLB 612, 181 (2005) B. I. Abelev et al. (STAR) PRL 99, 112301 (2007)]

Conclusions

- Heavy-quark diffusion in the QGP
 - strongly interacting QGP \Leftrightarrow "hadron"-resonance formation close to T_c
 - resonance-scattering model (confirmed with T-matrix approach with IQCD potentials)
 - Fokker-Planck (FP) simulation of heavy quarks
 - + coalescence + fragmentation \Rightarrow good description of non-photonic electron flow data
- Kinetic Resonance-Recombination model
 - quark recombination into meson-resonance states in the QGP at T_c (consistent with resonance-scattering approach in HQ diffusion!)
 - based on Boltzmann transport approach
 - energy-momentum conservation
 - detailed balance
 - 2nd Law of Thermodynamics
 - realistic space-momentum correlations (v_2) from FP simulation
 - results in CQNS and KET scaling of meson spectra

- include inelastic (gluo-radiative) processes in heavy-quark interaction
- T-matrix approach: which potential is the correct one?
- FP approach for light (and strange?) quarks problematic (self-consistency problem between "bulk medium" in FP simulation and quark distributions used in recombination)
- Resonance recombination should be combined with fragmentation (particularly at higher p_T)
- analogous treatment of baryons (quark-diquark recombination !?)