Collective Flow, R_{AA} and Heavy Flavor Rescattering

Hendrik van Hees

Texas A&M University

December 12, 2005

Hendrik van Hees (Texas A&M University) Collective Flow, RAA and Heavy Flavor Res

Outline

Open Charm and Bottom

- Motivation
- Chiral Heavy-Quark Model
- Heavy-quark rescattering in QGP
- Non-photonic e^{\pm} Observables: v_2 and R_{AA}
- Conclusions and Outlook I

Bottomonia at RHIC

- Dissociation Cross Sections
- Rate Equation
- Υ vs. J/ψ at RHIC
- Conclusions and Outlook II

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
 - pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]
 - Gluon-radiative energy loss: need to enhance transport coefficient \hat{q} by large factor [Armesto et al '05]

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
 - pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]
 - Gluon-radiative energy loss: need to enhance transport coefficient \hat{q} by large factor [Armesto et al '05]
- Assumption: survival of *D* and *B*-meson resonances in the sQGP
- facilitates elastic heavy-quark rescattering

• Chiral symmetry $SU_V(2) \otimes SU_A(2)$ in light-quark sector of QCD

$$\mathscr{L}_D^{(0)} = \sum_{i=1}^2 [(\partial_\mu \Phi_i^\dagger)(\partial^\mu \Phi_i) - m_D^2 \Phi_i^\dagger \Phi_i] + massive (pseudo-)vectors D^*$$

• Φ_i : two doublets: pseudo-scalar $\sim \left(\frac{\overline{D^0}}{D^-}\right)$ and scalar • Φ_i^* : two doublets: vector $\sim \left(\frac{\overline{D^{0*}}}{D^{-*}}\right)$ and pseudo-vector

$$\mathscr{L}_{qc}^{(0)} = \bar{q} \mathrm{i} \partial q + \bar{c} (\mathrm{i} \partial - m_c) c$$

- q: light-quark doublet $\sim {u \choose d}$
- c: singlet

- Interactions determined by chiral symmetry
- For transversality of vector mesons: heavy-quark effective theory vertices

$$\begin{split} \mathscr{L}_{\text{int}} &= -G_S\left(\bar{q}\frac{1+\not\!\!/}{2}\Phi_1c_v + \bar{q}\frac{1+\not\!\!/}{2}\mathsf{i}\gamma^5\Phi_2c_v + h.c.\right) \\ &-G_V\left(\bar{q}\frac{1+\not\!\!/}{2}\gamma^\mu\Phi_{1\mu}^*c_v + \bar{q}\frac{1+\not\!\!/}{2}\mathsf{i}\gamma^\mu\gamma^5\Phi_{2\mu}^*c_v + h.c.\right) \end{split}$$

- v: four velocity of heavy quark
- in HQET: spin symmetry $\Rightarrow G_S = G_V$

Resonance Scattering

• elastic heavy-light-(anti-)quark scattering

• D- and B-meson like resonances in sQGP

parameters

- $m_D = 2 \text{ GeV}, \Gamma_D = 0.4 \dots 0.75 \text{ GeV}$
- m_B = 5 GeV, Γ_B = 0.4...0.75 GeV

Hendrik van Hees (Texas A&M University) Collective Flow, R_{AA} and Heavy Flavor Res

Contributions from pQCD

• Lowest-order matrix elements (Combridge '79)

• In-medium Debye-screening mass for *t*-channel gluon exchange: $\mu_g = gT$, $\alpha_s = 0.4$

Hendrik van Hees (Texas A&M University) Collective Flow, R_{AA} and Heavy Flavor Res

Cross sections

total pQCD and resonance cross sections: comparable in size

- BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion

• heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

• Assumption: Relevant scattering processes are soft

• heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

- Assumption: Relevant scattering processes are soft
- A and B_{ij} given by averages with matrix elements (cross sections) from resonance model
- A(t,p) friction (drag) coefficient = $1/\tau_{eq}$
- B_{ij} : time scale for momentum fluctuations

• heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

- Assumption: Relevant scattering processes are soft
- A and B_{ij} given by averages with matrix elements (cross sections) from resonance model
- A(t, p) friction (drag) coefficient = $1/\tau_{eq}$
- B_{ij} : time scale for momentum fluctuations
- to ensure correct equilibrium limit: $B_1(t,p) = T(t)E_pA(t,p)$ (Einstein dissipation-fluctuation relation)

Drag and Diffusion: pQCD vs. resonance scattering

• 3-momentum dependence

resonance contributions factor ~ 2...3 higher than pQCD!

The Coefficients: pQCD vs. resonance scattering

• Temperature dependence

Time evolution of the fire ball

• Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

$$V(t) = \pi(z_0 + v_z t)a(t)b(t), \quad a, b: \text{ half-axes of ellipse},$$
$$v_{a,b} = v_{\infty}[1 - \exp(-\alpha t)] \mp \Delta v[1 - \exp(-\beta t)]$$

Time evolution of the fire ball

 Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

$$V(t) = \pi(z_0 + v_z t)a(t)b(t), \quad a, b: \text{ half-axes of ellipse},$$
$$v_{a,b} = v_{\infty}[1 - \exp(-\alpha t)] \mp \Delta v[1 - \exp(-\beta t)]$$

- Isentropic expansion: S = const (fixed from N_{ch})
- QGP Equation of state:

$$s = \frac{S}{V(t)} = \frac{4\pi^2}{90}T^3(16 + 10.5n_f^*), \quad n_f^* = 2.5$$

- obtain $T(t) \Rightarrow A(t,p)$, $B_0(t,p)$ and $B_1 = TEA$
- for semicentral collisions (b = 7 fm): $T_0 = 340 \text{ MeV}$, QGP lifetime $\simeq 5 \text{ fm}/c$.
- simulate FP equation as relativistic Langevin process

Initial conditions

- need initial p_T -spectra of charm and bottom quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming $\delta\text{-function fragmentation}$
 - exp. non-photonic single- e^{\pm} spectra: Fix bottom/charm ratio

Spectra and elliptic flow for heavy quarks

• Fireball parametrization consistent with hydro

December 12, 2005

14 / 26

Spectra and elliptic flow for heavy quarks

Observables: p_T -spectra (R_{AA}), v_2

- Hadronization: Coalescence with light quarks (fixed before [Greco et al 03])
 + fragmentation (cc̄, bb̄ conserved)
- single electrons from decay of D- and B-mesons

Observables: p_T -spectra (R_{AA}), v_2

• Hadronization: Fragmentation only

• single electrons from decay of D- and B-mesons

Conclusions and Outlook I

- Assumption: survival of resonances in the (s)QGP
- nonperturbative re-interactions of heavy quarks in QGP
- Observables via Langevin approach and coalescence+fragmentation
 - Elastic resonance scattering $\Rightarrow R_{AA}^{(c)} \simeq 0.2$, $v_2^{(c)} \simeq 0.1$ without upscaling of cross sections
 - small effects on bottom quarks
 - Heavy-light quark coalescence enhances $v_2^{(e)}$ and R_{AA} for $p_T \simeq 2 \text{ GeV}$
 - bottom dominates for $p_T>$ 3.5 GeV \Rightarrow reduced suppression, $v_2^{(e)}$
- For details, see: HvH, R. Rapp, Phys. Rev. C 71, 034907 (2005) [nucl-th/0412015],

HvH, V. Greco, R. Rapp [nucl-th/0508055,hep-ph/0510050]

Conclusions and Outlook I

- Assumption: survival of resonances in the (s)QGP
- nonperturbative re-interactions of heavy quarks in QGP
- Observables via Langevin approach and coalescence+fragmentation
 - Elastic resonance scattering $\Rightarrow R_{AA}^{(c)} \simeq 0.2$, $v_2^{(c)} \simeq 0.1$ without upscaling of cross sections
 - small effects on bottom quarks
 - Heavy-light quark coalescence enhances $v_2^{(e)}$ and R_{AA} for $p_T \simeq 2 \text{ GeV}$
 - bottom dominates for $p_T>$ 3.5 GeV \Rightarrow reduced suppression, $v_2^{(e)}$
- For details, see: HvH, R. Rapp, Phys. Rev. C 71, 034907 (2005) [nucl-th/0412015],

HvH, V. Greco, R. Rapp [nucl-th/0508055,hep-ph/0510050]

- Further investigations
 - improved (softer) fragmentation
 - better control of coalescence/fragmentation ratio
 - implementation of gluon-radiation processes
 - quantitative consequences for quarkonia

Bottomonia at RHIC

Motivation

• Matsui & Satz (1986):

Quarkonia suppression due to colour screening as signature of QGP in heavy-ion collisions

• sQGP: from IQCD $Q\bar{Q}$ resonances survive at $T>T_c$

Bottomonia at RHIC

Motivation

• Matsui & Satz (1986):

Quarkonia suppression due to colour screening as signature of QGP in heavy-ion collisions

• sQGP: from IQCD $Q\bar{Q}$ resonances survive at $T>T_c$

•
$$J/\psi$$
 and η_c "melt" at $T_{\rm diss}^{(J/\psi)} \simeq 2T_c$
• Υ : $T_{\rm diss}^{\Upsilon} \simeq 4T_c$

• Resonances facilitate secondary regeneration of quarkonia in QGP

Motivation

• Matsui & Satz (1986):

Quarkonia suppression due to colour screening as signature of QGP in heavy-ion collisions

• sQGP: from IQCD $Q\bar{Q}$ resonances survive at $T>T_c$

•
$$J/\psi$$
 and η_c "melt" at $T_{\text{diss}}^{(J/\psi)} \simeq 2T_c$
• $\Upsilon: T_{\text{diss}}^{\Upsilon} \simeq 4T_c$

- Resonances facilitate secondary regeneration of quarkonia in QGP
- $c\bar{c}$ recombination substantial part of final J/ψ yield at RHIC [Braun-Munzinger et al 01, Thews et al 01, Grandchamp, Rapp 01]
- J/ψ suppression dominant at SPS
- Bottomonium at RHIC? similar to Charmonium at SPS?

Dissociation Cross Sections

- Need Dissociation Cross Sections to evaluate Υ yield
- Usual mechanism: Gluo dissociation (in dipole approximation)
- Problem: becomes inefficient for loosely bound states

• $\epsilon_Y(T)$ from Schrödinger eq. with screened Cornell potential [Karsch, Mehr, Satz 88]

Hendrik van Hees (Texas A&M University) Collective Flow, RAA and Heavy Flavor Res

December 12, 2005

19 / 26

Dissociation Cross Sections

 breakup mechanism for loosely bound states: quasifree dissociation

• use LO pQCD cross sections for elastic scattering [Combridge 79]

• Color screening reduces Υ lifetime by factor of 10!

Hendrik van Hees (Texas A&M University) Collective Flow, RAA and Heavy Flavor Res

• Rate Equation (detailed balance!)

$$\frac{\mathsf{d}N_Y}{\mathsf{d}t} = -\mathsf{\Gamma}_Y \big[\underbrace{N_Y}_{\mathsf{loss}} - \underbrace{N_Y^{(\mathsf{eq})}}_{gain}\big]$$

• Fugacities for $b\bar{b}$ -pair number conservation

$$N_{b\bar{b}} = \frac{1}{2} \gamma_b N_{\text{open}} \frac{I_1(\gamma_b N_{\text{open}})}{I_0(\gamma_b N_{\text{open}})} + \gamma_b^2 N_{\text{hidden}}$$

• Initial conditions from hard production only $(m_b \gg T_0)$

Υ vs. J/ψ at

Suppression prevalent effect

- color screening in QGP
- suppression of higher bottomonia and feeddown to Υ
- with vacuum Υ: thermal suppression for Υ negligible magnitude of suppression sensitive to color screening
- J/ψ : yield dominated by regeneration

22 / 26

- \bullet rate-equation approach to evaluate Υ abundances
- Suppression predominant effect at RHIC (and LHC)
- At LHC: substantial fraction of total Υ yield due to regeneration
- Color screening main microscopic mechanism for suppression
- For details see: L. Grandchamp, , S. Lumpkins, D. Sun, HvH., R. Rapp [hep-ph/0507314]

- \bullet rate-equation approach to evaluate Υ abundances
- Suppression predominant effect at RHIC (and LHC)
- At LHC: substantial fraction of total Υ yield due to regeneration
- Color screening main microscopic mechanism for suppression
- For details see: L. Grandchamp, , S. Lumpkins, D. Sun, HvH., R. Rapp [hep-ph/0507314]
- Future work
 - more microscopic approach for dissociation-regeneration processes

December 12, 2005

23 / 26

• p_T spectra (v_2) for bottomonia

Backup Slides

- Central Collisions
- single electrons from decay of D- and B-mesons
- Hadronization: Hadronization: Coalescence + fragmentation Fragmentation only PHENIX prel (0-10%)
 STAR prel (0-20%) c+b reso • PHENIX prel (0-10%) c+b reso c+b pQCD STAR prel (0-20%) c+b pQCD Au-Au √s=200 GeV (central) c reso c reso 1.5 1.5 Au-Au √s=200 GeV (central) $R_{\rm AA}$ $R_{\rm AA}$ 0.5 0.5 0 2 3 Δ p_T [GeV] p_T [GeV]

24 / 26

Observables: p_T -spectra (R_{AA}), v_2

- Hadronization: 0.5Coalescence
 - + fragmentation ($c\bar{c}$, $b\bar{b}$ conserved)
- single electrons from decay of D- and B-mesons

25 / 26

Υ evolution RHIC vs. LHC

• At both LHC and RHIC: Suppression prevalent effect

mostly due to Debye screening of color potential