Open heavy-flavor diffusion at LHC, RHIC, and FAIR H. van Hees^{1,2}, T. Lang², J. Steinheimer², M. Bleicher²

¹Institute for Theoretical Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D-60438 Frankfurt, Germany ²Frankfurt Institute of Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt, Germany

FIAS Frankfurt Institute for Advanced Studies

Introduction

- Strongly coupled quark-gluon plasma:
- ultrarelativistic heavy-ion collsions: bulk of produced particles well described by (nearly) ideal hydro dynamics
- collective radial and elliptic flow (v_2) ; constituent-quark number scaling of v_2
- low-viscosity strongly coupled quark-gluon plasma
- heavy-quark probes
- heavy charm and bottom quarks produced in primordial hard collisions
- calibrated initial conditions from pp collisions
- conserved in strong interactions with bulk medium of light quarks and gluons • large mass \Rightarrow longer equilibration time • R_{AA} and v_2 of D, B mesons and non-photonic single electrons \Leftrightarrow transport properties of the sQGP • can be described in relativistic Fokker-Planck/Langevin model

D-mesons at LHC [1]

• theory scheme for heavy quarks

- initial collisions: UrQMD + (3+1) hydro; Glauber model hard production of HQs
- described by PDF's + pQCD (PYTHIA)

HQ rescattering in QGP: Langevin simulation drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP description of bulk matter: UrQMD + (3+1)-dim hydro

Hadronization to D, B mesons via quark coalescence + fragmentation

semileptonic decay ⇒ "non-photonic" electron observables $R_{AA}^{{
m e}^+e^-}(p_T)$, $v_2^{e^+e^-}(p_T)$

Description of the bulk medium in AA collisions

10 12 12 p_T [GeV] p_T [GeV] R_{AA} and v_2 of D mesons in $\sqrt{s_{NN}} = 2.76$ TeV-Pb Pb collisions at LHC, assuming a decoupling temperature of $T_{dec} = 130$ MeV (data: ALICE) [1].

D-mesons at FAIR [2]

• sensitivity of R_{AA} to (unknown!) initial heavy-flavor p_T distribution

• here: compare estimate from Hadron String Dynamics and PYTHIA

• in v_2 large effect from large μ_B in resonance-scattering model • would not be present in pQCD-like interactions

• primordial hard collisions

• first UrQMD run: geometry of NN collisions (Glauber approach) • second UrQMD run: particle production, non-equilibrium dynamics of early stage • at $t \sim t_{\text{start}} = 2R/\sqrt{\gamma_{\text{cm}}^2 - 1}$: mapping to a hydro grid • hydrodynamical evolution

• full (3+1)-dimensional ideal hydrodynamics (SHASTA algorithm)

Heavy-quark diffusion

• Relativistic Langevin simulation

• heavy-quark diffusion in hydrodynamic background

$$\mathrm{d}\vec{x} = \frac{\vec{p}}{E}\mathrm{d}t, \quad \mathrm{d}\vec{p} = -\Gamma\vec{p}\mathrm{d}t + \sqrt{\mathrm{d}t}\hat{C}\vec{\rho}$$

• $\vec{\rho}$: Gaussian noise, Γ : drag (friction) coefficient, $\hat{C} = \sqrt{\hat{D}}$ with \hat{D} : diffusion coefficients • post-point Ito realization of stochastic process with diffusion coefficient $D_{\parallel} = EmT$ • drag and diffusion coefficients: from microscopic models for elastic HQ scattering • D/B-like resonance formation above T_c or T-matrix approach with IQCD qQ potentials • extrapolate cross section into hadronic phase

• hadronization

• coalescence at T_{dec} to recombine c/b quarks with light antiquarks to D/B mesons • PYTHIA for semileptonic decay of D/B mesons to "non-photonic" electrons

Non-photonic single electrons at RHIC [1]

Dileptons at RHIC: DD-angle correlations [3]

Invariant e⁺e⁻ mass spectrum from correlated D and D decays in Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV, assuming different degrees of thermalization of D and D. (data: PHENIX)

Conclusions and outlook

• medium modifications of heavy-quark spectra • UrQMD+hydro hybrid model for realistic description of the bulk medium • heavy c+b-quark diffusion via Langevin process • elastic resonance scattering of heavy quarks in strongly interacting matter • coalescence \Rightarrow consistency of R_{AA} and v_2 of D mesons in comparison to data • predictions for future CBM experiment at FAIR • impact on correlated DD decays [3]

outlook

• implement inelastic (radiative) scattering processes for HQ diffusion • use true hadronic cross sections for D- and B-mesons in hadronic phase References

[1] T. Lang, H. van Hees, J. Steinheimer, M. Bleicher, arXiv: 1211.6912 [hep-ph] [2] T. Lang, H. van Hees, J. Steinheimer, M. Bleicher, arXiv: 1305.1797 [hep-ph] [3] T. Lang, H. van Hees, J. Steinheimer, M. Bleicher, arXiv: 1305.7377 [hep-ph]

Bundesministeriu und Forschung

EMM

