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Abstract. Dileptons provide direct observables of the electromagnetic current-

current correlator in the hot and/or dense medium formed in heavy-ion collisions.

In this article an overview is given about the status of the theoretical understanding

of the dilepton phenomenology in heavy-ion collisions from studies of the in-medium

properties of hadrons and partons within many-body theory and about connections to

fundamental questions concerning the chiral phase transition.

1. Introduction

In heavy-ion collisions electromagnetic probes, i.e., photons and lepton pairs (“virtual

photons”) provide one of the most valuable possibilities to study the interior of the hot

and dense medium created in the interaction over its whole history since their spectra

are nearly unaffected by final-state interactions [1].

This paper will be restricted to invariant-mass (M) and transverse-momentum (qT )

spectra of dileptons whose rate is given by [2, 3, 4]

dNll

d4xd4q
= −

α2

3π3

L(M)

M2
Im Πµ

emµ(M, q;T, µB)fB(q0, T ), (1)

where α ≃ 1/137 denotes the fine-structure constant, M = q2
0 − q2 the invariant mass of

the lepton pair of energy, q0, and three-momentum, q, T the temperature, µB the baryon

chemical potential, fB the Bose distribution, and L(M) the lepton-phase space factor.

As is known from e+e− → hadrons, in the vacuum the retarded hadronic electromagnetic

(em.) current correlator, Πem, at low invariant masses, M . Mdual is well described by

the vector-meson dominance (VMD) model for the light vector mesons ρ, ω, and φ and

by the perturbative QCD (pQCD) continuum at higher masses (M & Mdual), where

Mdual ≃ 1.5 GeV denotes a “duality scale”. The hadronic “resonance part” is dominated

by the isovector channel (ρ meson).

For a theoretical description of dilepton production in relativistic heavy-ion

collisions (HICs) thus the first goal must be an understanding of the in-medium

spectral properties of the light vector mesons in the hadronic and the QGP in the

partonic phase of the fireball evolution. This review of recent progress in this field is

organized as follows: In Sect. 2 first the constraints on the em. current correlator in
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strongly interacting matter from QCD as the underlying fundamental theory of strong

interactions will be discussed, followed by a brief summary on effective hadronic models.

In Sect. 3 these models are confronted with data from ultrarelativistic HICs. Sect. 4

contains brief conclusions and an outlook.

2. The electromagnetic current correlator in strongly interacting matter

Ab-initio constraints. In the vacuum and at low temperatures and densities the

light-quark sector of QCD is governed by (approximate) chiral symmetry which is

spontaneously broken by the formation of a quarks condensate,
〈

ψ̄ψ
〉

6= 0, in the QCD

vacuum which manifests itself in the mass splitting of chiral partners in the hadron

spectrum, as can be seen, e.g., in the experimental determination of the isovector-

vector and -axialvector current correlator through τ → ν + nπ decays [5, 6]. From

(lattice) QCD at finite temperature one expects a decrease of the quark condensate

at high temperatures and/or densities and restoration of chiral symmetry. Thus the

mass spectra of hadrons are expected to soften and to degenerate with their pertinent

chiral partners above a critical temperature, Tc. One indication of the interrelation

of chiral symmetry and confinement is that in lattice-QCD (lQCD) calculations the

critical temperature, Tc ≃ 160-190 MeV, for the chiral and the deconfinement (cross-

over) transitions coincide [7].

From hadronic modeling two microscopic mechanisms for chiral symmetry

restoration (CSR) have emerged: On the one hand it has been conjectured that

the hadron masses drop to zero at the critical point due to the melting of the

quark condensate) [8]. On the other hand within phenomenological hadronic many-

body models the hadron spectra show a significant broadening with little mass shifts

(“melting-resonance scenario”) [4, 9, 10, 11]. A direct relation between in-medium

spectral properties of hadrons, in our context particularly vector mesons, to QCD

is provided by QCD sum rules which relate moments of the (in-medium) spectral

functions for various currents in different isospin channels in the space-like region to

the pertinent quark and four-quark condensates. Detailed studies [12, 13, 14, 15]

show that (in cold nuclear matter) both the “dropping-mass” and the “melting-

resonance” scenarios for CSR are compatible with QCD sum rules. One objective

for the investigation of dileptons in high-energy heavy-ion collisions is thus to gain

insight in the in-medium spectral properties of the light vector mesons through the em.

current correlator to constrain the mechanism leading to the softening of the spectral

functions. Due to the experimental problems to assess the spectral properties of the

axial-vector channel, an indirect theoretical approach may be to connect chiral hadronic

models, describing successfully the measured dilepton observables, with CSR via finite-

temperature Weinberg-sum rules [16, 17] which relate moments of the difference of

vector- and axial-vector-current correlators to quark and four-quark condensates, i.e.,

order parameters of chiral symmetry, providing constraints on these models from lQCD.

Hadronic many-body theory. A (model-independent) approach to assess
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medium modifications of vector (and axial-vector) mesons is based on the chiral

reduction formalism, providing a low-density expansion of the in-medium vector- and

axial-vector current correlators in terms of the corresponding vacuum quantities which

are taken from experimental data such as τ → nπν. The most intriguing feature of these

kind of models is the “in-medium mixing” of the vector- with the axial-vector current

correlator due to pions in the medium [18] which may provide a mechanism for the

onset of CSR. However, the applicability of the low-density approximation is restricted

to very low temperatures and densities.

Another ansatz is to use chiral models in various realizations of chiral symmetry.

One possibility is to describe vector- (and axial-vector) mesons as gauge bosons within

the (generalized) hidden-local symmetry models [19, 20]. Here a particular realization of

chiral symmetry, the vector manifestation, becomes possible, where the chiral partner

of the longitudinal ρ meson is the pion, thus providing a definite chiral model for

the “dropping-mass scenario”. A detailed renormalization-group analysis shows that

such a model together with Wilson-matching of the effective model to QCD (leading

to an “intrinsic” temperature/density dependence of the effective-model parameters),

inevitably leads to a vanishing ρ mass at the critical point and a violation of VMD [21].

In the hadronic many-body theory (HMBT) approach, starting from a

phenomenological Lagrangian to describe the vacuum properties of the vector mesons,

the in-medium modifications of their spectral properties are evaluated within finite-

temperature/density quantum-field theory, involving non-perturbative techniques such

as the dressing of, e.g., the pion propagator to account for the modification of the ρ-

meson’s pion cloud and implementation of interactions of the ρ-meson with mesons and

baryons in the medium (for a review, see [1]). It is characteristic for such models that

the various excitations result in a substantial broadening of the vector mesons and small

mass shifts, i.e., a realization of the “melting-resonance scenario” of CSR. An intriguing

property in connection with the model proposed in [11] is that the resulting dilepton-

emission rates, cf. Eq. (1), match that of the hard-thermal-loop improved pQCD

rate, when both are extrapolated to the expected chiral-phase transition temperature

Tc ≃ 160-190 MeV, i.e., a kind of “quark-hadron duality” [11]. This behavior is

consistent with the smoothness of quark-number susceptibilities in the corresponding

isovector channel across the phase transition in recent lQCD calculations [22].

Another approach to assess in-medium properties of vector mesons is the use of

empirical scattering amplitudes and dispersion-integral techniques to assess the in-

medium ρ-meson propagator via the T̺ approximation [23].

3. Dilepton phenomenology in heavy-ion collisions

In this Section we compare theoretical models of the in-medium em. current correlator to

experimental results from ultrarelativistic heavy-ion collisions. For such a comparison,

not only detailed models for the in-medium behavior of the correlation function itself

in both partonic (QGP) and hadronic states of the medium are required, but also a
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Figure 1. Left panel: dimuon excess spectrum [25] with an equation of state with

Tc = Tch = 175 MeV in semicentral 158 AGeV In-In collisions compared to data by the

NA60 collaboration [31]; middle panel: dielectron excess spectrum from the same model

for central 158 AGeV Pb-Au collisions compared to data by the CERES/NA45 [32]

collaboration. The dash-dotted line shows the result with a ρ-meson spectral function

including only medium modifications in a meson gas, underlining the importance of

baryon effects; right panel: the dilepton excess spectrum based on the implementation

of different equations of state in the fireball evolution (EoS-A: Tc = Tch = 175 MeV,

EoS-B: Tc = Tch = 160 MeV, EoS-C: Tc = 160 MeV, Tch = 160 MeV).

description of its entire “thermal evolution” over which the rate (1) has to be integrated

to compare to the experimental observables.

The bulk of hot and dense matter created in ultrarelativistic heavy-ion collisions at

the CERN SPS and RHIC can be successfully described by ideal hydrodynamics [24],

which implies local thermal equilibrium. Thus the medium is characterized by a

temperature- and collective-flow field. In [25, 26] a simple thermal model has been used,

which after a “plasma-formation time” describes the medium by an ideal-gas equation

of state of quarks and gluons which according to recent lQCD calculations [27, 28]

undergoes a phase transition at Tc ≃ 160-190 GeV to a hadron-resonance gas. Thermal

models [29, 30] for the yields of various hadron species indicate that at a temperature

close to the phase transition of Tch ≃ 160-175 MeV, inelastic reactions within the

medium cease, and the corresponding particle ratios are fixed (chemical freeze-out),

before the particles decouple and freely stream to the detector. This thermal freeze-

out occurs at temperatures around Tfo ≃ 90-130 GeV (depending on the system size).

This evolution of the medium is implemented through a cylindrical homogeneous fireball

model, including radial flow and longitudinal expansion [25]. The temperature is inferred

from the equation of state (massless gluons and Nf = 2.3 effective quark flavors in the

QGP and a hadron-resonance gas model in the hadronic phase) and the assumption

of an isentropic expansion in accordance with ideal-fluid dynamics. Between the pure

QGP and hadronic phases a standard volume partition for a mixed phase is employed.

The hadronic phase is characterized by the build-up of hadron-chemical potentials to

keep the particle-number ratios fixed at the observed values. The largest uncertainty is

the total fireball lifetime which has been adjusted to the total experimental yield.

Invariant-mass spectra. While earlier dilepton measurements at the SPS have

shown an enhancement of the dilepton yield at invariant masses in the low-mass region

(LMR), 2ml ≤ M ≤ 1 GeV, a definite conclusion concerning the nature of the expected
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Figure 2. Left panel: Comparison of dielectron-M spectra based on a hadronic-many-

body calculation [33] with recent data from 200 AGeV-Au+Au collisions at RHIC

from the PHENIX collaboration [34]; middle panel: mT -dimuon spectrum in the mass

range 0.6 GeV ≤ M ≤ 0.9 GeV compared with the NA60 data in 158AGeV In-In

collisions [35, 36]; right panel: effective slopes from qT spectra compared to NA60 data

for different equations of state and transverse acceleration of the fireball.

CSR could not be reached since models for in-medium modifications of the ρ meson

based on either the “dropping-mass” or the “melting-resonance” scenario could describe

the data within the experimental mass resolution and errors. Only recently with the

precision reached in the measurement of dimuon-invariant-mass (M) spectra by the

NA60 collaboration [31] in 158 GeV In-In collisions, it could be shown that models

predicting a broadening of the vector mesons with small mass shifts (cf. left panel

of Fig. 1) seem to be favored compared to those implementing the “dropping-mass

scenario”. As can be seen in the middle panel of Fig. 1 the same model is also consistent

with a recent analysis of 158AGeV Pb-Au data on the dielectron-M spectrum by

the CERES/NA45 [32] collaboration. As shown by the comparison with the model

only implementing mesonic medium effects, baryonic processes are the prevalent effect

leading to the massive broadening of the ρ meson necessary to explain the observed

dilepton enhancement in the LMR (including the related enhancement below the two-

pion threshold).

While in the LMR the observed access yield over the standard hadronic

cocktail is mostly due to the emission from the medium-modified light vector

mesons, in the intermediate-mass region (IMR), 1 GeV≤M ≤ 1.5 GeV, it is either

dominated by hadronic “multi-pion processes” (estimated using chiral-mixing formulas)

or qq̄-annihilation in the QGP phase (given by hard-thermal loop resummed q̄q

annihilation) [26, 25], depending on the equation of state (Tc) as will be described below.

As shown in the right panel of Fig. 1, despite small deviations in the overall yield (which

can be adjusted by slight variations of the fireball lifetime), the spectra are robust against

details of the equation of state within the boundaries of Tc from lQCD calculations and

Tch from thermal-model analyses. The insensitivity of the dilepton spectra with respect

to the equation of state reflects the “quark-hadron duality” of the dilepton rates in the

relevant temperature range close to Tc (see Sect. 2). Using the spectral functions from

the above described chiral-reduction approach [37] within a hydrodynamic description of

the fireball evolution [38, 39] leads to similar results for the mass region below and above
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the ρ region but less broadening in the resonance region which is to be expected from the

low-density (virial) expansion treatment of the medium effects. The spectral-functions,

based on empirical ρ-scattering data [23] have been implemented within another fireball-

evolution model (using a cross-over QGP-hadron phase transition) [40], showing results

for the M spectra comparable to those in [26, 25] but with less enhancement in the mass

region below the ρ (particularly below the two-pion threshold), which may be traced

back to the use of the T̺ approximation to the medium modifications. In the IMR the

model in [40] shows a large fraction of dilepton emission from the partonic phase. We

close our brief review on invariant-mass spectra with the remark, that the enhancement

of the dilepton yield in the LMR, observed by the PHENIX collaboration in 200AGeV

Au-Au collisions at RHIC [34], cannot be described with the present models [33, 41].

Transverse-momentum spectra. The dimuon transverse-momentum (qT )

spectra and pertinent effective-slope fits by the NA60 collaboration [35, 36] provide

information which is sensitive to the temperature and collective flow of the medium

due to the blue shift of the dileptons radiated from a moving thermal source. While

the model in [26] describes the qT spectra for qT . 1 GeV reasonably well (which is

consistent with the agreement in the inclusive M spectra) they were underpredicted at

qT & 1 GeV although the fireball parameterization of the temperature and flow agrees

well with results from a hydrodynamic calculation [39]. Thus sources for dileptons at

high qT have been investigated, including an improved description of dileptons from

ρ decays after thermal freeze-out which benefit from the maximal blue shift due to

the fully developed transverse flow [42, 25]. In this connection it is important to note

that the qT spectrum for emission from a thermal source cf. (1) is softer by a Lorentz

factor M/E = 1/γ compared to that from a freely streaming ρ meson due to the

dilation of its lifetime. In former calculations the standard description for dileptons

from freeze-out ρ decays has been to prolong the fire-ball lifetime for this contribution

by 1/Γρ ∼ 1 fm/c [11, 26]. In addition decays of hard “primordial” ρ mesons, produced

in the initial hard NN collisions which are subject to jet quenching through the medium

but leaving the fireball without equilibrating, have been taken into account. Another

source of hard dileptons is Drell-Yan annihilation in primordial NN collisions which

has been extrapolated to small invariant masses by imposing constraints from the real-

photon point. Finally, t-channel-meson (e.g., ω) exchange contributions to the yield

of thermal dileptons have been studied. Although the latter show the hardest qT
spectra among all thermal sources, their absolute magnitude is insufficient to resolve

the discrepancies in comparison to the data at high qT , which however has improved

through the above described more detailed implementation of the hard (non-thermal)

dilepton sources (cf. Fig. 1 middle panel). The model of [40] shows larger slopes (also

compared to the hydrodynamic fireball simulation [39]).

Finally a study of different parameters for the equation of state has been conducted.

The “standard scenario” in [11, 26] uses Tc = Tch = 175 GeV (EoS-A). To investigate

the sensitivity of the dilepton spectra with respect to uncertainties in the equation of

state, Tc has been varied within the boundaries of 160-190 GeV given by different lQCD
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calculations [27, 28] (EoS-B: Tc = 160 MeV, EoS-C: Tc = 190 MeV), using a chemical

freeze-out temperature of Tch = 160 GeV to cover the range of thermal-model fits to

hadron-number ratios in heavy-ion collisions. For EoS-C a chemically equilibrated

hadronic phase between Tc = 190 MeV and Tch = 160 MeV has been assumed. The

agreement of the model with the measured M spectra is robust. Variations in the

absolute yield can be adjusted by slight changes in the fireball lifetime. It is important

to note that in the IMR the partition of the dilepton yield in hadronic and partonic

contributions depends sensitively on the equation of state: A scenario like EoS-B with

a low critical temperature results in a long QGP+mixed phase, leading to a parton-

dominated regime in the IMR, while EoS-C with a high critical temperature describes

a hadron-dominated source since the QGP and mixed phase become shorter. Thus,

contrary to suggestions in the literature [36, 43], a definite conclusion whether the

dilepton yield in the IMR is originating from partonic or hadronic sources can not be

drawn at present. In the right panel of Fig. 2 effective slopes extracted from the qT
spectra by a fit to dNll/(mT dmT ) = C exp(−mT/Teff) are shown. The slopes from

the calculations with EoS-B and EoS-C benefit from the larger freeze-out temperature

of Tfo = 136 MeV compared to Tfo = 120 MeV for EoS-A. To reach the measured

effective slopes however, an enhancement of the transverse acceleration of the fireball

(from a⊥ = 0.085c2/fm to a⊥ = 0.1c2/fm), leading to larger blue shifts in the spectra,

is necessary. The slopes in the IMR are not so sensitive to the radial flow since the

emission in this region is dominated by radiation from (either partonic or hadronic,

depending on Tc) sources at earlier times where the flow is smaller.

4. Conclusions and outlook

In conclusion, the confrontation of phenomenological models for the em. current

correlator of strongly interacting matter with precise data on dilepton emission in high-

energy heavy-ion collisions provides a unique opportunity for a better understanding of

the nature of chiral symmetry restoration. Models based on the application of many-

body theory to phenomenological hadronic models to assess the medium modifications

of the em. current correlator, predicting a strong broadening of the light-vector-

meson spectrum with small mass shifts, are favored by the data compared to models

implementing a dropping-mass scenario (as, e.g., implied by the intrinsic temperature

dependencies of the model parameters of the generalized hidden-local symmetry model

due to “Wilsonian matching” with QCD close to Tc [44] although a final confrontation

of this particular realization of chiral symmetry with dilepton data in HICs has to

be completed by an implementation of baryonic interactions). However, the origin of

the large dilepton enhancement in the LMR observed by the PHENIX collaboration in

200AGeV Au-Au collisions at RHIC remains unexplained so far.

Future investigations will have to find even closer connections between

em. observables in heavy-ion collisions and the chiral phase transition. One possibility is

the extension of the hadronic-model calculations with a detailed study of the in-medium
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properties of both the vector and the axial-vector correlator within a chiral framework,

constrained by lQCD calculations of chiral order parameters via Weinberg-sum rules.
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