Electromagnetic Probes in Heavy-Ion Collisions

Hendrik van Hees

Justus-Liebig-Universität Gießen

November 10, 2008

Institut für Theoretische Physik

1 QCD, Chiral Symmetry, and Dileptons

2 Models vs. Experiments at SPS and RHIC

Dileptons and in-medium em. current correlation function

• Dilepton emission rate [McLerran, Toimela 85]

$$\frac{\mathrm{d}N_{e^+e^-}}{\mathrm{d}^4x\mathrm{d}^4q} = -g^{\mu\nu}\frac{\alpha_{\mathrm{em}}^2}{3q^2\pi^3} \operatorname{Im}\Pi^{(\mathrm{em})}_{\mu\nu}(q)\Big|_{q^2=M^2_{e^+e^-}} f_B(q_0)$$
$$\Pi^{(\mathrm{em})}_{\mu\nu}(q) = \int \mathrm{d}^4x \exp(\mathrm{i}q \cdot x)\Theta(x_0) \left\langle \left[j^{(\mathrm{em})}_{\mu}(x), j^{(\mathrm{em})}_{\nu}(0)\right] \right\rangle_T$$

- $\ell^+\ell^-$ spectra \Leftrightarrow in-medium em. current-current correlator
- Vector dominance ⇒ in-medium modifications of vector mesons!

Chiral Symmetry Restoration

- light-quark sector of QCD: chiral symmetry
 - spontaneously broken in vacuum ($\langle \bar{q}q \rangle \neq 0)$
 - high temperature/density: restoration of chiral symmetry
 - Lattice QCD: $T_c^{\chi} \simeq T_c^{\text{deconf}}$

- Mechanism of chiral restoration?
 - "dropping masses": $m_{
 m had} \propto \left< ar{\psi} \psi \right>$
 - "melting resonances": broadening of spectra through medium effects

4 / 11

Hadronic many-body theory

• pion-cloud modifications and baryonic/mesonic excitations

[Chanfray et al, Herrmann et al, Ko et al, Rapp et al, Klingl et al, Post et al, Friman et al, ...]

substantial broadening of vector mesons with little mass shift!

- baryon effects prevalent $(\rho_B + \rho_{\bar{B}}, \text{ not } \rho_B \rho_{\bar{B}}, \text{ relevant!})$
- different approaches consistent if constrained by data $(\gamma N, \gamma A, \pi N \rightarrow \rho N)$

Hendrik van Hees (JLU Gießen)

CERES vs. Hadronic many-body theory

- Dilepton emission from thermal source
- thermal fireball evolution (isentropic QGP/MIX + hadron gas)

$$\frac{\mathrm{d}N_{\ell\ell}^{\text{therm}}}{\mathrm{d}M} \propto -\int_{\mathsf{FB}} \mathrm{d}^4x \int \frac{\mathrm{d}^3q}{Mq_0} \operatorname{Im} \Pi^{(\mathsf{em})}(q_0, \vec{q}) f_B(q_0) \mathsf{Acc}$$

- baryon effects essential!
 - many-body effects \Leftrightarrow very low-mass excess

[[]HvH, R. Rapp 07]

NA60 vs. Hadronic many-body theory

• ρ , ω , ϕ multi- π , QGP, freeze-out+primordial ρ , Drell-Yan

 \bullet M spectra

[HvH, Rapp 07]

7 / 11

- \bullet consistent with predicted broadening of ρ meson
- M < 1GeV: thermal ρ ; M > 1 GeV: thermal multi-pion processes
- *m_t* spectra
 - $q_t < 1$ GeV: thermal radiation
 - $q_t > 1$ GeV: freeze-out + hard primordial ρ , Drell-Yan

Hendrik van Hees (JLU Gießen)

Electromagnetic Probes in HICs

November 10, 2008

Critical temperature and freeze-out

- EoS-A: $T_c = T_{chem} = 175 \text{ MeV}$; EoS-B: $T_c = T_{chem} = 160 \text{ MeV}$ EoS-C: $T_c = 190 \text{ MeV}$, $T_{chem} = 160 \text{ MeV}$
 - norm depends on t_{fireball} (kept fixed here)!
 - description of spectra comparable
 - $\bullet\,$ reason for insensitivity to EoS and hadro-chemistry $_{[H\nu H,\ Rapp\ 07]}$:
 - hadronic and partonic radiation "dual" for $T \sim T_c$ (pQCD: $\Pi_V \equiv \Pi_A \Rightarrow$ compatible with chiral symmetry restoration!)

Intermediate mass region - QGP vs. hadron gas

[[]HvH, Rapp 07]

- EoS-B: $T_c = T_{chem} = 160 \text{ MeV}$ (large QGP part) EoS-C: $T_c = 190 \text{ MeV}$, $T_{chem} = 160 \text{ MeV}$ (small QGP part)
- volume $\leftrightarrow T$: emission dominated by temperatures around T_c (QGP vs. high-density hadronic phase)
- description of spectra comparable for different EoS

PHENIX e^+e^- -mass spectrum

- RR: hadronic many-body theory [Rapp 01, 02] (for $N_{part} = 125$)
- KD+IZ: chiral reduction formalism [Dusling, Zahed 07]
- EB+WC: Transport model (HSD) [E. L. Bratkovskaya, W. Cassing, O. Linnyk 08]
- LMR enhancement cannot be described!

Hendrik van Hees (JLU Gießen)

Electromagnetic Probes in HICs

Conclusions and Outlook

- hadronic many-body theory
 - broadening, small mass shifts of spectra (baryon effects prevalent)
 - hadron-parton duality of dilepton rates (QGP portion depends on T_c)
- Heavy-ion collisions
 - CERES, NA60: Hadronic many-body theory robust due to duality involved mix of contributions at high q_T
 - PHENIX: Low-mass enhancement can not be described!
- Not covered in this talk: Thermal Photons
 - Same em. correlator as for dileptons!
 - Hadronic many body theory: improvement in description of WA98 data [Liu, Rapp 06]
- Connection between chiral symmetry restoration and dilepton data
 - hadronic chiral model at finite $T \Rightarrow \Pi_V$ and Π_A
 - confront Π_V with dilepton data
 - check moments of $\Pi_V \Pi_A$ with IQCD via Weinberg sum rules

11 / 11