$\label{eq:constraint} Outline \\ Motivation \\ Nonperturbative elastic heavy-quark resonance scattering \\ Heavy-quark rescattering in the QGP: Langevin process \\ Observables: p_T-spectra (R_{A,A}), v_2 \\ Conclusions and Outlook \\ \end{array}$

Thermalization and Flow of Heavy Quarks in the Quark-Gluon Plasma

Hendrik van Hees

Texas A&M University

October 24, 2005

Collaborators: V. Greco, R. Rapp

Hendrik van Hees

Thermalization and Flow of Heavy Quarks in the Quark-Gluon

Outline

Outline

Motivation

Nonperturbative elastic heavy-quark resonance scattering

Heavy-quark rescattering in the QGP: Langevin process

Observables: p_T -spectra (R_{AA}), v_2

Conclusions and Outlook

イロト イポト イヨト イヨト

Outline

Motivation

Nonperturbative elastic heavy-quark resonance scattering Heavy-quark rescattering in the QGP: Langevin process Observables: p_T -spectra (R_{AA}), v_{O} Conclusions and Outlook

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium

・ロト ・回ト ・ヨト ・ヨト

Outline

Motivation

Nonperturbative elastic heavy-quark resonance scattering Heavy-quark rescattering in the QGP: Langevin process Observables: p_T -spectra (R_{AA}), v_{O} Conclusions and Outlook

Motivation

- ▶ Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
 - ▶ pQCD elastic HQ scattering: need unrealistically large α_s [Moore, Teaney '04]

 $\label{eq:constraint} Outline \\ Motivation \\ \text{Nonperturbative elastic heavy-quark resonance scattering} \\ Heavy-quark rescattering in the QGP: Langevin process \\ Observables: p_T-spectra (R_{AA}), v_2 \\ Conclusions and Outlook \\ \end{cases}$

Elastic Heavy-quark resonance rescattering

- Possible non-perturbative mechanism: Survival of "D- and B-mesonic resonances" above T_c
- suggestive from lattice QCD (Umeda et al '02, Datta et al '03)
- provides elastic resonant rescattering of heavy quarks in the QGP
- effective field-theory model based on
 - chiral symmetry
 - spin symmetry of heavy-quark effective theory

・ロト ・回ト ・ヨト ・ヨト

Elastic Resonance Scattering

D-meson propagators dressed with one-loop self energies

- Only two model parameters:
 - mass of resonances: $m_D = 2 \text{ GeV}$
 - coupling constant $\Rightarrow \Gamma_B = 0.4...$ GeV
- Same model for B mesons

 $m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$

・ロン ・回 と ・ ヨン ・ ヨン

Outline Motivation Nonperturbative elastic heavy-quark resonance scattering Heavy-quark rescattering in the QGP: Langevin process Observables: p_T -spectra (R_{AA}) , v_2 Conclusions and Outlook

Contributions from pQCD

In-medium Debye-screening mass for t-channel gluon exchange: $\mu_g = gT, \; \alpha_s = 0.4$

Hendrik van Hees Thermalization and Flow of Heavy Quarks in the Quark-Gluon

Outline Motivation

Nonperturbative elastic heavy-quark resonance scattering

Heavy-quark rescattering in the QGP: Langevin process Observables: p_T -spectra (R_{AA}), v_2 Conclusions and Outlook

Cross sections

- pQCD and resonance cross sections: comparable in size
- ► BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion

Drag and Diffusion coefficients

 use Fokker-Planck ansatz to calculate drag and diffusion coefficients

▶ resonance contributions factor ~ 2...3 higher than pQCD
 ▶ shortens equilibration times τ_{eq} = 1/γ

Drag and Diffusion coefficients

- heavy quarks in the QGP
 - thermal elliptic fireball parametrization for QGP
 - Fokker-Planck coefficients time dependent
 - Relativistic Langevin simulation for motion of heavy quarks

Initial conditions

- need initial p_T-spectra of charm and bottom quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming δ -function fragmentation
 - ▶ exp. non-photonic single- e^{\pm} spectra: Fix bottom/charm ratio

Hendrik van Hees Thermalization and Flow of Heavy Quarks in the Quark-Gluon

Outline Motivation Nonperturbative elastic heavy-quark resonance scattering Heavy-quark rescattering in the QGP: Langevin process Observables: p_T-spectra (R_{AA}), v₂ Conclusions and Outlook

Spectra and elliptic flow for heavy quarks

イロト イヨト イヨト イヨト

Observables: p_T -spectra (R_{AA}), v_2

- ► Hadronization: Coalescence + fragmentation
- ▶ single electrons from decay of *D* and *B*-mesons

Data before Quark Matter '05

Hendrik van Hees

< □ → < ⑦ → < 注 → < 注 → < 注 → ○ へ ??</p>
Thermalization and Flow of Heavy Quarks in the Quark-Gluon

Observables: p_T -spectra (R_{AA}), v_2

- ► Hadronization: Coalescence + fragmentation
- ▶ single electrons from decay of *D* and *B*-mesons

Hendrik van Hees

Thermalization and Flow of Heavy Quarks in the Quark-Gluon

Observables: p_T -spectra (R_{AA}), v_2

- Hadronization: Fragmentation only
- ▶ single electrons from decay of *D* and *B*-mesons

イロト イヨト イヨト イヨト

 $\label{eq:constraint} Outline \\ Motivation \\ Nonperturbative elastic heavy-quark resonance scattering \\ Heavy-quark rescattering in the QGP: Langevin process \\ Observables: <math>p_T$ -spectra (R_{AA}) , v_2 Conclusions and Outlook

Conclusions and Outlook

- Assumption: survival of resonances in the (s)QGP
- possible mechanism for nonperturbative interactions
- Equilibration of heavy quarks in QGP
- Observables via Langevin approach and coalescence

イロト イポト イヨト イヨト

Outline Motivation Nonperturbative elastic heavy-quark resonance scattering Heavy-quark rescattering in the QGP: Langevin process Observables: p_T -spectra (R_{AA}) , v_2 Conclusions and Outlook

Conclusions and Outlook

- Assumption: survival of resonances in the (s)QGP
- possible mechanism for nonperturbative interactions
- Equilibration of heavy quarks in QGP
- Observables via Langevin approach and coalescence
- Further investigations have to be done:
 - ► Langevin for *D* (B)-mesons in hadronic phase?
 - more realistic (softer) fragmentation
 - better control of coalescence/fragmentation ratio
 - implementation of gluon-radiation processes

・ロト ・回ト ・ヨト ・ヨト