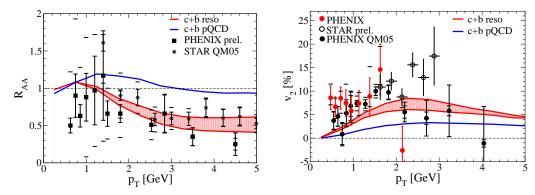
Thermalization and Flow of Heavy Quarks in the Quark-Gluon Plasma

Hendrik van Hees*, Vincenzo Greco[†] and Ralf Rapp*

*Cyclotron Institute and Physics Department, Texas A&M University, College Station, Texas 77843-3366, USA

†Laboratori Nazionali del Sud INFN, via S. Sofia 62, I-95123 Catania, Italy


Abstract. Elastic scattering of charm (c) and bottom (b) quarks via D- and B-meson resonance states in an expanding, strongly interacting quark-gluon plasma is investigated. Drag and diffusion coefficients are calculated from an effective model based on chiral symmetry and heavy-quark effective theory, and utilized in a relativistic Langevin simulation to obtain transverse-momentum spectra and elliptic flow (v_2) of c- and b-quarks. The hadronization to D- and B-mesons is described by coalescence and fragmentation, and the resulting decay-electron spectra are compared to recent RHIC data.

PACS: 12.38.Mh,24.85.+p,25.75.Nq

Introduction. Recent experimental results at the Relativistic Heavy-Ion Collider (RHIC) have given convincing evidence for the creation of dense partonic matter with large collectivity and opacity. A key challenge in the description of this strongly interacting quark-gluon plasma (sQGP) is the understanding of the microscopic reaction mechanisms, leading to its approximate behavior as a nearly perfect fluid.

Heavy quarks (HQs) are valuable probes for the properties of the dense matter produced in heavy-ion reactions, since they are expected to be created in the early stages of the collision. Recent measurements of the transverse-momentum (p_T) spectra of non-photonic single electrons (e^{\pm}) at RHIC, attributed to the decay of D- and B-mesons, show a surprisingly small nuclear modification factor, R_{AA}^e [1, 2, 3], and large elliptic flow, v_2^e [4, 5, 6]. To explain these findings, especially the large $v_2^{(e)}$, quark-coalescence models [7, 8, 9] require that charm quarks are in approximate thermal equilibrium with light partons. A large degree of c-quark thermalization is, however, not supported by approaches based on perturbative Quantum Chromodynamics (pQCD), e.g., using radiative energy-loss [10, 11]. While at lower p_T elastic scattering processes parametrically dominate the energy loss ($\sim 1/\sqrt{\alpha_s}$) [12], a c-quark R_{AA} compatible with the observed R_{AA}^e can only be obtained with unrealistically large values of the strong coupling constant [12]. Also the combined effects of elastic and radiative energy loss may not explain the experimental findings [13].

In this talk we introduce *D*- and *B*-meson like resonance states in the sQGP [14] mediating elastic rescattering for heavy quarks. Employing pertinent drag and diffusion coefficients within a Fokker-Planck approach [17], we calculate HQ distributions in a flowing thermal QGP to simulate semi-central Au-Au collisions at RHIC [15]. Hadronization to *D*- and *B*-mesons is described by a combined quark-coalescence and fragmentation model, and subsequent semileptonic decay electron spectra are compared to recent data.

FIGURE 1. Nuclear modification factor, R_{AA} (left panel), and elliptic flow, v_2 (right panel), of semileptonic D- and B-meson decay electrons in b=7 fm, $\sqrt{s_{NN}}$ = 200 GeV Au-Au collisions assuming different elastic HQ interactions in the QGP with subsequent coalescence, including the thermal weight factor described in the text, and fragmentation hadronization, compared to PHENIX and STAR data [1, 2, 5, 6].

Heavy-quark rescattering in the QGP. Lattice QCD (lQCD) computations of hadronic correlators and lQCD-based effective models suggest that mesonic resonance/bound states survive in the QGP up to temperatures of $\sim 2T_c$ in the light- and heavy-quark sector [18]. We here assume that the lowest pseudoscalar D- and B-meson states persist above the heavy-light quark threshold [14]. Chiral and HQ symmetry imply the degeneracy with scalar, vector and axial-vector states. Pertinent resonant Q- \bar{q} cross sections are supplemented with leading-order pQCD processes [16], using $\alpha_s = g^2/(4\pi) = 0.4$. The evaluation of drag and diffusion coefficients within a Fokker-Planck model [17] results in HQ thermalization times which are lower by a factor ~ 3 compared to pQCD scattering [15].

These coefficients are used in a relativistic Langevin simulation [12] for the rescattering of HQs in an isentropically expanding QGP fireball corresponding to b=7 fm Au-Au collisions at RHIC. The expansion parameters are determined to resemble the time evolution of radial and elliptic flow in hydrodynamic models [19], with an ideal QGP equation of state with 2.5 flavors and a formation time of 1/3 fm/c (initial temperature $T_0=340$ MeV). The proper thermal equilibrium limit in the Langevin process is implemented via the Hänggi-Klimontovich realization [20], with longitudinal diffusion coefficient $B_1=TEA$ [12] (Einstein's dissipation-fluctuation relation).

The initial HQ- p_T -distributions and the relative magnitude of c- and b-quark spectra are determined by fitting experimental D and D^* spectra in d-Au collisions [21]. The corresponding e^{\pm} spectra saturate data from p-p and d-Au for $p_T^e \lesssim 3.5$ GeV [21, 22] with the missing yield at higher p_T attributed to B-meson decays, leading to a cross-section ratio of $\sigma_{b\bar{b}}/\sigma_{c\bar{c}}=4.9\cdot 10^{-3}$ and a crossing of D- and B-decay electrons at $p_T\simeq 5$ GeV.

Hadronization and single-electron observables. The c- and b-quark spectra from the Langevin simulation are used in the coalescence model of Ref. [7] with light-quark distributions from [23]. Here we take into account the thermal weight factor for the production of D^* mesons relative to D mesons, $(m_{D^*}/m_D)^{3/2} \exp[-(m_{D^*} - m_D)/T]$, as described in [7]. This leads to a reduced fraction of c-quarks which hadronize to D^* mesons via coalescence, compared to our analysis in [15]. To conserve c- and b-number unpaired HQs are hadronized via δ -function fragmentation. Finally, the single-

 e^{\pm} are obtained from D- and B-meson three-body decays. Fig. 1 shows that resonance scattering leads to a substantial increase in v_2^e and decrease in R_{AA}^e , as compared to pQCD rescattering alone. Coalescence further amplifies v_2^e but also increases R_{AA}^e . The B-meson contributions reduce the effects for $p_T \gtrsim 3$ GeV.

Note that the nonperturbative resonance formation mechanism employed in this work importantly resides on a finite (equilibrium) abundance of (anti-) quarks, while perturbative calculations [11, 10] typically assume a maximum of color charges entirely residing in gluons.

Conclusions. Assuming the survival of D- and B-meson resonances in the sQGP, we have evaluated c- and b-quark spectra in an expanding fireball at RHIC within a relativistic Langevin simulation. The elastic resonance rescattering of c-quarks leads to an R_{AA} down to 0.2 and v_2 up to 10%, while b-quarks are less affected. The HQs were hadronized in a combined quark-coalescence and fragmentation model followed by semileptonic D- and B-meson decay. The resulting R_{AA}^e and v_2^e are in reasonable agreement with recent RHIC data, suggesting that HQ-interactions via resonances may play an important role in the understanding of the microscopic properties of the sQGP, especially the rapid thermalization of heavy quarks.

Acknowledgments. One of us (HvH) has been supported in part by a F.-Lynen Fellowship of the A.-v.-Humboldt Foundation. This work has been supported in part by a U.S. National Science Foundation CAREER award under grant PHY-0449489.

REFERENCES

- 1. S.S. Adler *et al.* [PHENIX Collaboration], Phys. Rev. Lett. **94**, 082301 (2005).
- 2. B. Jacak et al. [PHENIX Coll.], nucl-ex/0508036.
- 3. J. Bielcik et al. [STAR Coll.], nucl-ex/0511005.
- 4. S.S. Adler et al. [PHENIX Coll.], Phys. Rev. C 72, 024901 (2005).
- 5. F. Laue *et al.* [STAR Coll.], J. Phys. G **31**, S27 (2005).
- 6. Y. Akiba *et al.* [PHENIX Coll.], nucl-ex/0510008.
- 7. V. Greco, C.M. Ko, R. Rapp, Phys. Lett. **B595**, 202 (2004).
- 8. D. Molnar, J. Phys. **G31**, \$421 (2005).
- 9. B. Zhang, L.W. Chen, C.M. Ko, Phys. Rev. C 72, 024906 (2005).
- 10. M. Djordjevic, M. Gyulassy, S. Wicks, Phys. Rev. Lett. 94, 112301 (2005).
- 11. N. Armesto *et al.*, Phys. Rev. D **71**, 05027 (2005).
- 12. G.D. Moore, D. Teaney, Phys. Rev. C 71, 064904 (2005).
- 13. S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, nucl-th/0512076.
- 14. H. van Hees, R. Rapp, Phys. Rev. C 71, 034907 (2005).
- 15. H. van Hees, V. Greco, R. Rapp, nucl-th/0508055.
- 16. B.L. Combridge, Nucl. Phys. **B151**, 429 (1979).
- 17. B. Svetitsky, Phys. Rev. D 37, 2484 (1988).
- M. Asakawa, T Hatsuda, Phys. Rev. Lett. 92, 012001 (2004); F. Karsch, E. Laermann, hep-lat/0305025; R. Morrin *et al*, PoS LAT2005 (2005) 176; E.V. Shuryak, I. Zahed, Phys. Rev. C 70, 021901(R) (2004); C.Y. Wong, Phys. Rev. C 72, 034906 (2005); M. Mannarelli, R. Rapp, Phys. Rev. C 72, 064905 (2005); Á. Mócsy, P. Petretczky, hep-ph/0512156.
- 19. P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000).
- 20. J. Dunkel, P. Hänggi, Phys. Rev. E **71**, 016124 (2005).
- 21. J. Adams *et al* [STAR Collaboration], Phys. Rev. Lett. **94**, 062301 (2005); A. Tai *et al* [STAR Collaboration], J. Phys. G **30**, S809 (2004).
- 22. A.A.P. Suaide et al [STAR Collaboration], J. Phys. G 30, S1179 (2004).
- 23. V. Greco, C.M. Ko, P. Levai, Phys. Rev. C 68, 034904 (2003).