Dileptons in NN and AA collisions

Hendrik van Hees

Goethe-Universität Frankfurt

November 28, 2011

1 Electromagnetic probes in heavy-ion collisions

2 Dileptons at SIS energies (with GiBUU)

Oileptons at SPS and RHIC (QGP+hadronic many-body+fireball)

4 Conclusions

Electromagnetic probes in heavy-ion collisions

Vector Mesons and electromagnetic Probes

• $\ell^+\ell^-$ thermal emission rates \Leftrightarrow em. current-correlation function, $\Pi_{\mu\nu}$

[L. McLerran, T. Toimela 85, H. A. Weldon 90, C. Gale, J.I. Kapusta 91]

$$\frac{\mathrm{d}N_{e^+e^-}}{\mathrm{d}^4 \times \mathrm{d}^4 q} = -g^{\mu\nu} \frac{\alpha^2}{3q^2\pi^3} \, \mathrm{Im} \, \Pi^{(\mathrm{ret})}_{\mu\nu}(q) \Big|_{q^2 = M^2_{e^+e^-}} \, f_B(q_0)$$

• vector-meson dominance model:

$$\Pi_{\mu\nu} = \underbrace{\gamma^{*}}_{\gamma^{*}} \underbrace{\gamma^{*}}_{\gamma^{*}}$$

0

hadronic many-body theory for vector mesons

● elementary processes ⇔ cut self-energy diagrams

Relation to the QCD-phase diagram

- at high temperature/density: restoration of chiral symmetry
- Lattice QCD: $T_c^{\chi} \simeq T_c^{\text{deconf}}$

- Mechanism of chiral restoration?
- Two main theoretical ideas
 - "dropping masses": $m_{
 m had} \propto \left< ar{\psi} \psi \right>$
 - "melting resonances": broadening of spectra through medium effects
 - More theoretical question: Realization of chiral symmetry in nature?

5 / 24

Dileptons at SIS energies

- dileptons from heavy-ion collisions at DLS at E = 1A GeV[Porter et al, PRL 79, 1229 (1997)]
- large enhancement at low invariant masses unexplained
- DLS puzzle

• DLS measurement confirmed by HADES!

Motivation for Transport Models

• description of various nuclear reactions within one framework

• pA, γ A, eA, ν A, AA

- time evolution of system \Rightarrow need dynamical approach
- transport models well suited for Monte-Carlo simulations (test-particle approach)
- strongly interacting many-body system: "medium modifications" of hadrons
- challenging task: description of broad resonance-like excitations
 - off-shell transport with consistent dynamical evolution of spectral properties
 - conservation laws
 - thermodynamic consistency
- in this talk: GiBUU model [O. Buss et al arXiv: 1106.1344 [hep-ph]; accepted@Phys. Rept.]
 - dileptons in pp and pNb collisions (HADES)
 - work with J. Weil, K. Gallmeister,...

The Boltzmann-Uehling-Uhlenbeck Equation

• time evolution of phase-space distribution functions

$$[\partial_t + (\vec{\nabla}_p H_i) \cdot \vec{\nabla}_x - (\vec{\nabla}_x H_i) \cdot \vec{\nabla}_p] f_i(t, \vec{x}, \vec{p}) = I_{\text{coll}}[f_1, \dots, f_i, \dots, f_j]$$

- Hamiltonian *H_i*
 - selfcons. hadronic mean fields, Coulomb pot., "off-shell pot."
- collision term I_{coll}
 - two- and three-body decays/collisions
 - multiple coupled-channel problem
 - at low reaction energies: resonance model
 - at high reaction energies: (modified) PYTHIA
 - new: extend resonance model to cover whole HADES range

Resonance Model

- reactions dominated by resonance scattering: ab
 ightarrow R
 ightarrow cd
- Breit-Wigner cross-section formula

$$\sigma_{ab\to R\to cd} = \frac{2s_R + 1}{(2s_a + 1)(2s_b + 1)} \frac{4\pi}{p_{\text{lab}}^2} \frac{s\Gamma_{ab\to R}\Gamma_{R\to cd}}{(s - m_R^2)^2 + s\Gamma_{\text{tot}}^2}$$

• applicable for low-energy nuclear reactions [Teis (PhD thesis 1996)]

- uses strict vector-meson dominance $(J^{\mu}_{had, em} \propto V^{\mu})$
- Resonance model in Teis: $NN \rightarrow NR, \Delta\Delta$; extension $NN \rightarrow RR \ (m_R \lesssim 2 \text{ GeV})$
- Teis: describes exclusive π , 2π , ρ , η production extension: $\pi\eta$, $\pi\rho$, 3π , 2η , 2ρ ,...
- lack of experimental data \Rightarrow fit to PYTHIA $\Rightarrow \pi \rho$, $\pi \eta$ dominant for HADES energies $\sqrt{s_{max}} = 3.2 \text{ GeV}$
- $NN \to \Delta R \to (N\pi)(\eta N), (N\pi)(\rho N)$ new production channels $NN \to \Delta S_{11}(1535) \to NN\pi\eta, NN \to \Delta N^* \to NN\pi\rho$ with $N^* \in \{D_{13}(1520), S_{11}(1650), F_{15}(1680), P_{13}(1720)\};$ $NN \to \Delta \Delta^* \to NN\pi\rho$ with $\Delta^* \in \{S_{31}(1620), D_{33}(1700), F_{35}(1905)\}$

ρ -production spectrum

Hendrik van Hees (GU Frankfurt)

ρ -production spectrum

• mass spectrum for ρ production in 3.5 GeV pp collisions $(\sqrt{s} = 3.18 \text{ GeV})$ S₃₁(1620 10⁰ F₃₇(1950) 10⁻¹ dσ/dm_{ee} [μb/GeV] 10⁻² 10⁻³ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1

Dileptons in 3.5 GeV pp collisions

Hendrik van Hees (GU Frankfurt)

Dileptons in 3.5 GeV pp collisions

Dileptons in 1.25 GeV pp collisions

- pp well described
- pn from dp
- trouble for pn (work in progress)

Dileptons at SPS and RHIC

radiation from thermal sources: Hadronic many-body theory

[R. Rapp, J. Wambach 99]

- baryon effects important
- $n_B + n_{\bar{B}}$ relevant quantity (not net-baryon density)!

Dilepton rates: Hadron gas \leftrightarrow QGP

- in-medium hadron gas matches with QGP
- $\bullet\,$ similar results also for $\gamma\,$ rates
- "quark-hadron duality" !?
- consistent with chiral-symmetry restoration
- "resonance melting" rather than "dropping masses"

Sources of dilepton emission in heavy-ion collisions

- initial hard processes: Drell Yan

$$\frac{1}{q_{T}}\frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}M\mathrm{d}q_{T}} = \int \mathrm{d}^{4}x \int \mathrm{d}y \int M\mathrm{d}\varphi \frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}^{4}x\mathrm{d}^{4}q} \mathsf{Acc}(M,q_{T},y)$$

use cylindrical thermal fireball with QGP, mixed and hadronic phase
"corona" ⇔ emission from "primordial" mesons (jet-quenching)
after thermal freeze-out ⇔ emission from "freeze-out" mesons
[Cooper, Frye 1975]

$$N^{(fo)} = \int \frac{\mathrm{d}^3 q}{q_0} \int q_{\mu} \mathrm{d}\sigma^{\mu} f_B(u_{\mu}q^{\mu}/T) \frac{\Gamma_{\mathsf{meson} \to \ell^+ \ell^-}}{\Gamma_{\mathsf{meson}}} \mathsf{Acc}$$

CERES/NA45 dielectron spectra

- $\bullet\,$ good agreement also for dielectron spectra in 158 ${\rm GeV}$ Pb-Au
- low-mass tail from baryon effects

Importance of baryon effects

- baryonic interactions important!
- in-medium broadening
- Iow-mass tail!

IMR: QGP vs. multi-pion radiation

• inconclusive whether hadronic or partonic emission in IMR!

Dileptons@RHIC: (Another) new Puzzle?

huge enhancement in the LMR unexplained yet!

model: Rapp, HvH [A. Adare et al (PHENIX), PRC 81, 034911 (2010)]

Hendrik van Hees (GU Frankfurt)

Conclusions and Outlook

- dilepton spectra ⇔ in-medium em. current correlator
- SIS energies
 - GiBUU for pp, pn with resonance modell for all HADES energies
 - pn still a problem (work in progress)
 - p Nb, AA work in progress
 - similar study within UrQMD in progress (with S. Endres)
- SPS and RHIC energies
 - excess yield dominated by radiation from thermal sources
 - baryons essential for in-medium properties of vector mesons
 - melting vector mesons with little mass shift
 - IMR well described by scenarios with radiation dominated either by QGP or multi-pion processes (depending on EoS)
 - "quark-hadron duality" of $\ell^+\ell^-$ rates around T_c
 - compatible with chiral symmetry restoration!
 - new puzzle @ RHIC?!?
 - studies in UrQMD+hydro hybrid model planned (with S. Endres)