Dileptons in Hot and/or Dense Matter and the Chiral Phase Transition

Hendrik van Hees

Justus-Liebig-Universität Gießen

February 22, 2011

Institut für Theoretische Physik

Outline

QCD and Chiral Symmetry

- 2 Chiral Symmetry and Hadron Phenomenology
- 3 Vector Mesons and electromagnetic Probes
- In Effective Models for Hadronic Many-Body Theory
- 5 Comparison with dilepton data@SPS and RHIC
- 6 Conclusions and Outlook

• Theory for strong interactions: QCD

$$\mathscr{L}_{\mathsf{QCD}} = -\frac{1}{4} F^{\mu\nu}_{a} F^{a}_{\mu\nu} + \overline{\psi} (\mathrm{i} D \!\!\!/ - \hat{M}) \psi$$

- Particle content:
 - ψ : Quarks, including flavor- and color degrees of freedom, $\hat{M} = \text{diag}(m_u, m_d, m_s, \ldots) = \text{current quark masses}$
 - A^a_{μ} : gluons, gauge bosons of SU(3)_{color}
- Symmetries
 - fundamental building block: local $SU(3)_{color}$ symmetry
 - in light-quark sector: approximate chiral symmetry
 - dilation symmetry (scale invariance for $M \rightarrow 0$)

"Fate" of Symmetries

• classical field theory: continuous symmetry \Rightarrow conserved current

• chiral limit: $\hat{M} \to 0 \Rightarrow$, scalar and pseudocalar U(1) symmetries

•
$$\psi \to \exp[-i(\alpha_s + \gamma_5 \alpha_p)]\psi$$

• scalar and pseudoscalar currents: $\vec{z}_{(0)}$

$$j^{(0)}_{\mu} = \psi \gamma^{\mu} \psi, \quad j^{(0)}_{A\mu} = \psi \gamma_5 \gamma^{\mu} \psi$$

• $U(1)_A$ does not survive quantization (Anomaly)

•
$$\partial^{\mu} \vec{j}^{(0)}_{A\mu} = \frac{3}{8} \alpha_s \epsilon^{\mu\nu\rho\sigma} A^a_{\mu\nu} A^a_{\rho\sigma}$$

- Not a "bug" but a feature:
 - η' not a (pseudo-)Goldstone boson
 - correct rate for $\pi^0 \to 2\gamma$

Remark: Anomalies potential trouble in standard model of strong and "electroweak" interactions \leftrightarrow "cured" by particle content, because anomaly contributions from quarks and leptons cancel exactly!

"Fate" of symmetries

- in classical field theory: each continuous symmetry defines conserved current (Noether's theorem)
- chiral limit: $\hat{M} \rightarrow 0 \Rightarrow$, vector-axial-vector symmetries
 - $\psi \to \exp[-i(\vec{\alpha}_V + \gamma_5 \vec{\alpha}_A)\vec{T}]\psi$
 - \vec{T} : generators of SU(2)_{flavor} (or SU(3)_{flavor})
 - conserved vector and axial-vector currents:

$$\vec{j}_V^\mu = \overline{\psi} \vec{T} \gamma^\mu \psi, \quad \vec{j}_A^\mu = \overline{\psi} \vec{T} \gamma_5 \gamma^\mu \psi$$

- in vacuum, chiral symmetry spontaneously broken by quark condensate: $\langle 0 | \overline{\psi} \psi | 0 \rangle \neq 0$
- (approximate) Goldstone bosons: π , K, η (pseudoscalar octet)
- "real world": chiral symmetry slightly explicitly broken by quark masses $\hat{M} \neq 0$: $SU_L(2) \times SU_R(2) \Rightarrow SU_V(2)$
- isospin symmetry slightly broken by light-quark-mass differences

- classical field theory: continuous symmetry \Rightarrow conserved current
- $\hat{M} \rightarrow 0 \Rightarrow$ dilatation (or scale) symmetry
 - $x \to \lambda x$, $\psi \to \lambda^{-3/2} \psi$, $A^a_\mu \to \lambda^{-1} A^a_\mu$
 - dilatation current: $j_{D}^{\mu} = x_{\nu} \Theta^{\mu\nu}$
 - Scale invariance does not survive quantization ("Trace" Anomaly) $\partial_{\mu}j^{\mu}_{D} = \Theta_{\mu}{}^{\mu} = -\frac{\beta(\alpha_{s})}{4\alpha_{s}}A^{a}_{\mu\nu}A^{a\mu\nu}$
 - $\beta(\alpha_s)$: Gell-Mann Low function, rules the running of the coupling with renormalization scale
 - Not a "bug" but a feature: hadrons get most of their mass from it!

Phenomenology from Chiral Symmetry

- Use (approximate) chiral symmetry to build effective models
- Ward identities

• PCAC:
$$\left\langle 0 \left| \partial^{\mu} j_{A\mu}^{k} \right| \pi^{j}(\vec{k}) \right\rangle = \mathrm{i} F_{\pi} m_{\pi}^{2} \delta^{kj}$$

- $m_{\pi}^2 F_{\pi}^2 = -(m_u + m_d) \langle 0 | \overline{u}u | 0 \rangle$ (GOR relation)
- Spontaneous breaking causes splitting of chiral partners:

Finite Temperature/Density: Idealized theory picture • partition sum: $Z(V, T, \mu_q, \Phi) = \text{Tr}\{\exp[-(\mathbf{H}[\Phi] - \mu_q \mathbf{N})/T]\}$ **Ζ[***V*,*T*,μ,Φ] leal lime Thermodyn. potentials bulk properties ynamical quantities off equilibrium: derivation of BUU,... analytic continuation vacuum

[...,K. Chou, Z. Su, B. Hao, L. Yu 85, N.P. Landsmann, C.G. van Weert 87, E.A. Calzetta, B. Hu 08, ...]

- Asymptotic freedom \Rightarrow quark condensate melts at high enough temperatures
- all bulk properties from partition sum:

$$Z(V,T,\mu_q) = \text{Tr}\{\exp[-(\mathbf{H} - \mu_q \mathbf{N})/T]\}$$

- Free energy: $\Omega = -\frac{T}{V} \ln Z = -P$
- Quark condensate: $\left<\overline{\psi}_q\psi_q\right>_{T,\mu_q} = rac{V}{T}rac{\partial P}{\partial m_q}$
- Lattice QCD indicates: Chiral symmetry restoration \leftrightarrow deconfinement phase transition (same T_c)

Why Electromagnetic Probes?

- γ, ℓ^{\pm} : only e.m. interactions
- reflect whole "history" of collision
- chance to see chiral symm. rest. directly?

Vector Mesons and electromagnetic Probes

• photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function $(J_{\mu} = \sum_{f} Q_{f} \overline{\psi}_{f} \gamma_{\mu} \psi_{f})$

[L. McLerran, T. Toimela 85, H. A. Weldon 90, C. Gale, J.I. Kapusta 91]

$$\begin{aligned} \Pi_{\mu\nu}^{<}(q) &= \int \mathrm{d}^{4}x \exp(\mathrm{i}q \cdot x) \left\langle J_{\mu}(0) J_{\nu}(x) \right\rangle_{T} = -2f_{B}(q_{0}) \operatorname{Im} \Pi_{\mu\nu}^{(\mathrm{ret})}(q) \\ q_{0} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{4}x \mathrm{d}^{3}\vec{q}} &= \frac{\alpha}{2\pi^{2}} g^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}^{(\mathrm{ret})}(q) \Big|_{q_{0} = |\vec{q}|} f_{B}(q_{0}) \\ \frac{\mathrm{d}N_{e^{+}e^{-}}}{\mathrm{d}^{4}x \mathrm{d}^{4}q} &= -g^{\mu\nu} \frac{\alpha^{2}}{3q^{2}\pi^{3}} \operatorname{Im} \Pi_{\mu\nu}^{(\mathrm{ret})}(q) \Big|_{q^{2} = M_{e^{+}e^{-}}^{2}} f_{B}(q_{0}) \end{aligned}$$

- to lowest order in α : $e^2 \Pi_{\mu\nu} \simeq \Sigma^{(\gamma)}_{\mu\nu}$
- vector-meson dominance model:

$$\Sigma^{\gamma}_{\mu
u} =$$

0

• derivable from partition sum $Z(V,T,\mu,\Phi)!$

• vector and axial-vector mesons \leftrightarrow correlators of the respective currents

$$\Pi^{\mu\nu}_{V/A}(p) := \int \mathrm{d}^4 x \exp(\mathrm{i} p x) \left\langle J^{\nu}_{V/A}(0) J^{\mu}_{V/A}(x) \right\rangle_{\mathsf{ret}}$$

• Ward-Takahashi Identities from chiral symmetry \Rightarrow Weinberg-sum rules

$$f_{\pi}^{2} = -\int_{0}^{\infty} \frac{\mathrm{d}p_{0}^{2}}{\pi p_{0}^{2}} [\operatorname{Im} \Pi_{V}(p_{0}, 0) - \operatorname{Im} \Pi_{A}(p_{0}, 0)]$$

• spectral functions of vector (e.g. ρ) and axial vector (e.g. a_1) directly related to order parameters of chiral symmetry!

- different models with chiral symmetry: equivalent only on shell ("low-energy theorems")
- model-independent conclusions only in low-temperature/density limit (chiral perturbation theory) or from lattice-QCD calculations
- mass spectrum of vector mesons depends on realization chiral symmetry
 - hidden local symmetry $_{\rm [Bando,\ Kugo,\ PRL\ 54,\ 1215\ (1984)]}\Rightarrow$ "vector manifestation" of $\chi S:$ $m_\rho\to 0$ ("dropping mass")
 - generalized hidden local symmetry (ρ and a_1 as gauge fields): "normal realization" of χ S: $m_{\rho} \simeq \text{const}$ ("melting resonances")
- use phenomenological hadronic models + many-body techniques to assess medium modifications of vector mesons

QCD sum rules

$$M_n = -\int_0^\infty \frac{\mathrm{d}s}{\pi} s^n [\operatorname{Im} \Pi_V(s) - \operatorname{Im} \Pi_A(s)]$$
$$M_{-2} = \frac{1}{3} f_\pi^2 \left\langle r_\pi^2 \right\rangle - F_A, \quad M_{-1} = f_\pi^2$$
$$M_0 = 0, \quad M_1 = c\alpha_s \left\langle (\overline{q}q)^2 \right\rangle$$

[Weinberg 67; Das et al 67; Kapusta, Shuryak 93]

- theory connection of chiral symm. restoration with dileptons in HICs
 - Π_V , Π_A from chiral hadronic model at finite T, μ_B
 - compare $M_n(T,\mu_B)$ to IQCD chiral order parameters at finite T
 - compare Π_V from hadronic model to dileptons from HICs
- QCD sum rules
 - relate current correlators to condensates
 - VMD ⇔ vector-meson spectral functions
 - dropping-mass and broadening scenarios possible

Models

- Phenomenological hadronic models [Chanfray et al, Herrmann et al, Rapp, Wambach et al, ...] for vector mesons
- important incredients: ππ interactions baryonic excitations

- Baryon (resonances) important, even at RHIC with low **net** baryon density $n_B n_{\overline{B}}$
- reason: $n_B + n_{\overline{B}}$ relevant (CP invariance of strong interactions)

The ρ -meson (vacuum)

• most important for ρ -meson: pions

The ρ -meson (cold matter)

[W. Peters, M. Post, H. Lenske, S. Leupold, U. Mosel, NPA 632, 109 (1998)]

- include all four-star resonances up to $M=1.9~{\rm GeV}$
- particularly important: s-wave coupling $N(1520), \Delta(1620), \Delta(1650), \Delta(1700)$

Dilepton rates: Hadron gas \leftrightarrow QGP

- at $T \simeq T_c$: HG \simeq QGP
- QGP rate
 - HTL improved $\overline{q} + q \rightarrow \ell^+ + \ell^-$
 - in good agreement with IQCD results
 - $\bullet\,$ similar results also for γ rates
- "quark-hadron duality"?

```
[R. Rapp, J. Wambach, Eur. Phys. J. A 6, 415 (1999)]
```

In the source [McLerran, Toimela 1985]

$$\frac{1}{q_T} \frac{\mathrm{d}N^{(\mathrm{thermal})}}{\mathrm{d}M \mathrm{d}q_T} = \int \mathrm{d}^4 x \int \mathrm{d}y \int M \mathrm{d}\varphi \frac{\mathrm{d}N^{(\mathrm{thermal})}}{\mathrm{d}^4 x \mathrm{d}^4 q} \mathsf{Acc}(M, q_T, y)$$

- initial hard processes: Drell Yan
- "corona" ⇔ emission from "primordial" mesons (jet-quenching)
- after thermal freeze-out ⇔ emission from "freeze-out" mesons [Cooper, Frye 1975]

$$N^{(\text{fo})} = \int \frac{\mathrm{d}^3 q}{q_0} \int q_{\mu} \mathrm{d}\sigma^{\mu} f_B(u_{\mu}q^{\mu}/T) \frac{\Gamma_{\text{meson} \to \ell^+ \ell^-}}{\Gamma_{\text{meson}}} \mathrm{Acc}$$

• use simple homogeneous cylindrical fireball of thermalized medium

CERES/NA45 dielectron spectra

- \bullet good agreement also for dielectron spectra in $158~{\rm GeV}$ Pb-Au
- low-mass tail from baryon effects

Importance of baryon effects

- Baryonic interactions important!
- in-medium broadening
- low-mass tail!

Dileptons@RHIC: New Puzzle?

Ulrich's Legacy in "Dilepton Physics"

- early 1990ies: Low-energy NA and AA
 - OBE models, form factors, gauge invariance,...
 - BUU approach for N, $\Delta,$ $N^*(1535),$ $N^*(1440),$ $\pi,$ η
 - dileptons including medium modifications of ρ 's
 - Collaborators: M. Schäfer, H. C. Dönges, A. Engel, G. Wolf, W. Cassing, W. Ehehalt, E. Bratkovskaya, F. de Jong...
- late 1990ies: in-medium spectral properties of ρ 's, relativistic HICs, QGP
 - further studies on OBE models, bremsstrahlung, formfactors,... (see T. Galatyuk's talk)
 - ρ mesons in nuclear matter, importance of baryon resonances (p- and s-waves)
 - QCD sum rules
 - dilepton emission from QGP (survival of *p*-like excitations!)
 - Collaborators: R. Shyam, W. Peters, M. Post, H. Lenske, S. Leupold, M. Thoma,...

- dilepton spectra \Leftrightarrow in-medium em. current correlator
 - insight into fundamental (symmetry) properties of QCD
 - properties of hot/dense strongly interacting matter \Leftrightarrow QCD-phase diagram
 - chiral symmetry (restoration)
 - origin of hadron mass?!?
- model for dilepton sources
 - radiation from thermal sources: QGP, ρ , ω , ϕ
 - ρ -decay after thermal freeze-out
 - \bullet decays of non-thermalized primordial $\rho{'}{\rm s}$
 - Drell-Yan annihilation, correlated $D\overline{D}$ decays
- invariant-mass spectra and medium effects
 - excess yield dominated by radiation from thermal sources
 - baryons essential for in-medium properties of vector mesons
 - melting ρ with little mass shift robust signal! (independent of T_c)
 - "parton-hadron" duality of rates
 - \Leftrightarrow compatible with chiral-symmetry restoration!
 - dimuons in In-In (NA60), Pb-Au (CERES/NA45), γ in Pb-Pb (WA98)

- fireball/freeze-out dynamics $\Leftrightarrow m_T$ spectra and effective slopes
 - "non-thermal sources" important for $q_T\gtrsim 1~{
 m GeV}$
 - lower $T_c \Rightarrow$ higher hadronic temperatures \Rightarrow harder q_T spectra
 - to describe measured effective slopes $a_{\perp} = 0.085c^2/\text{fm} \rightarrow 0.1c^2/\text{fm}$
 - off-equilibrium effects (viscous hydro)?

• Further developments

- understand recent PHENIX results (large dilepton excess in LMR)
- vector- should be complemented with axial-vector-spectral functions $(a_1 \text{ as chiral partner of } \rho)$
- constrained with IQCD via in-medium Weinberg chiral sum rules
- direct connection to chiral phase transition!

• recent review: [R. Rapp, J. Wambach, HvH., Landolt-Brnstein, Volume I/23, 4-1 (2010)]