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Abstract

In this article we report on recent research on the properties of elementary parti-
cle matter governed by the strong nuclear force, at extremesof high temperature and
energy density. At about 1012 Kelvin, the theory of the strong interaction, Quantum
Chromodynamics (QCD), predicts the existence of a new stateof matter in which
the building blocks of atomic nuclei (protons and neutrons)dissolve into a plasma
of quarks and gluons. The Quark-Gluon Plasma (QGP) is believed to have prevailed
in the Early Universe during the first few microseconds afterthe Big Bang. Highly
energetic collisions of heavy atomic nuclei provide the unique opportunity to recre-
ate, for a short moment, the QGP in laboratory experiments and study its properties.
After a brief introduction to the basic elements of QCD in thevacuum, most notably
quark confinement and mass generation, we discuss how these phenomena relate to
the occurrence of phase changes in strongly interacting matter at high temperature, as
inferred from first-principle numerical simulations of QCD(lattice QCD). This will
be followed by a short review of the main experimental findings at the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The data taken in
collisions of gold nuclei thus far provide strong evidence that a QGP has indeed been
produced, but with rather remarkable properties indicative for an almost perfect liquid
with unprecedentedly small viscosity and high opacity. We then discuss how heavy
quarks (charm and bottom) can be utilized to quantitativelyprobe the transport prop-
erties of the strongly-coupled QGP (sQGP). The large heavy-quark mass allows to set
up a Brownian motion approach, which can serve to evaluate different approaches for
heavy-quark interactions in the sQGP. In particular, we discuss an implementation of
lattice QCD computations of the heavy-quark potential in the QGP. This approach gen-
erates “pre-hadronic” resonance structures in heavy-quark scattering off light quarks
from the medium, leading to large scattering rates and smalldiffusion coefficients.
The resonance correlations are strongest close to the critical temperature (Tc), sug-
gesting an intimate connection to the hadronization of the QGP. The implementation
of heavy-quark transport into Langevin simulations of an expanding QGP fireball at
RHIC enables quantitative comparisons with experimental data. The extracted heavy-
quark diffusion coefficients are employed for a schematic estimate of the shear viscos-
ity, corroborating the notion of a strongly-coupled QGP in the vicinity ofTc.
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1 Introduction

1.1 Elementary Particles and Forces

The quest for the elementary constituents from which the matter around us is built has
always fascinated mankind. In the fifth century B.C., Greek philosophers introduced the
notion of anindivisibleentity of matter, theατoµoσ (atom). More than 2000 years passed
before this concept was systematized in the nineteenth century in terms of the chemical
elements as the building blocks of the known substances. Thelarge variety of the chemical
elements, however, called for a deeper substructure withinthese atoms, which were soon
revealed as bound states of negatively charged electrons (e−) and positively charged atomic
nuclei, held together by their mutual attraction provided by the electromagnetic force. The
nuclei, while very small in size (but carrying about 99% of the atom’s mass), were found
to further decompose in positively charged protons (p) and uncharged neutrons (n), both
of approximately equal mass,Mp,n ≃ 0.94 GeV/c2. This was a great achievement, since at
this point all matter was reduced to 3 particles:p, n, e−. There was still the problem of
the stability of the atomic nucleus, since packing togethermany positive charges (protons)
in a small region of space obviously implies a large electricrepulsion. The solution to this
problem triggered the discovery of the Strong Nuclear Forceacting between nucleons (pro-
tons and neutrons); it turned out to be a factor of∼100 stronger than the electromagnetic
one, but with a very short range of only a few femtometer (1 fm=10−15 m). In the 1950’s
and 1960’s, rapid progress in particle accelerator technology opened new energy regimes
in collision experiments of subatomic particles (e.g.,p-p collisions). As a result, many
more particles interacting via the Strong Force (so-calledhadrons) were produced and dis-
covered, including “strange” hadrons characterized by a for strongly interacting particles
untypically long lifetime. Again, this proliferation of states (the “hadron zoo”) called for
yet another simplification in terms of hadronic substructure. Gell-Mann introduced three
types of “quarks” [1] as the elementary constituents from which all known hadrons could
be built; they were dubbed up (u), down (d) and strange (s) quarks, with fractional electric
charges +2/3, -1/3 and -1/3, respectively. In this scheme, hadrons are either built from 3
quarks (forming baryons, e.g.,p= (uud), n= (udd)), or a quark and an antiquark (forming
mesons, e.g.,π+ = (ud̄) or K0 = (ds̄)). Three more heavy quark “flavors”, carrying signif-
icantly larger masses than the light quarks (u, d, s), were discovered in the 1970’s – charm
(c) and bottom (b) – as well as in 1995 – the top (t) quark.

The discovery of an increasingly deeper structure of the fundamental matter particles
is intimately related to the question of their mutual forceswhich, after all, determine how
the variety of observed composite particles is built up. Theunderstanding of fundamental
interactionsis thus of no less importance than the identification of the matter constituents.
The modern theoretical framework to provide a unified description are Quantum Field The-
ories (QFTs), which combine the principles of Quantum Mechanics with those of Special
Relativity. In QFTs, charged matter particles (fermions ofhalf-integer spin) interact via the
exchange of field quanta (bosons with integer spin). The QFT of the Electromagnetic Force
is Quantum Electro-Dynamics (QED), where the associated field quantum is the photon (γ)
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Figure 1: Dependence of the QCD coupling constant,αs = g2/4π , on the momentum trans-
fer, Q (or inverse distance 1/r ∼ Q), of the interaction. Figure taken from Ref. [6].

coupling to electric charges (positive) and anticharges (negative). The coupling constant (or
charge) of QED is rather small,αem = e2/4π=1/137, which allows one to organize theoret-
ical calculations in a series of terms characterized by increasing powers ofαem, so-called
perturbation theory. The smallness ofαem then allows for precise perturbative calculations
of electromagnetic observables with an accuracy exceedingten significant digits for select
quantities, rendering QED one of the most successful theories in physics.

The QFT of the strong nuclear force, Quantum Chromo-Dynamics (QCD), has been
developed in the early 1970’s [2, 3]. The chromo (=color) charge of quarks comes in three
variants: red, green and blue (plus their anticharges), rendering QCD a mathematically
more involved theory. In particular, the force quanta (“gluons”) themselves carry a nonzero
(color-) charge [4], giving rise to gluon self-interactions. The latter are closely related to
another remarkable property of QCD, namely the “anti-screening” of its charges in the
vacuum: quantum fluctuations, i.e., the virtual quark-gluon cloud around a color charge,
induces an increase of the effective charge with increasingdistance, a phenomenon known
as asymptotic freedom which manifests itself in the runningcoupling constant (or charge)
of QCD, αs(Q), cf. Fig. 1. On the one hand, the interactions at small distances,r (which,
by means of Heisenberg’s uncertainty principle, corresponds to large momentum transfers,
Q∼ 1/r, in a scattering process), are comparatively weak and perturbation theory is appli-
cable (much like in QED). In this regime, QCD is well tested, being in excellent agreement
with experiment (albeit not at the same level of precision asQED; even at very largeQ, αs

is still a factor of∼10 larger thanαem). On the other hand, the coupling constant grows
toward smallQ entering the realm of “strong QCD” where newnonperturbativephenom-
ena occur. Most notably these are the Confinement of color charges and the “Spontaneous
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Breaking of Chiral Symmetry” (SBCS). The former refers to the fact that quarks and glu-
ons have never been observed as individual particles, but only come in “colorless” baryons
(where the 3 quarks carry an equal amount of the 3 different color charges) or mesons
(where quark and antiquark carry color charge and anticharge). Spontaneous Chiral Sym-
metry Breaking is closely related to the complex structure of the QCD vacuum; the latter
is filled with various condensates of quark-antiquark and gluon fields. In particular, the
scalar quark condensate of up and down quarks can be quantified by a vacuum expecta-
tion value,〈0|q̄q|0〉 ≃ (−250 MeV)3, translating into a total pair density of about 4 per
fm3.1 Thus, the QCD vacuum is a rather dense state, and the quarks inside the hadrons
propagating through it acquire an effective mass,m∗

u,d ≃ 350 MeV, which is much larger
than their bare mass,m0

u,d ≃ 5-10 MeV. The QCD condensates are thus the main source
of the visible (baryonic) mass in the Universe. The theoretical understanding of the mech-
anisms underlying Confinement and SBCS, and their possible interrelation, constitutes a
major challenge in contemporary particle and nuclear physics research. Currently, the only
way to obtain first-principle information on this nonperturbative realm of QCD is through
numerical lattice-discretized computer simulations (lattice QCD). However, even with mod-
ern day computing power, the numerical results of lattice QCD computations for observable
quantities are often hampered by statistical and systematic errors (e.g., due to finite volume
and discretization effects); the use of effective models isthus an indispensable tool for a
proper interpretation and understanding of lattice QCD results, and to provide connections
to experiment.

1.2 Elementary Particle Matter and the Quark-Gluon Plasma

A particularly fascinating aspect of the Strong Force is thequestion of what kind of mat-
ter (or phases of matter) it gives rise to. The conventional phases of matter (such as solid,
liquid and gas phases of the chemical elements and their compounds, or even electron-ion
plasmas) are, in principle, entirely governed by the electromagnetic force. Matter governed
by the Strong Force is “readily” available only in form of atomic nuclei: the understand-
ing of these (liquid-like) droplets of nuclear matter (characterized by a mass density of
∼ 1.67· 1015g/cm3) is a classical research objective of nuclear physics. But what hap-
pens to nuclear matter under extreme compression and/or heating? What happens to the
(composite) nucleons? Is it possible to produce truly elementary-particle matter where nu-
cleons have dissolved into their quark (and gluon) constituents (as may be expected from
the asymptotic freedom, i.e., small coupling constant, of the quark and gluon interactions
at short distance)? Does the condensate structure of the QCDvacuum melt, similar to the
condensate of Cooper pairs in a superconductor at sufficiently high temperature? Are there
phase transitions associated with these phenomena? The investigation of these questions
not only advances our knowledge of strong QCD (including thefundamental problems of

1In nuclear and particle physics it is common practice to use units of h̄ (Planck’s constant),c (speed of light)
andk (Boltzmann constant); in these units, energies, e.g., can be converted into inverse distance by division
with h̄c≃ 197.33 MeV fm; energies are also equivalent to temperature.
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confinement and mass generation), but also directly relatesto the evolution of the early uni-
verse, as well as to the properties of extremely compact stellar objects (so-called neutron
stars). Lattice-QCD computations at finite temperature indeed predict that hadronic matter
undergoes a transition to a state of matter where quarks and gluons are no longer confined
into hadrons. The temperature required to induce this transition into the “Quark-Gluon
Plasma” (QGP) is approximatelykT ∼ 0.2 GeV= 2 ·108 eV, orT ∼ 1012K. The Universe
is believed to have passed through this transition at about 10µs (=0.00001s) after its birth.
This was, however,∼ 15 billion years ago, and the question arises how one can possibly
study the QGP, or more generally the phase diagram of QCD matter, today [5]. Clearly,
without input from experiment, this would be a hopeless enterprise.

It turns out that by colliding heavy atomic nuclei at high energies, one can create highly
excited strongly interacting matter in the laboratory. Theincoming kinetic energy of the
colliding nuclei is largely converted into compression andthermal energy, and by varying
the collision energy one is able to produce a wide range of different matter types as char-
acterized by their baryon density,ρB and temperature,T. This is illustrated in a schematic
phase diagram of strongly interacting matter in Fig. 2. In the present article we will mainly
focus on heavy-ion collisions at the highest currently available energies. These experiments
are being conducted at the Relativistic Heavy-Ion Collider(RHIC) at Brookhaven National
Laboratory (BNL, Upton, New York): gold (Au) nuclei, fully stripped of their electrons,
are accelerated in two separate beam pipes to an energy ofE = 100 GeV per nucleon, be-
fore being smashed together head on at four collision pointswhere two large (PHENIX and
STAR) and two smaller (BRAHMS and PHOBOS) detector systems have been positioned.
With each gold nucleus consisting ofA=197 nucleons (as given by the atomic mass num-
ber of gold), a total (center-of-mass) energy ofEcm ≃ 200A GeV≃ 40 TeV= 4 ·1013 eV
is brought into the collision zone. Note that the energy of the accelerated nuclei exceeds
their rest mass by more than a factor of 100 (recall that the rest mass of the nucleon is
MN ≃ 0.94 GeV/c2). In a central Au-Au collision at RHIC approximately 5000 particles
are produced (as observed in the detectors), emanating fromthe collision point with ve-
locities not far from the speed of light. Most of these particles are pions, but essentially
all known (and sufficiently long-lived) hadrons made ofu, d ands quarks are observed.
The key challenge is then to infer from the debris of producedparticles the formation and
properties of the matter - the “fireball” - that was created inthe immediate aftermath of
the collision. While the typical lifetime of the fireball is only about∼ 10−22s, it is most
likely long enough to form locally equilibrated strongly interacting matter which allows for
a meaningful analysis of its properties in terms of thermodynamic concepts, and thus to
study the QCD phase diagram as sketched in Fig. 2. This has been largely deduced from
the multiplicities and momentum spectra of produced hadrons, which allow to determine
typical temperatures and collective expansion velocitiesof the exploding fireball, at least in
the later (hadronic) phases of its evolution. A possibly formed QGP will, however, occur in
the earlier (hotter and denser) phases of a heavy-ion reaction. The identification and assess-
ment of suitable QGP signatures is at the very forefront of contemporary research. Hadrons
containing heavy quarks (charm and bottom,Q = c,b) have been identified as particularly
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Figure 2: Schematic view of the phase diagram of strongly interacting matter, in terms of the
nucleon (or baryon) chemical potential,µN, and temperature,T. The former determines the
net baryon density in the system. The shaded bands are schematic dividers of the different
phases as expected from theoretical model calculations. AtvanishingµN, current lattice
QCD calculations indicate a crossover transition from hot hadronic matter to the QGP at a
(pseudo-) critical temperature ofTc=160-190 MeV [7,8]. Normal nuclear matter (as present
in atomic nuclei) is located on theT=0 axis atµN ≃ 970 MeV (corresponding to a nucleon
density ofρN ≃ 0.16 fm−3, the nuclear saturation density). At largerµN (and smallT≤ 50-
100 MeV), one expects the formation of a Color-Superconductor [9, 10], i.e., cold quark
matter with a BCS-type condensate of quark Cooper pairs,〈0|qq|0〉 6= 0. The “data” points
are empirical extractions of(µN,T)-values from the observed production ratios of various
hadron species (π , p, K, Λ, etc.) in heavy-ion experiments at different beam energies[11].

promising probes of the QGP. The basic idea is as follows: since charm- and bottom-quark
masses,mc ≃ 1.5 GeV/c2 andmb ≃ 4.5 GeV/c2, are much larger than the typical tempera-
tures,T ≃ Tc ≃ 0.2GeV, of the medium formed in a heavy-ion collision, they are(i) only
produced very early in the collision (upon first impact of thecolliding nuclei) and, (ii) not
expected to thermalize during the lifetime of the fireball. Furthermore, the largest changes
of their momentum spectra occur when the collision rate and momentum transfer are the
highest. This is facilitated by a large density and temperature (i.e., in the early phases of a
heavy-ion reaction), but is crucially dependent also on theinteraction strength. Both aspects
are embodied into the notion of transport coefficients. The main objective of this article is
to provide a theoretical description of heavy-quark transport in the QGP, and to test the
results in applications to RHIC data.

The remainder of this article is organized as follows: In Sec. 2 we present a general
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overview of the physics of the Strong Force and the facets of its different matter phases. We
start in Sec. 2.1 by introducing basic features of Quantum Chromodynamics (QCD), the
quantum field theory describing the strong interactions between quarks and gluons, the ele-
mentary building blocks of hadrons. In Sec. 2.2 we briefly review our current understanding
of strongly interacting matter and its phase diagram as theoretically expected from both nu-
merical lattice QCD computations and model analysis. In Sec. 2.3 we elucidate the main
ideas and achievements of the experimental high-energy heavy-ion programs as conducted
at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (New
York), as well as at the Super Proton Synchrotron (SPS) and the future Large Hadron Col-
lider (LHC) at the European Organization for Nuclear Research (CERN, Geneva, Switzer-
land). We summarize what has been learned about hot and densestrongly interacting matter
thus far, and which questions have emerged and/or remained open. This leads us to the cen-
tral part of this article, Sec. 3, where we discuss in some detail the theoretical developments
and phenomenological applications in using heavy quarks (charm and bottom) as a probe
of the Quark-Gluon Plasma. In Sec. 3.1 we concentrate on the theoretical understanding
of heavy-quark (HQ) interactions in the QGP. We mostly address elastic scattering, within
both perturbative and nonperturbative approaches, where the latter are divided into a reso-
nance model andT-matrix calculations utilizing potentials extracted fromlattice QCD. The
HQ interactions in the medium are used to compute pertinent self-energies and transport
coefficients for drag and diffusion. In Sec. 3.2 the latter are implemented into a Brownian
motion framework of a Fokker-Planck equation which is particularly suitable for describing
the diffusion of a heavy particle in a heat bath. In Sec. 3.3 these concepts are applied to
heavy-ion collisions, by implementing a Langevin simulation of HQ transport into realistic
QGP fireball expansions for Au-Au collisions at RHIC. To makecontact with experiment,
the quarks have to be hadronized which involves a quark coalescence approach at the phase
transition, in close connection to successful phenomenology in light hadron spectra. This
is followed by an analysis of transverse momentum spectra ofheavy mesons and their elec-
tron decay spectra for which experimental data are available. In Sec. 3.4 we recapitulate on
the ramifications of the theoretical approach in a broader context of Quark-Gluon Plasma
research and heavy-ion phenomenology, and outline future lines of investigation. Sec. 4
contains a brief overall summary and conclusions.

2 The Quark-Gluon Plasma and Heavy-Ion Collisions

2.1 The Strong Force and Quantum Chromodynamics

The basic quantity which, in principle, completely determines the theory of the strong in-
teraction, is the Lagrangian of QCD,

LQCD = q̄ (i 6D− m̂q) q− 1
4

GµνGµν , (1)

whereq andq̄ denote the elementary matter fields, quarks and antiquarks.The quark fields
are specified by several quantum numbers: (i) color charge (red, green or blue), (ii) flavor
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Figure 3: Feynman diagrams for quark-quark scattering via the exchange of a gluon (top
left) quark-antiquark scattering via annihilation into a gluon (top right), quark-gluon scat-
tering and gluon-gluon scattering (bottom panels).

(up, down, strange, charm, bottom and top) and (iii) spin (±1
2h̄). The mass matrix ˆmq =

diag(mu,md,ms,mc,mb,mt) is a simple diagonal matrix in flavor space. It roughly separates
QCD into a light-flavor (u, d with bare massesmu,d≃0.005 GeV/c2) and a heavy-flavor
sector (c, b, t with mc≃1.3 GeV/c2, mb≃4.5 GeV/c2, mt≃175 GeV/c2), while the strange-
quark mass is somewhat in between (ms≃0.12 GeV/c2). The interactions of the quarks
are encoded in the covariant derivative,6D =6∂ − ig 6A, whereA denotes the gluon field, the
carrier of the Strong Force, and the gauge couplingg quantifies the interaction strength as
referred to in Fig. 1. A pictorial representation of these interactions can be given in terms of
Feynman diagrams: quarks interact via the exchange of gluons, cf. Fig. 3. The gluons are
massless particles with spin 1; most notably, they also carry color charge (which comes in 8
different charge-anticharge combinations, e.g., red-antigreen, red-antiblue, etc.), giving rise
to gluon self-interactions. These are encoded in the last term of Eq. (1) whereGµν = ∂µAν −
∂νAµ + g[Aµ ,Aν ]; the commutator term,[Aµ ,Aν ] = Aµ ·Aν −Aν ·Aµ is a consequence of
the 3×3 matrix structure in color-charge space and generates 3- and 4-gluon interaction
vertices (as depicted in the bottom right panel of Fig. 3). Each interaction vertex brings in
a factor ofg into the calculations of a given diagram (except for the 4-gluon vertex which
is proportional tog2). All diagrams (more precisely, the pertinent scattering amplitudes)
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Figure 4: The static potential between a heavy quark and antiquark in vacuum, as a function
of their distance, as computed in lattice QCD [13]. Potential and distance are given in units
of the string tension,

√
σ ≃ 0.42 GeV≃ 2.12 fm−1 (where the conversion has been done

usingh̄c≃ 0.197 GeV fm).

shown in Fig. 3 are thus proportional toαs = g2/4π , while more complicated diagrams
(involving additional quark/gluon vertices) are of higherorder inαs. This forms the basis
for perturbation theory: for smallαs, higher order diagrams are suppressed, ensuring a rapid
convergence of the perturbation series. Perturbative QCD (pQCD) indeed works very well
for reactions at large momentum transfer,Q, whereαs(Q) is small, cf. Fig. 1, while it breaks
down for smallQ. One possibility to obtain information on the nonperturbative interactions
is to investigate the potential between two static quark charges, i.e., the potential between a
heavy quark and antiquark. In the color neutral channel, a phenomenological ansatz can be
written as a combination of a Coulombic attraction at short distances which merges into a
linearly rising potential at large distance (signifying confinement),

VQQ̄(r) = −4
3

αs

r
+σ r , (2)

whereσ ≃ 1 GeV/fm denotes the “string tension”. Such a potential provides a good de-
scription of the observed spectra of heavy quarkonium states, i.e., charm-anticharm and
bottom-antibottom quark bound states. In recent years, theheavy-quark potential has been
computed with good precision in lattice QCD, which fully confirmed the phenomenologi-
cal ansatz, Eq. (2), (see, e.g., Fig. 4). Subsequently, the potential approach, in combination
with expansions organized in powers of the inverse HQ mass,mc,b (rather than the coupling
constant), has been developed into an effective theory of low-energy QCD, cf. Ref. [14] for
a review.

Besides the (external) quark masses, QCD has only one (intrinsic) dimensionful scale
which is generated by quantum effects (loop corrections). The latter give rise to the running
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coupling constant,

αs(Q) =
1

(11Nc−2Nf ) ln(Q2/Λ2
QCD)

, (3)

whereNc=3 is the number of color charges andNf the number of active quark flavors at
given Q (i.e., the number of flavors withmq ≤ Q). It is tempting to interpret the value of
ΛQCD = 0.2 GeV as the dividing line between perturbative and nonperturbative regimes of
QCD. In practice, however, the scale for the onset of nonperturbative effects is significantly
larger, typically given by the hadronic mass scale of∼1 GeV. To understand the emergence
of this scale, it is important to realize that the QCD vacuum structure is rather rich, char-
acterized by quark and gluon condensates. E.g., in the lightscalar quark-antiquark channel
(ūuandd̄d) a strongly attractive force leads to the spontaneous formation and condensation
of q̄q pairs (reminiscent to a Bose condensate)2. An important consequence of the conden-
sate formation is that the light quarks acquire an effectivemass when propagating through
the condensed vacuum, which is given by the condensate asm∗

q ≃ G〈0|q̄q|0〉 ≃ 0.4 GeV,
whereG is an (instanton-induced) effective quark coupling constant. Note that this mass
exceeds the bare quark masses by about a factor of∼100, being the major source of the pro-
ton mass,Mp ∼ 3m∗

q, and thus of the visible mass in the Universe. Formally, the presence
of the constituent quark mass (and quark condensate) is closely related to the phenomenon
of “Spontaneous Breaking of Chiral Symmetry” (SBCS): in thelimit of vanishing bare-
quark masses (which is a good approximation for the very light u andd quarks), the QCD
Lagrangian is invariant under rotations in isospin and chirality (handedness), i.e., transfor-
mations that changeu into d quarks and left-handed into right-handed quarks. This invari-
ance is equivalent to the conservation of isospin and chiralquantum numbers of a quark.
However, the constituent quark mass breaks the chiral symmetry (i.e., massive quarks can
change their chirality so that it is no longer conserved). SBCS not only manifests itself in
the QCD ground-state, but also in its excitation spectrum, i.e., hadrons. Therefore, hadronic
states which transform into each other under “chiral rotations” (so-called chiral multiplets
or partners) are split in mass due to SBCS. Prominent examples in the meson spectrum are
π(140)-σ (400-1200) andρ(770)-a1(1260), orN(940)-N∗(1535) in the nucleon spectrum.

In the following Section, we will discuss how the presence ofstrongly interacting matter
affects the nonperturbative structure of the QCD vacuum andthe interactions therein.

2.2 Strongly Interacting Matter and the QCD Phase Diagram

When heating a condensed state, the general expectation is that the condensate eventually
“melts” (or “evaporates”), and that the interactions are screened due to the presence of
charged particles in the medium. Transferring this expectation to the QCD vacuum implies
that, at sufficiently large temperature, the condensates should vanish and the quarks and

2The origin of this force is most likely not the perturbative exchange of gluons, but nonperturbative gluon
configurations - so-called instantons - which correspond totunneling events between topologically different
vacua and are characterized by a 4-dimensional “radius” ofρ ≃ (0.6 GeV)−1, cf. Ref. [15] for a review
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Figure 5: The equation of state of strongly interacting matter as computed in lattice
QCD [12] in terms of the energy density (left panel) and entropy density (right panel) as
a function of temperature (atµB = 0). The computations use bare light and strange quark
masses close to their physical values.

gluons are released from their hadronic bound states (deconfinement), forming the Quark-
Gluon Plasma (QGP). Numerical lattice QCD (lQCD) computations of the thermodynamic
partition function at finite temperature have substantially quantified this notion over the last
two decades or so. The pertinent equation of state (EoS), i.e., the pressure, energy and
entropy density, indeed exhibits a rather well defined transition, as shown in Fig. 5 for a
lQCD calculation with close to realistic input for the bare light and strange quark masses.
At high temperatures (T > 3Tc) the equation of state is within∼15% of the values expected
for an ideal gas, known as the Stefan-Boltzmann (SB) limit. The SB values are given by
εqq̄ = 7

8dqq̄
π2

30T4 andεg = dg
π2

30T4 with degeneraciesdqq̄ = NcNsNq̄Nf = 12Nf for quarks
plus antiquarks (Nc=3 for red, green and blue colors,Ns=2 for spin up and down andNq̄=2
for anti-/quarks;Nf is the number of massless flavors), anddg = NsNc = 16 for gluons (Nc=8
color-anticolor combinations,Ns=2 transverse spin polarizations); the relative factor of 7/8
is due to the difference of Fermi vs. Bose distribution functions for quarks vs. gluons. For
Nf =3 one findsεSB = εqq̄ + εg ≃ 15.6 T4, as indicated by the “εSB” limit in the upper right
corner of the left panel in Fig. 5. Likewise, usingP = sT− ε (for quark chemical potential
µq = 0), one finds for the SB limit of the entropy densitys= (10.5Nf +16)4π2

90 T3 ≃ 20.8T3,
cf. right panel of Fig. 5.

Returning to the phase transition region, the rapid change in ε is accompanied by
comparably sudden changes in the quark condensate, and the expectation value of the
so-called Polyakov loop, an order parameter of deconfinement, cf. Fig. 6. The latter is,
roughly speaking, proportional to the exponent of the heavy-quark free energy at large dis-
tance, e−F∞

Q̄Q
/T , which vanishes in the confined phase (or at least becomes very small since

F∞
QQ̄ ≡ FQQ̄(r → ∞) is large), but is finite in the deconfined QGP.

Detailed studies of the HQ free energy as a function of the relative distance,r, of the
Q-Q̄ pair have also been conducted in finite-T lattice QCD, see, e.g., Fig. 7. One finds
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Figure 6: Lattice QCD computations of the (subtracted and normalized) light-quark chiral
condensate (left panel) and the (renormalized) Polyakov loop expectation value as a func-
tion of temperature [12,16].

the qualitatively expected behavior that the interaction is increasingly screened with in-
creasing temperature, penetrating to smaller distances, as is characteristic for a decreasing
color-Debye screening length (or, equivalently, increasing Debye mass,µD). However, the
implications of these in-medium modifications for the binding of quarkonium states are
quite subtle. The first problem is that, unlike in the vacuum case, the identification of the
free energy with an interaction potential is no longer straightforward, due to the appearance
of an entropy term,TSQQ̄,

FQQ̄(r,T) = UQQ̄(r,T)−TSQQ̄(r,T), (4)

whereUQQ̄ denotes the internal energy. It is currently an open problemwhetherFQQ̄ [18]
orUQQ̄ [19,20,21,22,23] (or even a combination thereof [24]) is the most suitable quantity
to be inserted into a potential model calculation for quarkonium states in the medium (typ-
ically carried out using a Schrödinger equation). The different choices lead to considerably
different results for the quarkonium binding in the QGP. On the one hand, when directly
using the free energyFQQ̄, the charmonium ground state (theS-wave J/ψ or ηc states)
dissolves not far above the critical temperature, at about 1.2 Tc [18]. On the other hand,
the use ofUQQ̄ implies deeper potentials and thus stronger binding, and the ground-state
charmonium survives up to temperatures of∼2-2.5Tc. The stronger bound bottomonia are
more robust and may not dissolve until∼4 Tc.

An alternative way to address the problem of quarkonium dissociation in the QGP is
the computation ofQ-Q̄ correlation functions, which are basically thermal Green’s func-
tions (orQ-Q̄ propagators). However, the oscillating nature of the propagator for physical
energies (i.e., in real time) renders numerical lQCD evaluations intractable. However, one
can apply a trick by transforming the problem into “imaginary time”, where the propaga-
tors are exponentially damped. The price one has to pay is an analytical continuation back
into the physical (real time) regime of positive energies. This transformation is particularly
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Figure 7: The heavy-quark free energy as a function of size,r, of the HQ pair, for various
temperatures as computed in lattice QCD [13,17].

problematic at finite temperature, where the imaginary-time axis in the statistical operator
(free energy) is given by the inverse temperature, which severely limits the accuracy in the
analytic continuation (especially for a limited discrete number of points on the imaginary-
time axis). However, probabilistic methods, in particularthe so-called Maximum Entropy
Method (MEM), have proven valuable in remedying this problem [26]. LQCD compu-
tations of charmonium correlation functions in the QGP, followed by a MEM analysis to
extract pertinent spectral functions, support the notion that the ground state (S-wave) char-
monium survives up to temperatures of∼1.5-2 Tc [27], cf., e.g., the left panel of Fig. 8.
Even in the light-quark sector lQCD computations indicate the possibility that mesonic res-
onance states persist above the phase transition [28, 29], as illustrated in the right panel of
Fig. 8.

To summarize this section, first principle lattice-QCD calculations at finite temperature
have confirmed that hadronic matter undergoes a transition into a Quark-Gluon Plasma.
This transition is characterized by rapid changes in the equation of state around a tem-
perature ofTc=0.15-0.20 GeV, which is accompanied by variations in orderparameters
associated with deconfinement and the restoration of chiralsymmetry (i.e., vanishing of the
chiral quark condensate). While thermodynamic state variables are within 15% of the ideal
gas limit at temperatures of≥3 Tc, the analysis of the heavy-quark potential and mesonic
spectral functions indicate substantial nonperturbativeeffects at temperatures below∼2 Tc.
This suggests that up to these temperatures the QGP is quite different from a weakly in-
teracting gas of quarks and gluons. Substantial progress inour understanding of hot and
dense QCD matter has emerged on a complementary front, namely from experiments using
ultrarelativistic heavy-ion collisions. The following Section gives a short overview of the
key observations and pertinent theoretical interpretations.
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Figure 8: Meson spectral functions in the Quark-Gluon Plasma, based on imaginary-time
correlation functions computed in finite-T lattice QCD, followed by a transformation in the
physical regime using the Maximum Entropy Method. Left panel: S-wave charm-anticharm
channel (spin-parityJP = 1−, corresponding to theJ/ψ meson) in a QGP withNf = 2 fla-
vors [27]; the critical temperature in these calculations is aboutTc ≃ 200 MeV. Right panel:
quark-antiquark channels with a bare quark mass corresponding to strange quarks [28], in
the scalar (JP = 0+), pseudoscalar (JP = 0−), vector (JP = 1−) and axialvector (JP = 1+)
channels in a pure gluon plasma atT=1.4Tc.

2.3 Relativistic Heavy Ion Collisions and the Quest for the QGP

The first years of experiments at the Relativistic Heavy-IonCollider have indeed provided
convincing evidence that a thermalized medium is produced in

√
s= 200 AGeV collisions.

In this section we give a brief summary of the basic observations and pertinent interpre-
tations [30]3. A schematic pictorial sketch of the main stages of the evolution of a head-
on collision of heavy nuclei is displayed in Fig. 9. The main observables are momentum
spectra of various hadron species. We will concentrate on particles with zero longitudinal
momentum (pz=0) in the center-of-mass frame of a nucleus-nucleus collision, the so-called
mid rapidity (y=0) region, where one expects the largest energy depositionof the interpen-
etrating nuclei. The main kinematic variable is thus the transverse momentum (pT) of a
particle. Three major findings at RHIC thus far may be classified by theirpT regime (see
Fig. 10 for 3 representative measurements):

• Thermalization and collective matter expansion in the low-pT regimepT ≃ 0-2 GeV;

• Quark coalescence in the intermediate-pT regime,pT ≃ 2-5 GeV;

• Jet quenching in the high-pT regime,pT ≥ 5 GeV.

It turns out that all of the 3 regimes, and the associated physical phenomena, are relevant
for our discussion of heavy-quark observables below. In thefollowing, we will elaborate
on the characteristic features of these momentum regimes insome detail.

3For an assessment of the earlier CERN-SPS experiments at lower energies, cf. Ref. [31].
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Figure 9: Schematic representation of the various stages ofa heavy-ion collision. From
left to right: incoming nuclei at highly relativistic energies moving at close to the speed of
light (which induces a substantial Lorentz contraction relative to their transverse size; at full
RHIC energy of 100+100 GeV, the Lorentz contraction is a factor of ∼1/100); upon initial
impact of the nuclei, primordial (“hard”) nucleon-nucleoncollisions occur; further reinter-
actions presumably induce the formation of a Quark-Gluon Plasma (afterτ0 = 0.5−1 fm/c),
whose pressure drives a collective expansion and cooling (for a duration ofτQGP≃ 5fm/c),
followed by hadronization and further expansion in the hadronic phase (for a duration of
τHG ≃ 5− 10fm/c); at thermal freezeout the (short-range) strong interactions cease (after
approximately 15 fm/c total fireball lifetime).

In the low-pT regime, the spectra of the most abundantly produced hadrons(π , K,
p, Λ, etc.) are well described by hydrodynamic simulations of anexploding fireball [35,
36, 37, 38]. At its breakup (or thermal freezeout), where the(short-range) interactions of
the hadrons cease rather abruptly, the fireball matter is expanding at an average collective
velocity of about 60% of the speed of light and has cooled downto a temperature of about
Tfo ≃ 100 MeV. The hadro-chemistry of the fireball, characterizedby the thermal ratios of
the various hadron species [11], is “frozen” at a higher temperature of aboutTch≃ 170 MeV
(as represented by the “data” points in Fig. 2). The separation of chemical and thermal
freezeout is naturally explained by the large difference inthe inelastic and elastic reaction
rates in a hadronic gas. Elastic scattering among hadrons isdominated by strong resonances
(e.g.,ππ → ρ → ππ or πN → ∆ → πN) with large cross sections,σres≃ 100 mb, implying
a thermal relaxation time of aboutτtherm≃ 〈σρhvrel〉 ≃ 1 fm/c (assuming a typical hadron
density of 0.2fm−3 and a relative velocity ofvrel = 0.5c). Inelastic cross sections, on the
other hand, are typically around 1 mb, implying chemical relaxation times in a hadron gas
of ∼100 fm/c, well above its lifetime of∼10 fm/c.

A hadronic observable which is sensitive to the early expansion phases of the fireball
is the elliptic flow,v2, which characterizes the azimuthal asymmetry in the emitted hadron
spectra (i.e., the second harmonic) according to

dNh

d2pTdy
=

dNh

πdp2
Tdy

[1+2v2(pT)cos(2φ)+ . . .] (5)
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Figure 10: Key experimental measurements in Au-Au collisions at the Relativistic Heavy
Ion Collider in its first years of operation, as reflected in transverse-momentum spectra of
hadrons [30]. Left panel: Elliptic flow compared to hydrodynamic calculations [32] in the
low-pT regime; middle panel: nuclear modification factor of neutral pions compared to
perturbative jet-quenching calculations [33] in the high-pT regime; right panel: universal
scaling of the hadronicv2 interpreted as an underlying quarkv2 [34].

(at mid rapidity, the system is mirror symmetric in the transversex-y plane and odd Fourier
components in the azimuthal angleφ vanish). In a noncentral Au-Au collision, the initial
nuclear overlap zone in the transverse plane is “almond”-shaped, cf. Fig. 11. Once the
system thermalizes, the pressure gradients along the shortaxis of the medium are larger
than along the long axis. As a result, hydrodynamic expansion will be stronger along the
x-axis relative to they-axis, and thus build up an “elliptic flow” in the collective matter
expansion, which eventually reflects itself in the final hadron spectra via a positivev2 co-
efficient. The important point is that a largev2 can only be generated if the thermalization
of the medium is rapid enough: an initial period of (almost) free streaming will reduce the
spatial anisotropy and thus reduce the system’s ability to convert this spatial anisotropy into
a momentum anisotropy (i.e.,v2). In this way, the magnitude ofv2 (and itspT dependence)
is, in principle, a quantitative “barometer” of the thermalization time,τ0. Applications of
ideal relativistic hydrodynamics have shown that the experimentally measuredv2(pT) for
various hadrons (π , K, p, Λ) is best described when implementing a thermalization time
of τ0=0.5-1 fm/c. The agreement with data extends frompT = 0 to∼2-3 GeV, which (due
to the exponentially falling spectra) comprises more than 95% of the produced hadrons.
Not only do the interactions for thermalizing the matter rapidly have to be very strong, but,
for ideal hydrodynamics to build up the observedv2, the viscosity of the formed medium
must remain very small (it is zero in ideal hydrodynamics): the typical timescale for build-
up of the observedv2 is on the order of the system size or QGP lifetime,τQGP≃ 5 fm/c.
These features have triggered the notion of a “strongly-coupled” QGP (sQGP); its initial
energy density at RHIC, as implied by the above thermalization times, amounts toε0 ≃ 10-
20 GeV/fm3, which is a factor of∼10 above the estimated critical energy density for the
phase transition (and a factor of∼100 above that for normal nuclear matter).

In the high-pT regime, the production mechanism of hadrons changes and becomes
computable in perturbative QCD, in terms of hard parton-parton collisions upon first im-
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Figure 11: Schematic representation of a noncentral heavy-ion collision, characterized by
an almond-shaped initial overlap zone, and a subsequent pressure-driven build-up of elliptic
flow.

pact of the incoming nucleons (cf. left panel in Fig. 9). The produced high-energy partons
subsequently fragment into a (rather collimated) spray of hadrons, called jet. Back-to-back
jets are routinely observed in high-energy collisions of elementary particles, but are dif-
ficult to identify in the high-multiplicity environment of aheavy-ion collision. However,
a jet typically contains a “leading” particle which carriesmost of the momentum of the
parent parton (as described by an empirical “fragmentation” function). High-pT spectra in
heavy-ion collisions thus essentially determine the modification underlying the production
of the leading hadron in a jet. This modification is quantifiedvia the “nuclear modification
factor”,

RAA(pT) =
dNAA

h /dpT

Ncoll dNNN
h /dpT

, (6)

where the numerator denotes the hadron spectrum in the nucleus-nucleus collision and the
denominator represents the spectrum in an elementary nucleon-nucleon collision, weighted
with the number of binaryN-N collisions in the primordial stage of theA-A collision. Thus,
if there is no modification of the leading hadron spectrum in the heavy-ion collision, then
RAA(pT ≥ 5 GeV) = 1. RHIC data onπ production in central Au-Au collisions have found a
large suppression by a factor of 4-5 up topT ≃ 20 GeV. Originally, this has been attributed
to radiative energy-loss, i.e., induced gluon radiation off a high-energy quark (or gluon)
traversing a gluon plasma [39, 40], as computed within perturbative QCD (pQCD). In the
approach of Ref. [39], the initially extracted gluon densities turned out to be consistent with
those inferred from hydrodynamic calculations in the low-pT regime. In the approach of
Ref. [40], the interaction strength of the energy-loss process is quantified via the transport
coefficientq̂ = Q2/λ , which characterizes the (squared) momentum transfer per mean free
path of the fast parton; the experimentally observed suppression requires this quantity to
take on values of 5-15 GeV2/fm, which is several times larger than expected in pQCD [41].
More recently, the importance of elastic energy loss has been realized, in particular in the
context of heavy-quark propagation [42, 43, 44, 45, 33], as we will discuss in more detail
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below.
In the intermediate-pT regime, RHIC experiments have observed an unexpectedly large

ratio of baryons to mesons, e.g.,p/π ≃ 1 or (Λ + Λ̄)/(4K0
s ) ≃ 1.3 in central Au-Au col-

lisions. On the one hand, within the pQCD energy loss picture, the typical value ofp/π
is close to∼0.2 as observed in elementaryp-p collisions. On the other hand, within hy-
drodynamic calculations, a collective flow could, in principle, account for such an effect,
but the applicability of hydrodynamics appears to cease at momenta ofpT ≥ 3 GeV (as,
e.g., indicated by the saturation (leveling off) of the elliptic flow, which in hydrodynam-
ics continues to grow). Another remarkable observation in intermediate-pT hadron spectra
is a constituent-quark number scaling (CQNS) of the hadronic v2,h(pT), as determined by
the number,n, of constituent quarks in each hadron,h, giving rise to a single, universal
function,

v2,q(pT/n) = v2,h(pT)/n , (7)

which is interpreted as the partonic (quark)v2 at the time of hadronization. Both CQNS
and the large baryon-to-meson ratios are naturally explained in terms of quark coalescence
processes of a collectively expanding partonic source at the phase transition [46,47,48,49].
The most recent experimental data [34,50] indicate that thescaling persists at a surprisingly
accurate level even at lowpT , but only when applied as a function of the transverse kinetic
energy, KET = mT −mh, of the hadrons (wheremT = (p2

T + m2
h)

1/2 is the total transverse
energy of the hadron, andmh its rest mass). In Ref. [51], the quark coalescence model
has been reformulated utilizing a Boltzmann transport equation where the hadron forma-
tion process is realized via the formation of mesonic resonances close toTc. This approach
overcomes the instantaneous approximation of previous models, ensuring energy conser-
vation in the coalescence process, as well as the proper thermodynamic equilibrium limit.
This, in particular, allows for an extension of the coalescence idea into the low-pT regime,
and initial calculations are consistent with KET scaling forv2,h.

To summarize this section, we conclude that RHIC data have provided clear evidence
for the formation of an equilibrated medium with very small viscosity (an almost “perfect
liquid”) and large opacity with associated energy densities well above the critical one; in ad-
dition, indications for the presence of partonic degrees offreedom have been observed. This
medium has been named the strongly coupled QGP, or sQGP. However, the understanding
of its microscopic properties remains an open issue at this point: What are the relevant de-
grees of freedom and their interactions around and aboveTc? Are the 3 main phenomena
described above related, and, if so, how? Is there direct evidence for deconfinement and/or
chiral symmetry restoration? Results from lattice QCD, as discussed in the previous sec-
tion, may already have provided several important hints, but tighter connections to RHIC
data need to be established.

Toward this goal, heavy-quark observables are hoped to provide new decisive and quan-
titative insights: Do charm and bottom quarks participate in the flow of the medium, despite
their large mass? Do they even thermalize at lowpT? Do they suffer jet quenching at high
pT? Do they corroborate evidence for quark coalescence processes? Initial measurements
of heavy-quark observables have been performed providing tantalizing evidence that the
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answer to these questions may indeed be largely positive: a substantial elliptic flow and
suppression of single-electron spectra associated with semileptonic heavy-meson decays
has been observed, i.e., electrons (and positrons) arisingvia decays of the typeD → eνX
andB → eνX (the heavy-light mesons,D = (cq̄) andB = (bq̄), are composed of a heavy
quark (c, b) and a light antiquark ( ¯q = ū, d̄), and as such are the main carriers of heavy
quarks in the system).

We now turn to the main subject of this article, i.e., the theoretical and phenomenolog-
ical description of heavy-quark interactions in the QGP andpertinent observables at RHIC.

3 Heavy Quarks in the Quark-Gluon Plasma

The special role of heavy quarks (Q = b,c) as a probe of the medium created in heavy-ion
collisions resides on the fact that their mass is significantly larger than the typically attained
ambient temperatures or other nonperturbative scales,mQ ≫ Tc,ΛQCD.4 This has several
implications:

(i) The production of heavy quarks is essentially constrained to the early, primordial
stages of a heavy-ion collision. Thus the knowledge of the initial heavy-quark (HQ)
spectrum (from, say,p-p collisions) can serve as a well defined initial state, even for
low-momentum heavy quarks. The latter feature renders heavy-quark observables a
prime tool to extract transport properties of the medium.

(ii) Thermalization of heavy quarks is “delayed” relative to light quarks by a factor of
∼ mQ/T ≃ 5-15. While the bulk thermalization time is of order∼0.5 fm/c, the ther-
mal relaxation of heavy quarks is expected to occur on a timescale comparable to
the lifetime of the QGP at RHIC,τQGP≃ 5 fm/c. Based on the thus far inferred
properties of the sQGP, charm quarks could “thermalize” to acertain extent, but not
fully. Therefore, their spectra should be significantly modified, but still retain mem-
ory about their interaction history – an “optimal” probe. According to this estimate,
bottom quarks are expected to exhibit notably less modification.

(iii) As is well-known from electrodynamics, Bremsstrahlung off an accelerated (or de-
celerated) charged particle is suppressed by a large power of its the mass,∼ (mq/mc)

4

for heavy relative to light quarks. Therefore, induced gluon radiation off heavy quarks
(i.e., radiative energy loss) is much suppressed relative to elastic scattering.

(iv) The typical momentum transfer from a thermal medium to aheavy quark is small
compared to the HQ momentum,p2

th ∼ mQT ≫ T2 (where pth is the thermal mo-
mentum of a heavy quark in nonrelativistic approximation,p2

th/2mQ ≃ 3 T/2; for a
relativistically moving quark, it is parametrically even larger,pth ∼ mQv). This ren-
ders a Brownian Motion approach (Fokker-Planck equation) asuitable and controlled
theoretical framework for describing the diffusion of a heavy quark in the (s)QGP.

4Note that the production of the heaviest known quark, the top, is out of reach at RHIC; moreover, its
lifetime, τt = 1/Γt ≃ 0.1 fm/c, is by far too short to render it a useful probe.
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(v) The HQ mass can furthermore be utilized as a large scale indeveloping effective
(nonperturbative) interactions, such as HQ effective theory or potential model ap-
proaches. In principle, this allows to make contact with static interaction potentials
from finite-temperature lattice QCD, although a number of issues have to be resolved
before reliable quantitative predictions can be made.

(vi) At low momenta, nonperturbative (resummation) effects become relatively more im-
portant with increasing mass. E.g., for bound state formation, the binding energy is
known to increase with the (reduced) mass of the constituents. For the concrete prob-
lem of the charm diffusion constant, it has recently been shown that the perturbation
series is badly convergent even for values of the strong coupling constant as small as
αs = 0.1 [52].

Before first RHIC data on HQ observables became available, the expectation based on
pQCD radiative energy loss was that theD-meson spectra are much less suppressed than
light hadron spectra [53], with a small elliptic flow of up tovD

2 ≃ 4% [54]. At the same
time, the importance of elastic collisions was emphasized in Refs. [42,43,44]. In particular,
in Ref. [42] nonperturbative HQ resonance interactions in the QGP (motivated by lattice
QCD results, cf. Fig. 8) were introduced and found to reduce the HQ thermalization times
by a factor of∼3 compared to elastic pQCD scattering. Predictions for theD-mesonv2 and
pT spectra in the limiting case in which the degree of HQ thermalization is similar to light
quarks can be found in Ref. [55]; including the effects of coalescence with light quarks, the
D-meson elliptic flow reaches up to aroundvD

2 ≃ 15%, about a factor of∼4 larger than in
the pQCD energy-loss calculations. This analysis also demonstrated the important feature
that the single-electron (e±) spectra arising from the semileptonic decays,D→ eνX, closely
trace the suppression (RAA) and elliptic flow of the parentD meson (see also Ref. [56]). In
the following, we elaborate on the underlying approaches and further developments with
applications to HQ transport properties and RHIC data.

3.1 Heavy-Quark Interactions in the QGP

The scattering of charm and bottom quarks in a Quark-Gluon Plasma is dominated by in-
teractions with the most abundant particles in the medium, i.e., gluons as well as light (u
andd) and strange quarks. The basic quantity to be evaluated is therefore the scattering
matrix (or cross section), which can be further utilized to compute in-medium HQ self-
energies and transport coefficients. For reasons given in the previous Section we focus on
elastic 2→ 2 scattering processes,Q+ i → Q+ i with i = g,u,d,s. Our discussion is orga-
nized into perturbative (Sec. 3.1.1) and nonperturbative approaches (Secs. 3.1.2 and 3.1.3).
While the effective resonance model (Sec. 3.1.2) involves apriori undetermined parameters
in terms of the resonance masses and coupling constants, thelattice-QCD based potential
scattering (Sec. 3.1.3) is an attempt to generate the heavy-light quark interactions micro-
scopically without free parameters (albeit with significant uncertainties in the extraction of
the interaction potentials).
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Figure 12: Feynman diagrams for leading-order perturbative HQ scattering off light partons.

3.1.1 Perturbative Scattering

In QCD, the simplest possible diagrams for HQ interactions with light partons are given by
leading order (LO) perturbation theory. The pertinent Feynman diagrams are very similar to
the ones depicted in Fig. 3, and are summarized in Fig. 12. As discussed in Sec. 2.1, these
processes can be expected to constitute a realistic description of HQ scattering in regimes
where the strong coupling constant,αs, is small (higher order diagrams will contribute
with higher powers inαs). In principle, this can be realized either for large HQ momenta
(implying the relevant momentum transfers to be large) or athigh temperatures where the
interaction is screened and/or the typical momentum transfer of orderQ2 ∼ T2 is large.
Since the color charge of gluons is larger than that of quarks(by a factor of 9/4 to orderαs),
the dominant contribution to pQCD scattering arises from interactions with gluons, more
precisely thet-channel gluon exchange inQ(p(4)

1 ) + g(p(4)
2 ) → Q(p(4)

3 ) + g(p(4)
4 ), where

p(4)
i = (Ei,~pi) denotes the energy-momentum vector (or 4-momentum) of particle i (we

usepi = |~pi| for the magnitude of the 3-momentum). The corresponding differential cross
section is given by

dσgQ

dt
=

1
16π(s−M2)2 |M |2 , (8)

wheret = (p(4)
3 − p(4)

1 )2 = 2(m2
Q−E1E2 +~p1 ·~p3) is the energy-momentum transfer on the

heavy quark with~p1 ·~p3 = p1p3cosΘ, s is the squared center-of-mass energys= (p(4)
1 +

p(4)
2 )2, andΘ the scattering angle of the heavy quark. The squared scattering amplitude,

averaged over initial and summed over final spin polarizations,

|M |2 = π2α2
s

[

32(s−M2)(s+ t −M2)

t2 + . . .

]

, (9)

turns out to be dominated by thet-channel gluon exchange diagram (third panel in Fig. 12),
corresponding to the expression explicitly written in the brackets. The factor 1/t2 repre-
sents the (squared) propagator of the exchanged gluon whichleads to a large cross section
for small t implying a small scattering angleΘ, i.e., forward scattering. However, as dis-
cussed in Sec. 2.2, the interaction is screened in the mediumwhich, in a simplistic form, can
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Figure 13: Total HQ scattering cross sections off light partons in pQCD (blue lines) and
within the effective resonance model (red lines) [57].

be implemented as an in-medium gluon propagator 1/(t−µ2
D), leading to a reduction of the

cross section (note that fort-channel gluon exchange, the 4-momentum transfer,t, is neg-
ative). To lowest order in perturbation theory, the gluon Debye mass is given byµD ∼ gT.
The total cross section follows from integrating the expression in Eq. (8) overt; the results
including all LO diagrams for charm-quark scattering off quarks and gluons are displayed
in Fig. 13. The total pQCD cross sections, computed for an optimistically largeαs = 0.4,
are, in fact, quite sizable, at aroundσtot = 4(1.5) mb for gluons (quarks). In a schematic
estimate these cross sections may be converted into a reaction rate by using the “pocket
formula” Γc = σcinivrel. To obtain an upper limit, one may use ideal-gas massless parton
densities,ni = diπ2T3, with quark, antiquark and gluon degeneracies ofdqq̄ = 10.5Nf with
Nf = 2.5 anddg = 16 (recall Sec. 2.2 and Fig. 5), in connection with a relativevelocity
vrel = c. One findsΓc ≃ 0.4 GeV=(0.5fm/c)−1, a rather large elastic scattering rate. How-
ever, as we will see below, the relevant quantity for determining the thermalization time
scale is the transport cross section, which involves an extra angular weight proportional to
sin2 Θ when integrating over the differential cross section. Thisrenders pQCD scattering
rather ineffective in isotropizing HQ distributions, due to its predominantly forward scat-
tering angles; the resulting thermal relaxation times,τ therm

Q , are therefore much larger than
what one would naively expect from the large scattering rateestimated above.

3.1.2 Resonance Model

As was discussed in Sec. 2.2, lattice calculations suggest the existence of hadronic reso-
nances (or bound states) in the QGP for temperatures of 1-2Tc. In Ref. [42] the idea has
been introduced that such resonances are present in the heavy-light quark sector and are
operative in a significant increase of the interaction strength of heavy quarks in the QGP.
The starting point of this investigation is an effective Lagrangian,assumingthe presence of
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heavy-light fields,Φ, which couple to a heavy quark and light antiquark accordingto

LΦQq = L
0

Φ +L
0
Q +L

0
q +∑

m
GmQ

1+ 6v
2

Φm Γm q̄+h.c. . (10)

The first 3 terms on the right-hand-side represent the kinetic energy and mass terms giving
rise to free particle propagation while the last term (h.c. =hermitean conjugate), roughly
speaking, indicates all terms with particles and antiparticles interchanged (i.e.,Q → Q̄,
q̄ → q, etc.). The key term is the explicitly written interaction term generatingΦ-Q-q̄ (3-
point) vertices whose strength is controlled by pertinent coupling constants,Gm, which
in this approach are free parameters. The summation overm accounts for the different
quantum numbers of theΦ-fields (which in turn are related to the structure of the coupling
matrices,Γm). The couplings can be largely inferred from symmetry considerations. As
alluded to toward the end of Sec. 2.1, the spontaneous breaking of chiral symmetry (SBCS)
in the vacuum implies hadronic chiral partners to split in mass; in theD-meson sector, this
applies to the chiral partners in the scalar (JP = 0+) - pseudoscalar (JP = 0−) multiplet,
D andD∗

0, as well as to the vector (JP = 1−) and axialvector (JP = 1+) chiral multiplet,
D∗ andD1. The pertinent chiral breaking is nicely borne out of recentmeasurements of
the D-meson spectrum in vacuum [58], where the chiral splitting has been established to
amount to about∆M = 0.4 GeV, cf. Fig. 14. In the QGP, however, the spontaneously broken
chiral symmetry will be restored, recall, e.g., the left panel in Fig. 6. Chiral restoration is
necessarily accompanied by the degeneracy of chiral partners, as is indeed observed in
lQCD computations of meson spectral functions aboveTc, cf. right panel of Fig. 8. We thus
infer that the chiral partners in theD-meson spectrum, i.e., scalar and pseudoscalar (as well
as vector and axialvector) should have the same mass and width in the QGP.

In addition, QCD possesses heavy-quark symmetries, in particular a spin symmetry
which states that hadrons containing heavy quarks are degenerate if the HQ spin is flipped
inside the hadron. Within the constituent quark model, one therefore expects a degeneracy
of pseudoscalar and vector mesons, where the heavy and lightquark are coupled in a relative
S-wave (orbital angular momentuml = 0) and the total spin,J, of the meson is solely
determined by the coupling of the two quark spins. The asserted symmetry is accurate
within ∼0.1-0.15 GeV in theD-meson spectrum (D-D∗ andD∗

0-D∗
1, cf. Fig. 14), and within

∼0.05 GeV in theB-meson spectrum (as given by theB(5280)-B∗(5325) mass difference;
note that the accuracy of the HQ symmetry indeed appears to scale with the inverse HQ
mass,mc/mb ≃ 1/3). Since the heavy-light resonance mass in the QGP itself issubject
to uncertainties on the order of possibly up to a few hundred MeV, there is little point in
accounting for the relatively small violations of HQ spin symmetry. In Ref. [42] it was
therefore assumed that also the pseudoscalar-vector (as well as scalar-axialvector) states
are degenerate.

With both chiral and HQ symmetry, the effective Lagrangian,Eq. (10), essentially con-
tains 2 parameters in both the charm and bottom sector, whichare the (universal) resonance
mass,mD,B, and coupling constant,GD,B. The former has been varied over a rather broad
window above theQ-q̄ threshold. Note that bound states cannot be accessed in two-body
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Figure 14: Level spectrum ofD-mesons,D = (cq̄), in the vacuum according to recent
measurements reported in Ref. [58]. The masses of the statesare shown as a function of
their quantum numbers indicated in the upper portion of the figure. Note, on the one hand,
the splitting (non-degeneracy) of the chiral partnersD andD∗

0, as well as ofD∗ andD1,
by about∆M = 0.4 GeV (believed to be a consequence of spontaneous breaking of chiral
symmetry in the vacuum). On the other hand, HQ symmetry, implying degeneracy ofD-D∗

and ofD∗
0-D1, is satisfied within∆M = 0.15 GeV.

scattering due to energy conservation, i.e., the bound state mass is by definition below the
2-particle threshold,Ethr=mQ+mq̄. Once the mass is fixed, the (energy-dependent) width for
the two-body decay of the resonance,Φ → Q+ q̄, is determined by the coupling constant
as

ΓΦ(M) =
3G2

Φ
8π

(M2−m2
Q)2

M3 Θ(M−mQ) , (11)

where the mass of the light antiquark has been put to zero. To determine the coupling
constant, some guidance can be obtained from effective quark models at finite temperature
[59,60], where an in-mediumD-meson width of several hundred MeV was found (see also
Ref. [61] and Fig. 18 below).

The effective Lagrangian, Eq. (10), generates 2 diagrams for resonance exchange in
heavy-light quark scattering, so-calleds- andu-channels, as shown in Fig. 15. The per-
tinent total cross sections for charm-quark scattering aredisplayed by the red lines in
Fig. 13, assumingD-meson masses and widths ofmD = 2 GeV andΓD = 0.4 GeV (the
charm- and bottom-quark masses have been set tomc,b = 1.5,4.5 GeV). In the energy
regime relevant for scattering of thermal partons in the QGP, Ecm ≃ mQ + Eth

q ≃ 2.2 GeV
(Eth

q ≃ 3T ≃ 0.75 GeV atT = 0.25 GeV), the cross section is largely dominated by the
s-channel resonance formation, and is substantially largerthan the LO pQCD result forQ-q
scattering. This is not so compared to pQCD scattering off gluons. However, the angular
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Figure 15: Feynman diagrams for nonperturbative charm-quark interactions via effectiveD-
meson exchange ins-channel scattering off antiquarks (left panel) andu channel scattering
off quarks (right panel) [42].

distribution of the differentials-channel resonance cross section (not shown) is essentially
isotropic (in the rest system of the resonance), which renders it significantly more efficient
for thermalizing the HQ distributions (as we will see in Sec.3.2 below). The interaction
introduced via the Lagrangian, Eq. (10), cannot predict at what temperatures the effective
resonance fields dissolve. This, however, can be overcome ifthe interaction underlying
the resonance formation is treated on a more microscopic level. Even more importantly, a
microscopic treatment could, in principle, eliminate the coupling-constant and mass param-
eters. First steps in this direction will be discussed in thenext section.

3.1.3 Potential Scattering Based on Lattice QCD

The advances in finite-temperature lQCD to compute the in-medium free energy of aQ-Q̄
pair as a function of its size have, in principle, opened the possibility to extract their static
(chromo-electric) interaction potential, see the discussion around Eq. (4). If this problem
can be well defined and solved, the next desirable step is to check the quantitative con-
sequences of such an interaction in the light quark sector (where lQCD has also found
indications for resonance formation), eventually including transport and bulk properties. In
Refs. [62, 19] a relativistic correction has been suggestedin terms of a velocity-velocity
interaction (known as the Breit interaction in electrodynamics). In those works the focus
has been on the bound state problem, by solving an underlyingSchr̈odinger equation. In
Ref. [20], aT-matrix approach to theq-q̄ interaction has been set up, which allows for a
simultaneous treatment of bound and scattering states. This framework has been applied
for heavy-light quark scattering in Ref. [61]. Thus far the discussion was constrained to
the color neutral (singlet)Q-q̄ channel (i.e., a blue-antiblue, green-antigreen or red-antired
color-charge combination), but a quark and an antiquark canalso combine into a color-
octet (a combination of red-antiblue, blue-antigreen etc.). In addition, one can extend the
approach to the diquark (Q-q) channel, where color-antitriplet and sextet combinations are
possible (see also Ref. [19]). Finite-temperature latticecomputations of the free energy of
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a heavy diquark [63] suggest that the relative interaction strength in the meson and diquark
systems follows the expectations of perturbative QCD (so-called Casimir scaling, which

essentially reflects the color-charges of the partons), namelyV(1)

QQ̄
= 2V(3̄)

QQ =−4V(6)
QQ; that is,

the interaction in the color-triplet diquark channel is half as attractive as in the color-neutral
diquark channel while it is weakly repulsive for a color-sextet diquark.

The starting point for the calculations of the heavy-light quarkT-matrix is the relativis-
tic Bethe-Salpeter equation for elastic 1+2→ 3+4 scattering,

Tm(1,2;3,4) = Km(1,2,3,4)+
∫

d4k
(2π)4 Km(1,2;5,6) G(2)(5,6) Tm(5,6;3,4) , (12)

which accounts for the full 4-dimensional energy-momentumdependence of the scattering
process (including “off-shell” particles for which energyand 3-momentum are indepen-
dent variables);m characterizes all quantum numbers of the composite meson ordiquark
(color, total spin and flavor),Km is the interaction kernel andG(2)(5,6) is the two-particle
propagator in the intermediate state of the scattering process. The integration in the second
term of Eq. (12) accounts for all possible momentum transfers in compliance with energy-
momentum conservation. The labelsj = 1, . . . ,6 denote the quantum numbers (including
4-momentum) of the scattered single particles. Eq. (12) represents a rather involved in-
tegral equation for the full scatteringT-matrix. However, the (static) potentials extracted
from lQCD do not contain the rich information required for the 4-D interaction kernelKm.
It is therefore in order to adopt suitable reduction schemes[64, 65], which are well-known
in nuclear physics, e.g., in the context of nucleon-nucleonscattering [66]. A reduction
amounts to neglecting additional particle-antiparticle fluctuations for the intermediate 2-
particle propagator and puts the latter on the energy shell,which allows one to perform
the energy integration (overk0) in Eq. (12). Importantly, it furthermore enables to identify
the reduced interaction kernel with a 2-body potential,Vm, and therefore to establish the
connection to the potentials extracted from lattice QCD. The now 3-dimensional scattering
equation, known as Lippmann-Schwinger (LS) equation, is amenable to an expansion in
partial waves characterized by the angular momentum quantum number,l = 0,1, . . ., corre-
sponding to relativeS- andP-waves, etc. Assuming HQ spin symmetry, the spin quantum
number does not explicitly enter, and one arrives at

Ta,l (E; p′, p) = Va,l (p′, p)+
2
π

∫

dkk2Va,l (p′,k)GQq(E;k)Ta,l (E;k, p) , (13)

wherea = 1, 3̄,6,8 labels the color channel. In the Thompson reduction scheme, the inter-
mediate heavy-light quark-quark (or quark-antiquark) propagator takes the form

GQq(E;k) =
1
4

1− f (ωQ
k )− f (ωq

k )

E− (ωq
k + iΣq

I (ω
q
k ,k))− (ωQ

k + iΣQ
I (ωQ

k ,k))
(14)

with ωq,Q
k = (m2

q,Q+k2)1/2 the on-shell quark energies, andf (ωq,Q
k ) the thermal Fermi dis-

tribution functions (the numerator in Eq. (14) accounts forPauli blocking, which, however,
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Figure 16: Diagrammatic representation of the Brueckner problem for HQ interactions in
the QGP [61,67]; upper panel:T-matrix equation for HQ scattering off thermal light quarks
or antiquarks; middle panel: HQ self-energy due to interactions with gluons and quarks or
antiquarks; lower panel: Dyson equation for the in-medium HQ propagator.

is essentially irrelevant at the temperatures considered here). A pictorial representation of
theT-matrix scattering equation is given in the upper panel of Fig. 16. Due to the interac-
tions with the medium, the quark propagators themselves aremodified which is encoded in
a single-quark self-energy,Σq,Q, figuring into the 2-particle propagator, Eq. (14). It can be
related to the heavy-lightT-matrix, as well as due to interactions with gluons, as

ΣQ(k;T) = ΣQg+

∫

d3p

2ωq
p

f (ωq
p)TQq(E; p,k) , (15)

cf. the middle panel in Fig. 16. The self-energy can be resummed in a Dyson equation for
the single-quark propagator according to

DQ = D0
Q +D0

Q ΣQDQ , (16)

where the free propagator is given byD0
Q(ω ,k) = 1/(ω −ω0

k ) (omitting any quantum num-
ber structure and denoting the free particle on-shell energy by ω0

k ). The Dyson equation is
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graphically displayed in the lower panel of Fig. 16. It can besolved algebraically, resulting
in the full in-medium single-particle propagator

DQ =
1

ω −ω0
k −ΣQ

. (17)

The convolution of the full propagators,Dq andDQ, within the Thompson reduction scheme
leads to the 2-particle propagator, Eq. (14). In general, the self-energy is a complex-valued
quantity (as is theT-matrix), with its real part affecting the in-medium quasiparticle mass
while the imaginary part characterizes the attenuation (absorption) of the propagating par-
ticle (wave).

Since the HQ self-energy depends on the heavy-lightT-matrix, and the latter, in turn,
depends on the self-energy, one is facing a Brueckner-type self-consistency problem, as
illustrated in Fig. 16. In the light-quark sector, the system of Eqs. (13) and (15) has been
solved by numerical iteration and moderate effects due to self-consistency have been found.
For a heavy quark, the impact of self-consistency (which to alarge extent is governed by
the real parts ofΣ) is weaker (since the relative corrections to the HQ mass arenot as large
as for light quarks). Therefore, in the calculations of theT-matrix in Ref. [61], the real
and imaginary parts of the self-energies of light and heavy quarks have been approximated
by (constant) thermal mass corrections (largely being attributed to the gluon-induced self-
energy term,ΣQg, in Eq. (15) and resulting inmth

q = 0.25 GeV andmth
c,b = 1.5,4.5 GeV) and

quasiparticle widths ofΓQ,q = 0.2 GeV. The underlying heavy-light interaction potentials,
V1,3̄,6,8, have been identified with the internal energy,UQ̄Q, extracted from the lattice results

of the in-medium singlet free energy,F(1)

Q̄Q
, in combination with Casimir scaling for the

strengths in the non-singlet color channels. Since the long-distance limit of the internal
energy,U∞

Q̄Q ≡ UQ̄Q(r → ∞), does not go to zero, it needs to be subtracted to ensure the
convergence of the scattering equation,

VQ̄Q(r) = UQ̄Q(r)−U∞
Q̄Q . (18)

Clearly, for infinite separation in a deconfined medium, the force between 2 quarks should
vanish, which is consistent with the leveling off of the free(and internal) energy at larger in
Fig. 75. This energy contribution is naturally associated with an in-medium mass correction
(in fact, in the vacuum, it can be identified with the difference between the bare charm-
quark and theD-meson mass). However, an open problem is the entropy contribution in the
internal energy,UQ̄Q = FQ̄Q+TSQ̄Q, which does not vanish forr → ∞; especially close to
the critical temperature, theTS∞

Q̄Q term becomes uncomfortably large, and its subtraction
consequently leads to a rather strong effective potential,cf. Eq. (18). This is currently the
largest uncertainty in the extraction of potentials from the lQCD free energy, which may be
as large as 50%, as illustrated in Fig. 17. The use of the internal energy may be regarded as
an upper estimate for the strength of the thus constructed potentials.

5Recall that the force is the gradient of the potential,~F = −~∇V(r)



Heavy Quark Diffusion as a Probe of the Quark-Gluon Plasma 29

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r [fm]

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

V
 [G

eV
]

1.10 T
c

1.15 T
c

1.20 T
c

1.30 T
c

1.50 T
c

2.00 T
c

3.00 T
c

0.5 1 1.5
r [fm]

-1.5

-1

-0.5

0

V
 [G

eV
]

SZ
MP
Wo
MR

Figure 17: Left panel: subtracted color-singlet heavy-quark internal energy,UQQ̄(r)−U∞
QQ̄,

numerically evaluated fromNf =2 lattice QCD computations in Ref. [25], as a function of
Q-Q̄ distance for various temperatures (figure taken from Ref. [23]). Right panel: Compar-
ison [20] of different extractions of the color-singletQ-Q̄ potential, Eq. (18), atT=1.5 Tc

(SZ= [19], MP= [21], Wo= [24], MR= [20]).

The numerical calculations of the in-medium heavy-lightT-matrices in the scheme out-
lined above [61] have found that the dominant interactions are operative in the attractive
color-singlet (mesons) and color-antitriplet (diquark) channels, while they are strongly sup-
pressed in the repulsive sextet and octet channels. This canbe understood from the iterative
structure of theT-matrix Eq. (13), implying that higher order terms in the Born series,
T = V +VGV+VGVGV+ · · ·, are of alternating sign for repulsive potentials, while they
add for attractive potentials. Moreover, from the left panel of Fig. 18 one sees that the
color-singlet meson channel supports charm-light quark resonance structures in the vicinity
of the 2-body threshold up to temperatures of possibly∼1.5 Tc, and up to∼1.2 Tc in the
antitriplet diquark channel (all numerical results related to theT-matrix approach as shown
here and below are based on the potential labelled “Wo” in theright panel of Fig 17).

The interaction strength may be better quantified via the HQ self-energies, displayed in
the right panel of Fig. 18 for charm quarks. While the real parts are small at all temperatures
(not exceeding 0.02 GeV), the imaginary parts are substantial, translating into scattering
rates (or quasiparticle widths) of up toΓc = −2 ImΣc ≃ 0.2-0.3 GeV not too far aboveTc.
Part of the reason for the different magnitudes in real and imaginary parts is that the real part
of the T-matrix assumes both positive (repulsive) and negative (attractive) values, which
compensate each other when integrated over (or from different channels). The imaginary
part of theT-matrix is strictly negative (absorptive) and always adds in the self-energy.

In the following Section we will set up a Brownian-Motion framework for HQ diffusion
in the QGP and address the question of how the different interactions we have discussed
above reflect themselves in the thermal relaxation for charmand bottom quarks.
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Figure 18: Left panel: in-mediumT-matrix for HQ potential scattering off light quarks
and antiquarks in the QGP in the color-antitriplet diquark and color-singlet meson chan-
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charm-quark self-energies at different temperatures resulting from a sum over allT-matrix
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scattering rate byΓc = −2 ImΣc.

3.2 Heavy-Quark Transport

The description of the motion of a heavy particle in a fluid (orheat bath) has a long history
and a wide range of applications, including problems as mundane as the diffusion of a drop
of ink in a glass of water. A suitable approach is given in terms of a diffusion equation for
the probability density,ρ1, of the “test particle” 1. More rigorously, one starts from the full
Boltzmann equation for the phase space density,f1(~r,~p, t),

(

∂
∂ t

+
~p
E
·~∇r − (~∇rV) ·~∇p

)

f1(~r,~p, t) = Icoll( f1) , (19)

where ~F = −~∇rV represents the force on the test particle due to an external (in-medium)
potential,V, andIcoll( f1) is the collision integral induced by scattering off particles in the
heat bath. The application to heavy-quark motion has first been advocated in Ref. [68].
Neglecting the mean-field term in Eq. (19), and assuming a uniform medium, one can in-
tegrate the Boltzmann equation over the spatial coordinates to obtain an equation for the
distribution function,fQ, of the heavy quark in momentum space,

fQ(~p; t) ≡
∫

d3r fQ(~r,~p, t) , (20)

which is solely determined by the collision term,

∂ fQ(~p; t)
∂ t

= Icoll( fQ) , (21)
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The latter can be written as an integral over all momentum transfers,k,

Icoll( fQ) =
∫

d3k[w(p+k,k) fQ(p+k)−w(p,k) fQ(p)] , (22)

where the key ingredient is a transition rate,w(p,k), for the HQ momentum to change from
p to p− k. The two terms in the integral represent the scattering of the heavy quark into
(“gain term”) and out (“loss term”) of the momentum statep. The transport equation (21)
still constitutes a differential-integral equation forfQ which in general is not easily solved.
At this point, one can take advantage of the HQ quark mass providing a large scale, so that
the momentump of the heavy quark can be considered to be much larger than thetypical
momentum transfer,k ∼ T, imparted on it from the surrounding medium. Under these
conditions, the transition rate in Eq. (22) can be expanded for smallk. Keeping the first two
terms of this expansion, Eq. (21) is approximated by the Fokker-Planck equation,

∂ fQ(p, t)
∂ t

=
∂

∂ pi

[

Ai(p)+
∂

∂ p j
Bi j (p)

]

fQ(p, t) . (23)

where the transport coefficients,Ai andBi j , are given by

Ai(p) =
∫

d3kw(p,k)ki, Bi j (p) =
1
2

∫

d3kw(p,k)kik j (24)

in terms of the transition ratew; Ai encodes the average momentum change of the heavy
quark per unit time and thus describes the friction in the medium, whileBi j represents the
average momentum broadening per unit time, i.e., the diffusion in momentum-space. For an
isotropic medium (in particular a medium in thermal equilibrium), the transport coefficients
can be reduced to

Ai(p) = γ(p2)pi , Bi j (p) =

[

δi j −
pi p j

p2

]

B0(p2)+
pi p j

p2 B1(p2) , (25)

where the friction coefficientγ = τ−1
therm is equivalent to a thermal relaxation time, andB0

andB1 are diffusion coefficients. It is very instructive to examine the limit of momentum
independent coefficients (which in general is not the case and will not be assumed below),
in which case the Fokker-Planck equation reduces to a particularly simple form,

∂ fQ
∂ t

= γ
∂

∂ pi
(pi fQ)+D

∂
∂ pi

∂
∂ pi

fQ , (26)

which clearly illustrates the form of the diffusion term, proportional to a single diffusion
constantD. The diffusion and friction constants are, in fact, relatedvia Einstein’s famous
fluctuation-dissipation relation,

γ =
D

TmQ
, (27)

reducing the problem to a single transport coefficient. Notethe intimate connection be-
tween the HQ transport coefficients and the temperature of the surrounding medium. This
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demonstrates that the Fokker-Planck equation is a consistent approximation to the Boltz-
mann equation in the sense that it recovers the proper equilibrium limit: both friction and
diffusion terms are essential to implement the principle ofdetailed balance; a “pure” dif-
fusion equation (i.e.,γ=0) is only applicable in the limitT,mQ → ∞. Even in the presence
of momentum dependent transport coefficients, the Einsteinrelation (27), remains valid in
the zero-momentum limit (p→ 0) and provides for a valuable check whether the computed
HQ diffusion constantsD andγ recover the temperature of the ambient medium.

In phenomenological applications to heavy-ion collisions, the evolution of high-pT par-
ticles is often approximated within an energy-loss treatment, which amounts to neglecting
the diffusion term, i.e.,D → 0. This means that only momentum- (or energy-) degrading
processes are taken into account, which is reflected in the Einstein equation as theT → 0
limit (with D/T finite). The lack of momentum diffusion implies that both momentum ran-
domization and energy-gain processes are neglected. Thus,the particles can neither equi-
librate nor become part of the collectively expanding medium (which is, of course, crucial
for the transfer of transverse and elliptic flow from the medium to the particles propagating
through it). Nevertheless, at high momentum this approximation may be in order if the
microscopic processes underlying energy loss are rare and at high momentum transfer. In
this case the Fokker-Planck equation is not reliably applicable.

Let us now turn to the microscopic input to the calculation ofthe transport coefficients.
Throughout the remainder of this paper, we employ fixed HQ masses atmc = 1.5 GeV and
mb = 4.5 GeV. Using Fermi’s Golden Rule of quantum mechanics (or quantum field theory),
the transition ratew can be expressed via the quantum mechanical scattering amplitude,
M , underlying the pertinent scattering process in the medium. For elasticQ+ i → Q+ i
scattering (i = q, q̄,g), the rate can be written as

w(p,k) =
∫

di d3q
16(2π)9ωpωqωq+kωp−k

fi(q) |MiQ|2(2π)4δ (ωp +ωq−ωp−k−ωq+k) . (28)

In perturbative QCD, the amplitude is explicitly given by Eq. (9) representing the Feynman
diagrams depicted in Fig. 12. Likewise, theT-matrix discussed in the previous Section can
be directly related to theM amplitude, see Ref. [61]. In Eq. (28),di denotes the spin-
color degeneracy of the parton,fi(q) is its phase-space distribution in the medium, whilep
andq (p− k andq+ k) are the initial (final) momenta of the heavy quark and the parton,
respectively. All in- and outgoing particles are on their mass shell, i.e.,ωp =

√

m2 + p2

with their respective masses,m= mQ,i ; theδ -function enforces energy conservation in the
process.

In Fig. 19, we compare the temperature dependence of the inverse friction coefficient
(thermal relaxation time) for charm quarks at zero momentumfor elastic scattering in pQCD
(as discussed in Sec. 3.1.1) with the effective resonance model (Sec. 3.1.2). The latter leads
to substantially lower thermalization times than pQCD scattering, by around a factor of∼3
at temperaturesT ≃ 1-2 Tc. In contrast to pQCD, the values ofτc,therm≃ 2-10 fm/c within
the resonance model are comparable to the expected QGP lifetime at RHIC,τQGP≃ 5 fm/c;
thus, if resonances are operative, significant modifications of charm spectra at RHIC are
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Figure 19: Thermal relaxation times of heavy quarks at zero 3-momentum as a function
of temperature in the QGP [42]; left panel: charm quarks in the resonance model (with a
D-meson widthΓD=0.3-0.8 GeV; lower band) compared to LO-pQCD (with a strongcou-
pling constantαs=0.3-0.5; upper band) [76]. Right panel: comparison of resonance+pQCD
interactions (red lines) and pQCD only (blue lines) for charm and bottom quarks.

anticipated due to (the approach to) thermalization. The uncertainty band covered by vary-
ing the effective coupling constant,G, over a wide range is comparatively moderate. We
recall that the magnitude of the underlying total cross sections for pQCD and the resonance
model (cf. left panel of Fig. 13) are not largely different; an important effect thus arises due
to the angular dependence of the differential cross section(or scattering amplitudes), which
is forward dominated in pQCD (corresponding to a small 3- or 4-momentum transfer,t or
k) while isotropic in the rest frame of aD-meson resonance implying larger momentum
transfers,k. Since the expression forAi (and thus forγ), Eqs. (24) and (25), directly in-
volvesk, large-angle scattering is more efficient in thermalizing thec-quark distributions.
Charm-quark relaxation in the resonance model appears to become less efficient at high
temperatures. This is not due to the disappearance of the resonances (as will be the case in
the lattice-QCD based potential approach), but due to a mismatch between the excitation
energy of the resonances and the increasing average thermalenergy of the partons in the
heat bath. E.g., atT = 0.5 GeV, the latter amounts toωthermal= 3 T = 1.5 GeV, which
is well above the optimal energy for forming aD-meson resonance in collisions with a
zero-momentum charm quark. Thus, with increasing temperatures the efficiency of the res-
onances inc-quark scattering is diminished since the partons in the surrounding medium
become too energetic.

The effect ofB-meson resonances on bottom quarks is relatively similar tothe charm
sector, i.e., a factor of∼3 reduction in the thermal relaxation time compared to pQCD,
cf. right panel of Fig. 19. However, the magnitude ofτb,therm stays above typical QGP
lifetimes at RHIC, especially below 2Tc where almost all of the QGP evolution is expected
to occur (based, e.g., on hydrodynamic simulations). The momentum dependence of the
relaxation times for LO-pQCD and resonance interactions isillustrated in Fig. 20. The
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Figure 20: Thermal relaxation times of charm (left panel) and bottom quarks (right panel)
in the QGP as a function of 3-momentum at 3 different temperatures, using either pQCD
(αs=0.4; upper 3 lines atp=0 for charm, and lines 1, 2 and 4 from above atp=0 for bottom)
or resonance scattering (ΓΦ=0.4 GeV; lower 3 lines atp=0 for charm, and lines 1, 2 and 4
from below atp=0 for bottom) [42]. The temperatures areT=1.1Tc, 1.4Tc and 1.8Tc from
top to bottom within each set of interaction.

latter show a more pronounced increase of the relaxation time with increasingp, since their
interaction strength is concentrated at low energies. It has been found that even at high
momenta, the main interaction is still via resonance formation with a “comoving” parton
from the heat bath (rather than from tails of the resonance ininteractions with partons of
typical thermal energies).

Next, we examine the transport coefficients as computed fromthe T-matrix approach
using lQCD-based potentials (as elaborated in in Sec. 3.1.3). In Fig. 21 we display the
temperature dependence of the thermal relaxation time for charm quarks. Close toTc, the
strength of theT-matrix based interactions (including all color channels)is very compa-
rable to the effective resonance model. It turns out that thecolor-singlet meson channel
and the color-antitriplet diquark channel contribute to the friction coefficient by about equal
parts; the somewhat smallerT-matrix in the diquark channel is compensated by the 3-fold
color degeneracy in the intermediate scattering states. The contribution of the repulsive sex-
tet and octet channels is essentially negligible. Contraryto both pQCD and the resonance
model, the lQCD-basedT-matrix approach leads to an increase of thec-quark relaxation
time with increasing temperature, despite the substantialincrease of the parton densities
with approximatelyT3. The increase in scattering partners is overcompensated bythe loss
of interaction strength as determined by weakening of the lQCD-based potentials, which is
largely attributed to color screening. As a consequence, thermalization due to LO-pQCD
scattering becomes more efficient than the nonperturbativeT-matrix for temperatures above
T ≃ 1.8 Tc. This feature is very much in line with the generally expected behavior that the
QGP becomes a more weakly coupled gas at sufficiently large temperatures. More quanti-
tatively, it is reflected by lattice QCD computations of bulkmatter properties, in particular
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Figure 21: Thermal relaxation times for charm quarks in the QGP as computed from the
heavy-light quarkT-matrices utilizing potentials estimated from lattice QCD, including all
4 color combinations incq̄ andcq channels [61, 67]. The temperature dependence at zero
3-momentum (middle line in the left panel) and the 3-momentum dependence at 3 tem-
peratures (lower 3 lines atp=0 in the right panel) ofτc,therm are compared to LO-pQCD
scattering (upper blue curves atp=0). Note that in the right panel, the curves are for tem-
peraturesT=1.1Tc, 1.4Tc, 1.8Tc from bottom top (top to bottom) for theT-matrix (pQCD)
interactions.

by the so-called “interaction measure”,ε − 3P, which may be interpreted as an indicator
of nonperturbative effects: as apparent from the left panelof Fig. 5, this quantity becomes
close to zero at temperatures above∼2Tc ≃ 0.4 GeV. Similarly, up to∼2Tc, the (renormal-
ized) Polyakov loop exhibits substantial deviations from one (i.e., the value corresponding
to a “fully” deconfined QGP), cf. right panel of Fig. 6. The 3-momentum dependence of
theT-matrix based relaxation times, shown in the right panel of Fig. 21, reconfirms the loss
of interaction strength at high momenta as found in the resonance model. The transport
properties of the bottom quarks as evaluated in theT-matrix approach are summarized in
Fig. 22; one finds very similar features as in the charm sector, quantitatively differing by a
factor of∼mb/mc = 3.

The momentum-space diffusion (or friction) coefficient canbe converted into a spatial
diffusion constant, defined in the standard way via the variance of the time (t) evolution of
the particle’s position,

〈x2〉−〈x〉2 = 2Dxt . (29)

with

Dx =
dT
mQγ

(30)

and Ds = Dx/d whered denotes the number of spatial dimensions. In Fig. 23,Ds for
charm and bottom quarks is summarized for the 3 different interactions (LO-pQCD, res-
onance+pQCD model and nonperturbativeT-matrix+pQCD). Nonperturbative interactions
lead to a substantial reduction of diffusion in coordinate space compared to LO pQCD,
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Figure 22: Same as Fig. 21 but for bottom quarks [61,67].
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especially for charm quarks. E.g., for a central Au-Au collision at RHIC, taking as an illus-
trationT ≃ 0.2 GeV,t = τQGP≃ 5 fm/c, Ds = 6/2πT andd = 2 (in the transverse plane), one
finds∆x =

√
2Dxt ≃ 4.3 fm/c compared to∼ 8.6 fm/c for LO pQCD only. This indicates

that spatial diffusion is significantly inhibited in the presence of nonperturbative interac-
tions, and is smaller than the typical transverse size of thefireball,R≃ 8 fm/c, indicating a
strong coupling of the charm quark to the medium over the duration of its evolution.

3.3 Heavy-Quark Observables at RHIC

In this Section we elaborate on how the above developed Brownian Motion approach can be
implemented into a description of HQ observables in ultrarelativistic heavy-ion collisions
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(URHICs) [43,45,70,71]6. This requires the following ingredients: (i) a realistic evolution
of the expanding QGP fireball; (ii) Langevin simulations of the heavy quarks in the fireball
background with realistic input spectra; (iii) hadronization of the HQ spectra intoD- andB-
meson spectra at the end of the QGP fireball evolution, and (iv) semileptonic decays of the
D- andB-mesons to compare to experimental single-electron (e±) spectra. We will focus
on Au-Au (

√
s= 200 AGeV) collisions at RHIC where first measurements of the nuclear

modification factor,RAA(pT), and elliptic flow,v2(pT), have become available over the last
∼3-4 years.

3.3.1 Langevin Simulations

The Fokker-Planck equation for the time evolution of the phase-space distribution of a
heavy particle moving through a fluid can be solved stochastically utilizing a Langevin
process. The change in position and momentum of the heavy quark over a discrete but
small time interval,δ t, are evaluated in the rest frame of the medium (QGP) according to

δ~x =
~p

ωp
δ t , δ~p = −A(t,~p+δ~p) ~p δ t +δ ~W(t,~p+δ~p) , (31)

whereωp denotes the on-shell HQ energy and~p/ωp is its relativistic velocity. The drag
and diffusion terms of the Fokker-Planck equation determine the change of momentum,
δ~p. The momentum diffusion is realized by a random change of momentumδ ~W which is
assumed to be distributed according to Gaussian noise [69],

P(δ ~W) ∝ exp

[

− B̂ jkδW jδWk

4δ t

]

, B̂i j = (B−1)i j , (32)

where(B−1)i j denotes the inverse of the matrixBi j , the momentum-diffusion coefficients
of Eq. (25). The Gaussian form of this force is inherently consistent with the underlying
Fokker-Planck equation which was derived from the Boltzmann equation in the limit of
many small momentum transfers (central limit theorem).

A realistic application to URHICs hinges on a proper description of the evolving
medium. As discussed in Sec. 2.3, ideal hydrodynamic simulations, especially for the QGP
phase, reproduce the observed collective expansion properties in central and semicentral
Au-Au collisions at RHIC very well, and have been employed for HQ Langevin simula-
tions in connection with LO-pQCD transport coefficients in Ref. [43]. Alternatively, the
basic features of hydrodynamic evolutions (collective flowand expansion timescales) may
be parametrized using expanding fireball models. In Ref. [45], an earlier developed fireball
model for central Au-Au collisions [74] has been extended toaccount for the azimuthally
asymmetric (elliptic) expansion dynamics closely reminiscent of the hydrodynamic simu-
lations of Ref. [75]. Let us briefly outline the main components of such a description. The
starting point is the time dependent volume expansion of a fire cylinder,VFB = z(t)πa(t)b(t)

6For implementations into parton transport models, see, e.g., Refs. [72,73].
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Figure 24: Thermal fireball expansion for semicentral Au-Aucollisions at RHIC. Left
panel: temperature evolution for either a massless gas withdeff=42 or a massive quasi-
particle gas withdQGP=48 and thermal parton masses ofmi=0.25 GeV; right panel: time
evolution of the inclusive elliptic flow,v2, of the bulk medium (upper solid curve) and for
heavy quarks as following from relativistic Langevin calculations: charm quarks with LO-
pQCD interactions only (αs=0.4, lowest line), as well as charm (upper band) and bottom
quarks (lower band) for the resonance model (ΓD=0.4 GeV) + pQCD.

wherea(t) andb(t) characterize the elliptical expansion in the transverse plane andz(t) the
longitudinal size (typically covering∆y = 1.8 units in rapidity, corresponding to the width
of a thermal distribution). As in ideal hydrodynamics, the evolution is assumed to be isen-
tropic, i.e., to proceed at a fixed total entropy,S, which is matched to the number of observed
hadrons at the empirically inferred chemical freezeout, cf. Fig. 2. The time dependence of
the entropy density,s(t) = S/VFB(t) = s(T), then determines the temperature evolution,
T(t) of the medium usingsQGP(T) = deff

4π2

90 T3 in the QGP (withdeff ≃ 40 to account for
deviations from the ideal gas, cf. Fig. 5) and a (numerical) hadron resonance gas equation
of state,sHG(T), in the hadronic phase. AtTc, which at RHIC energies is assumed to coin-
cide with chemical freezeout atTchem= 180 MeV, the hadron gas is connected to the QGP
phase in a standard mixed-phase construction. Assuming a formation time of the thermal
medium ofτ0 = 1/3 fm/c (translating into a longitudinal size ofz0 = τ0∆y = 0.6 fm) af-
ter the initial overlap of the colliding nuclei, the initialtemperature for semicentral (central)
Au-Au(

√
s= 200 AGeV) collisions amounts toT0 = 0.34(0.37) GeV. The subsequent cool-

ing curve and elliptic flow of the bulk medium are displayed inFig. 24. The last ingredient
needed for the HQ Langevin simulations are the initial charmand bottom-quark spectra.
They have been constructed to reproduce available experimental information onD-meson
ande± spectra in elementaryp-p andd-Au collisions at RHIC [76], where no significant
medium formation (and thus modification of their productionspectra) is expected.

In Fig. 25 we compare the results for HQpT spectra and elliptic flow of Langevin sim-
ulations in the above described fireball expansion using either LO-pQCD scattering with
αs = 0.4 (which may be considered as an upper estimate) or a combination of theQ+ q̄→Φ
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Figure 25: Nuclear modification factor (left panel) and elliptic flow (right panel) of heavy
quarks as a function of their transverse momentum in semicentral (b=7 fm) Au-Au colli-
sions [45].

resonance interaction with LO-pQCD [45]. This combinationis motivated by the fact that
in the resonance model the interaction of a heavy quark is restricted to (light) antiquarks
from the medium, while LO-pQCD is dominated by interactionswith thermal gluons (the
contribution from antiquarks is small, at the∼10-15% level of the total pQCD part). One
finds that both the suppression at intermediatepT and the elliptic flow of charm quarks
are augmented by a factor 3-5 over LO-pQCD interactions, quite reminiscent to what has
been found at the level of the transport coefficients. The uncertainty due to variations in
the effective resonance parameters is moderate, around±30%. It is remarkable that the
Langevin simulations naturally provide for a leveling off of the elliptic flow as a character-
istic signature of the transition for a quasi-thermal regime at lowpT to a kinetic regime for
pT ≥ 2 GeV, very reminiscent to the empirical KET scaling shown in Fig. 10. Even the
quantitative plateau value of 7-8% is recovered, indicating that with the resonance+pQCD
model thec-quarks are largely participating in the collective expansion of the medium. On
the other hand, bottom quarks strongly deviate from the universal behavior, which is of
course due to their much larger mass,mb = 4.5 GeV.

The results of the HQ Langevin calculations in a hydrodynamic simulation for semi-
central Au-Au collisions are summarized in Fig. 26 [43]. In these calculations, the pQCD
HQ scattering amplitudes have been augmented by a full perturbative in-medium gluon ex-
change propagator with a fixed Debye mass ofµD=1.5T, while the strong coupling constant
αs has been varied to produce a rather large range of diffusion constants. The hydrodynamic
evolution is performed for Au-Au collisions at impact parameterb=6.5 fm with a thermal-
ization time ofτ0=1 fm/c (corresponding to an initial temperature ofT0 = 0.265 GeV) and
a critical temperature ofTc=0.165 GeV. The basic trends of the HQ spectra and elliptic
flow are consistent with the fireball simulations of Ref. [45], indicating a strong correlation
between largev2 and smallRAA (strong suppression). Comparing more quantitatively the
simulations with a “realistic” pQCD HQ diffusion constant of Ds = 24/2πT to LO-pQCD
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in the fireball evolution (corresponding toDs ≃ 30/2πT), reasonable agreement is found,
with RAA(pT=5 GeV)≃0.7 andv2(pT=5 GeV)≃1.5-2 %, especially when accounting for
the lowerT0 in the hydro evolution (implying less suppression) and the smaller impact
parameter (implying lessv2).

It is very instructive to investigate the time evolution of the suppression and elliptic
flow, displayed in Fig. 27 for the resonance+pQCD model in thefireball evolution. It turns
out that the suppression inRAA is actually largely built up in the early stages of the medium
expansion, where the latter is the hottest and densest, i.e., characterized by a large (local)
opacity. On the other hand, the elliptic flow, being a collective phenomenon, requires about
∼4 fm/c to build up in the ambient fireball matter, implying that the charm-quarkv2 starts
building up only 1-1.5 fm/c after thermalization, and then rises rather gradually, seeleft
panel of Fig. 24. Thus, the time evolution ofRAA and v2 is not much correlated, quite
contrary to the tight correlation suggested by the final results. This will have important
consequences for the interpretation of the experimental data in Sec. 3.3.2.

Finally, we show in Fig. 28 the fireball simulation results for heavy quarks in the non-
perturbativeT-matrix approach augmented by LO-pQCD scattering. Here, the latter only
includes gluonic interactions to strictly avoid any doublecounting with the perturbative
(Born) term of theT-matrix (which involves scattering off both quarks and antiquarks from
the heat bath). The results are very similar to the effectiveresonance+pQCD model.

3.3.2 Heavy-Meson and Single-Electron Spectra

To make contact with experiment, the quark spectra as computed in the previous section
require further processing. First, the quarks need to be converted into hadrons (D andB
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quarks in central/semicentral Au-Au collisions at RHIC as computed within HQ Langevin
simulations in a thermal fireball background with nonperturbative potential scattering off
thermal quarks and antiquarks plus LO-pQCD scattering off gluons [61,67].

mesons, their excited states, and possibly baryons containing heavy quarks). Second, since
the current RHIC data are primarily for single electrons, the pertinent semileptonic decays,
D,B→ eνeX, need to be evaluated.

The hadronization of quarks produced in energetic collisions of elementary particles
(e.g.,e+e− annihilation or hadronic collisions) is a notoriously difficult problem that has
so far evaded a strict treatment within QCD and thus requiresphenomenological input. A
commonly employed empirical procedure to describe hadronization of quarks produced at
large transverse momentum is to define a fragmentation function,Dh/i(z), which represents
a probability distribution that a parton,i, of momentumpi hadronizes into a hadron,h,
carrying a momentum fractionz = ph/pi of the parent parton (with 0< z≤ 1, reflecting
the fact that color-neutralization in the fragmentation process requires the production of



42 Ralf Rapp and Hendrik van Hees

extra “soft” partons, which, in general, do not end up inh). At large enoughpT , the parton
production occurs at a very short time scale,τprod≃ 1/pT , and thus hadronization, charac-
terized by a typical hadronic scale,τhad≃ 1/ΛQCD, becomes independent of the production
process (this is roughly the essence of the “factorization theorem” of QCD [77]). There-
fore, the distributionD(z) is supposed to be universal, i.e., can be determined (or fit) in,
e.g.,e+e− → hadronsand then be applied to hadronic collisions. For light quarksand glu-
ons,D(z) is typically a rather broad distribution centered aroundz≃ 0.5, while for heavy
quarks it is increasingly peaked towardz = 1, sometimes even approximated by a Dirac
δ -function,D(z) = δ (z−1) (so calledδ -function fragmentation). Toward lowerpT , other
hadronization processes are expected to come into play. In hadronic collisions, a possibility
is that a produced quark recombines with another quark or antiquark from its environment,
e.g., valence quarks of the colliding hadrons [78]. There isample empirical evidence for the
presence (and even dominance) of the recombination mechanism in bothp-p andπ-p col-
lisions, in terms of flavor asymmetries of hadrons (including charmed hadrons [79,80,81])
produced at forward/backward rapidities, where recombination with valence quarks is fa-
vored). E.g., for charm production inπ−N collisions, theD−/D+ ratio is enhanced at large
rapidity, y, indicating the presence of ¯cd → D− recombination with ad-quark from the
π− = dū (but notcd̄ → D+).

As discussed in Sec. 2.3, the quark recombination (or coalescence) model has received
renewed interest in the context of RHIC data, by providing a successful explanation of
2 phenomena observed in intermediate-pT hadron spectra, namely the constituent quark-
number scaling of the elliptic flow and the large baryon-to-meson ratios. It is therefore
natural to also apply it to the hadronization of heavy quarks[82,55], where it appears to be
even more suited since the HQ mass provides a large scale relative to which corrections to
the coalescence model are relatively suppressed even at lowmomentum. We here follow
the approach of Ref. [55] where thepT spectrum of aD-meson is given in terms of the light
and charm quark or antiquark phase space distributions,fq̄,c, as

dNcoal
D

dyd2pT
= gD

∫

p·dσ
(2π)3

∫

d3q fD(q,x) fq̄(~pq̄,~rq̄) fc(~pc,~rc) , (33)

where~p = ~pq̄ +~pc denotes the momentum of theD meson,gD a combinatorial factor (en-
suring color-neutrality and spin-isospin averaging),fD(q,x) the Wigner function of theD-
meson which is usually assumed to be a double Gaussian in relative momentum,~q=~pc−~pq̄

and size,~r =~rc−~rq̄, and dσ represents an integration over the hadronization volume. The
charm-quark distribution function is directly taken from the output of the Langevin sim-
ulations discussed in the previous section, while the light-quark distributions are taken as
determined from the successful application of the coalescence model of Ref. [47] to light
hadron observables at RHIC. The coalescence mechanism, however, does not exhaust all
charm quarks for hadronization, especially at highpT where the light-quark phase-space
density becomes very small; in Ref. [45], the “left-over” charm quarks,N̂c, have been
hadronized withδ -function fragmentation (as was done when constructing theinput spec-
trum in connection withp-p andd-Au data). The totalD-meson spectrum thus takes the
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Figure 29: Left panel: single-electron spectra from heavy-flavor decays inp-p andd-Au
collisions; the empirically inferred decomposition [45, 76] is compared to STAR data [86,
85]. Middle and right panel:e± elliptic flow and nuclear modification factor in semicentral
Au-Au collisions (b=7fm/c) [45,76] compared to first RHIC data [88,89,90].

form
dNtot

D

dyd2pT
=

dNcoal
D

dyd2pT
+

dN̂frac
c

dyd2pT
. (34)

In the approach of Ref. [45] the formation of baryons containing charm quarks (most no-
tably Λc = udc) has been estimated to be rather small, with aΛc/D ratio significantly
smaller than 1, and is therefore neglected. The same procedure as for charm quarks is
also applied for bottom-quark hadronization. In principle, the QGP and mixed phase is
followed by an interacting hadronic phase (cf. Fig. 9), where D andB mesons are subject
to further reinteractions. In Ref. [83]D-meson reaction rates,ΓHG

D , have been estimated
in a hot pion gas. Even at temperatures close toTc ≃ 0.18 GeV,ΓHG

D ≤ 0.05 GeV, which
is significantly smaller than in the QGP at all considered temperatures, cf. Fig. 18, and
are therefore neglected in the calculations of Ref. [45]. Finally, theD- andB-meson spec-
tra are decayed with their (weighted average) semileptonicdecay branching (∼10% forD
mesons), assuming a dominance of 3-body decays (e.g.,D → Keν). Before discussing the
pertinent single-e± spectra in more detail, two important features should be recalled: (i)
the shape and magnitude of the decay electrons closely follows those from the parentD
mesons [55, 56]; (ii) the electron spectra are a combinationof charm and bottom decays
which experimentally have not yet been separated. Since bottom-quark spectra (and thus
their decay electrons) are predicted to be much less modifiedthan charm spectra, a reliable
interpretation of thee± spectra mandates a realistic partitioning of the 2 contributions. Fol-
lowing the strategy of Ref. [45], the input charm and electron spectra are constructed as
follows: one first reproduces availableD-meson spectra ind-Au collisions [84], calculates
the pertinent electron decays and then adjusts the bottom contribution to reproduce thee±

spectra inp-p andd-Au reactions. As a result of this procedure, the bottom contribution to
thee± spectra in the elementary system exceeds the charm contribution at momentapT≃5-
5.5 GeV, see left panel of Fig. 29; this is consistent with the(rather large) margin predicted
by perturbative QCD [87].

The first comparison of thee± spectra obtained within the Langevin reso-
nance+pQCD+coalescence model [45, 76] to RHIC data available at the time is shown in



44 Ralf Rapp and Hendrik van Hees

0 1 2 3 4 5 6 7 8
p

T
 [GeV]

0

0.5

1

1.5

R
A

A

PHENIX prel (0-10%)
STAR prel (0-20%)◆

c+b reso
c+b pQCD
c reso√s=200 GeV 

central Au-Au 

0 1 2 3 4 5
p

T
 [GeV]

0

5

10

15

20

-5

v 2 [%
]

c+b reso
c+b pQCD

PHENIX prel (min bias)

Au-Au √s=200 GeV (b=7 fm)

0 1 2 3 4 5 6 7 8
p

T
 [GeV]

0

0.5

1

1.5

R
A

A

PHENIX prel (0-10%)
STAR prel (0-20%)◆

c+b reso
c+b pQCD
c reso√s=200 GeV 

central Au-Au 

0 1 2 3 4 5
p

T
 [GeV]

0

5

10

15

20

-5

v 2 [%
]

c+b reso
c+b pQCD

PHENIX prel (min bias)

Au-Au √s=200 GeV (b=7 fm)

Figure 30: Elliptic flow and nuclear modification factor of electrons from heavy-flavor
decays in Au-Au collisions at RHIC as computed within HQ Langevin simulations in a
thermal fireball background employing the resonance+pQCD model for HQ interactions in
the QGP [45, 57]. In the lower panels, quark coalescence processes at hadronization are
switched off. The data are from Refs. [91,92,93].

the middle and right panel of Fig. 29. While no quantitative conclusions could be drawn,
a calculation with pQCD elastic scattering alone was disfavored. One also notices that
the bottom contribution leads to a significant reduction of the ve

2 at pT ≥ 3 GeV, as well
as a reduced suppression inRe

AA, where thec andb contributions become comparable for
pT ≥ 4.5 GeV in semicentral collisions.

The resonance+pQCD+coalescence model is compared to improvede± data [91,92,93]
in the upper panels of Fig. 30. For central Au-Au collisions,the e± suppression ap-
pears to be underpredicted starting atpT ≃4-5 GeV (with theb contribution exceeding
the charm atpT ≥ 3.7 GeV), indicating the presence of additional suppression mecha-
nisms at higher momenta. The lower panels in Fig. 30 show the results of calculations
without quark coalescence, i.e., allc andb quarks are hadronized withδ -function frag-
mentation. The shape of theRe

AA(pT), as well as the magnitude ofve
2, are not properly

reproduced. This conclusion has been consolidated by another improvement of the exper-



Heavy Quark Diffusion as a Probe of the Quark-Gluon Plasma 45
A

A
R

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 = 200 GeVNNsAu+Au @ 

0-10% central(a)

Moore &
Teaney (III) T)π3/(2

T)π12/(2

van Hees et al. (II)

Armesto et al. (I)

 [GeV/c]
T

p
0 1 2 3 4 5 6 7 8 9

H
F

2v

0

0.05

0.1

0.15

0.2

(b)
minimum bias

 > 4 GeV/c
T

, pAA R0π

 > 2 GeV/c
T

, p2 v0π

HF
2 v±, eAA R±e

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

R
A

A

theory

frag. only

STAR
PHENIX

0 1 2 3 4 5
p

T
 [GeV]

0

0.05

0.1

0.15

v 2

theory
frag. only
PHENIX

(a)       0-10% central

(b)      minimum bias

Au+Au √s=200 AGeV

Figure 31: Elliptic flow and nuclear modification factor of electrons from heavy-flavor
decays in Au-Au collisions at RHIC. Left panel: PHENIX data [94] compared to theoretical
predictions based on the Langevin simulations in the resonance+pQCD+coalescence model
(bands) [45] or with upscaled pQCD interactions (dash-dotted and dotted lines) [43], as well
as with radiative energy-loss calculations (dashed lines)[54]. Right panel: PHENIX [94]
and STAR [95] are compared to Langevin simulations employing HQT-matrix interactions
plus coalescence [61].

imental results, displayed in the left panel of Fig. 31 together with theoretical predictions
within the resonance+pQCD+coalescence model [45], the hydrodynamic Langevin simu-
lations with pQCD-inspired transport coefficients [43], aswell as the radiative energy-loss
approach with a transport coefficient ˆq=14 GeV2/fm [54]. Both Langevin simulations point
at a HQ diffusion coefficient of aroundDs ≃ 5/(2πT), cf. Fig. 23. The comparison of the
2 Langevin approaches reiterates the importance of the coalescence contribution: the lat-
ter is absent in the hydro calculations of Ref. [43] which cannot simultaneously describe
the measured elliptic flow and suppression with a single value of the diffusion coefficient.
Quark coalescence, on the other hand, introduces an “anti-correlation” ofv2 andRAA into
the spectra which increases thev2 but decreases the suppression (largerRAA), which clearly
improves on a consistent description of the data. In the radiative energy loss approach [54],
the suppression is approximately reproduced but the azimuthal asymmetry is too small, es-
pecially at lowpT . As discussed in connection with the Fokker-Planck Eq. (26), energy-loss
calculations do not account for momentum diffusion; a non-zerov2 is therefore solely due
to the geometric path length difference across the long and the short axes of the almond-
shaped transverse fireball area (a shorter path length inducing less suppression). The lack of
v2 thus corroborates the interpretation that the charm (and maybe bottom) quarks become
part of the collectively expanding medium, while the large transport coefficient supports the
strongly coupled nature of the medium, even without diffusion and coalescence.
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Finally, the right panel of Fig. 31 shows the predictions of fireball Langevin simula-
tions employing the nonperturbativeT-matrix+pQCD+coalescence approach for HQ inter-
actions [61]; the agreement with PHENIX data is fair. One should keep in mind that the in-
herent uncertainties in this approach, e.g., in the extraction and definition of an in-medium
two-body potential from the lattice-QCD free energy, are still appreciable, estimated at
around±30% at the level ofe± observables [61]. A conceptually attractive feature of the
T-matrix+coalescence approach is that it directly connectstwo thus far disconnected phe-
nomena observed at RHIC, namely the strongly coupled QGP andquark coalescence: the
very same interaction that induces the strong coupling of the heavy quarks to the QGP
leads to the formation of “pre-hadronic” resonance structures close toTc. The latter are
naturally identified with the meson (M) and diquark (dq) states building up hadrons in a
q+ q̄→ M andq+q→ dq,dq+q→ B processes (B: baryon), as suggested by the univer-
sal constituent-quark number scaling (CQNS), see also Ref.[51].

3.4 SQGP at RHIC?

Let us now try to elaborate on the possible broader impact of the current status of the HQ
observables and their interpretation. It is gratifying to see that the available electron data
thus far confirm the strongly coupled nature of the QGP produced at RHIC; relativistic
Langevin simulations have quantified this notion in terms ofextracted transport coefficients
which are a factor of 3-5 stronger than expectations based onelastic perturbative QCD inter-
actions. At least in the low-momentum regime, this should bea reliable statement since the
heavy-quark mass warrants the main underlying assumptions, namely: (i) the applicability
of the Brownian motion approach, and (ii) the dominance of elastic interactions. Clearly,
an important next step is to augment these calculations by a controlled implementation of
radiative energy-loss mechanisms, see, e.g., Ref. [96] fora first estimate. As for the micro-
scopic understanding of the relevant interactions underlying the HQ rescattering, it should
be noted that large couplings necessarily require resummations of some sort, especially for
the problem at hand, i.e., HQ diffusion, for which the perturbation series converges espe-
cially poorly [52]. An example of such a (partial) resummation is given by theT-matrix
approach [20,61] discussed above, which is particularly valuable when it can be combined
with model-independent input from lattice QCD. Here the objective must be to reduce the
uncertainties in the definition and extraction of a suitablepotential. This task can be fa-
cilitated by computing “Euclidean” (imaginary time) correlation functions for heavy-light
mesons and check them against direct lattice computations which can be carried out with
good accuracy. These kinds of constraints are currently pursued in the heavy quarkonium
sector [21,22,23], i.e., forQ-Q̄ correlation functions, indicating that potential models are a
viable framework to describe in-medium HQ interactions.

An alternative nonperturbative approach to describe the medium of a strongly-coupled
gauge theory has recently been put forward by exploiting connections between string theory
and Conformal Field Theory (CFT), the so-called AdS/CFT correspondence. The key point
here is a conjectured duality between the weak-coupling limit of a certain string theory
(defined in Anti-de-Sitter (AdS) space) and the strong-coupling limit of a supersymmetric
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Figure 32: The ratio of shear viscosity to entropy density,η/s. Left panel: lattice QCD
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gauge theory (“conformal” indicates that the theory does not carry any intrinsic scale, such
asΛQCD in QCD; this difference may, in fact, be the weakest link in the identification of
the CFT plasma with the QGP; it implies, e.g., the absence of acritical temperature in
CFT). A remarkable result of such a correspondence is the derivation of a universal value
for the ratio of shear viscosity to entropy density pertaining to a large class of strongly
coupled quantum field theories,η/s= 1/(4π), which was furthermore conjectured to be
an absolute lower bound for any quantum liquid [97]. Within the same framework, the HQ
diffusion has been computed, with the resultDs ≃ 1/(2πT) [98, 99]. The assumption that
the QGP is indeed in a strongly coupled regime (sQGP) can thenbe utilized to establish a
relation betweenη/sand the heavy-quark diffusion constant, and thus obtain a quantitative
estimate ofη/s. Based on AdS/CFT, and exploiting the proportionalityη/s∝ Ds (as, e.g.,
borne out of kinetic theory) one has

η
s
≈ 1

4π
Ds(2πT) =

1
2

T Ds (AdS/CFT) (35)

using the empirically inferredDs(2πT)=4-6, one arrives atη/s=(4-6)/(4π)=(1-1.5)/π . This
may be compared to a rather recent lattice QCD computation displayed in the left panel of
Fig. 32 [100], which also contains the result of a perturbative calculation. A caveat here is
that the lattice computations are for a pure gluon plasma (GP).

An alternative estimate forη/smight be obtained in the weak-coupling regime. Starting
point is a kinetic theory estimate ofη for an ultrarelativistic gas [103,104]

η ≈ 4
15

n 〈p〉 λtr , (36)
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wheren is the particle density,λtr the transport mean free path over which a particle’s
momentum is degraded by an average momentum〈p〉. Assuming the latter to be of order
of the average thermal energy of a massless parton, one hasn〈p〉 ≈ ε (the energy density of
the gas). Further usingTs= ε +P = 4

3ε andλtr = τtr, one obtains

η
s
≈ 1

5
T τtr . (37)

Finally, accounting for the delayed thermal relaxation time of a heavy quark viaτQ ≈
(T/mQ)τtr, and using the expression, Eq. (30), for the HQ diffusion constant, one arrives at
the following rough estimate for a weakly coupled (perturbative) QGP (wQGP),

η
s
≈ 1

5
T Ds (wQGP) . (38)

Note the significantly smaller coefficient in this estimate compared to the one in expression
(35), which reflects the expected underestimation of the shear viscosity if a gas estimate
is applied in a liquid-like regime (as emphasized in Ref. [103]). As a rough application
we may use the LO pQCD results for the HQ diffusion coefficient. With D(2πT) ≃ 40
for a gluon plasma (GP) atT=0.4 GeV (see Fig. 23, with a∼25% increase for removing
the contributions from thermal quarks and antiquarks), onefinds η/s≃ 1.25, which is
surprisingly close to the perturbative estimate constructed in Ref. [100] which is based on a
next-to-leading logarithm of the shear viscosity [102] anda hard-thermal-loop calculation
of the entropy density [101] (both of which represent pQCD calculations beyond the LO
estimate of the HQ diffusion constant in Fig. 23).

In the right panel of Fig. 32 we attempt a schematic estimate of η/s in the Quark-Gluon
Plasma based on the 3 basic calculations of the HQ diffusion coefficient discussed through-
out this article. For the LO-pQCD calculation, we adopt the estimate (38) for a weakly
coupled gas, while for the resonance+pQCD model we use the strong-coupling estimate
(35). The most realistic estimate is presumably represented by theT-matrix+pQCD calcu-
lation, for which we constructed a pertinent band inη/s as follows: the lower limit of the
band is based on the weak-coupling estimate, while for the upper limit we adopt the strong-
coupling estimate at the low temperature end (T=0.2 GeV), the LO-pQCD only result at
the high-T end (T=0.4 GeV) and a linear interpolation in between these 2 temperatures
(there are additional uncertainties which are not displayed, e.g., due to the extraction of the
lQCD-based interaction potentials).

A remarkable feature of the lattice-QCD potential basedT-matrix approach is that
the interaction strengthdecreaseswith increasing temperature - in other words, the most
strongly coupled regime appears to be close to the critical temperature. It turns out that
the occurrence of a maximal interaction strength at a phase transition is a rather generic
phenomenon which is present in a large variety of substances: at their critical pressure,
helium, nitrogen and even water have a very pronounced minimum in η/s at the critical
temperature, as is nicely demonstrated in Ref. [106] and compiled in Fig. 33 taken from
Ref. [105]. This plot also contains calculations forη/s in the hadronic phase, using free
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Figure 33: Compilation of the ratio of shear viscosity to entropy density for various sub-
stances [105]: atomic He, molecular N2 and H2O [106] (upper 3 symbols), pure-glue lattice
QCD (upward triangles aboveTc) [100], pion gas (downward triangles belowTc) [107] and
empirical estimates from heavy-ion data (hexagons) [105].

π-π interactions in a pion gas [107] (similar results are obtained for aπ-K gas with empir-
ical (vacuum) scattering phase shifts [109]). The decreaseof η/s in a hot meson gas with
increasingT corroborates the presence of a minimum around the critical temperature. The
finite-temperature QCD phase transition atµq=0 is presumably a cross-over, but the mini-
mum structure ofη/sclose toTc is likely to persist, in analogy to the atomic and molecular
system above the critical pressure [106]. If such a minimum is indeed intimately linked to
the critical temperature, the AdS/CFT correspondence may be of limited applicability to
establish rigorous connections between the sQGP (and RHIC phenomenology) and CFTs,
since, as mentioned above, the latter do not possess an intrinsic scale.

The question of how a gluon plasma (GP) compares to a quark-gluon plasma is not
merely a theoretical one, but also of practical relevance. In heavy-ion collisions at collider
energies (RHIC and LHC), the (very) early phases of the reaction are presumably dominated
by the (virtual) gluon fields in the incoming nuclei. A lot of progress has been made in
recent years in the determination of these gluon distributions and their early evolution in
URHICs [108]. The modifications of the HQ spectra due to thesestrong “color” fields
should certainly be addressed in future work. In the subsequent evolution, an early formed
GP is estimated to chemically equilibrate into a QGP rather rapidly, and closer toTc quark
coalescence models are suggestive for the dominance of quark degrees of freedom - this is
where theT-matrix approach with lQCD-based potentials is predominantly operative (recall
that it hinges on the presence of quarks and antiquarks in themedium). The underlying
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interactions could therefore provide a unified and quantitative framework for HQ diffusion,
quark coalescence and the sQGP in the vicinity ofTc, based on input which, in principle, is
directly extracted from lQCD. Its further development should aim at a better determination
of potentials extracted from lQCD, include constraints from lattice correlation functions and
applications to quarkonia, and implement contributions due to gluon radiation processes.

4 Conclusion and Outlook

The study of elementary particle matter has been an extremely active research field over
the last 20-30 years, and it may not have reached its peak timeyet. We are beginning to
understand better what the key features of media are whose forces are directly governed by
gauge theories. Here the strong nuclear force between quarks and gluons (as described by
Quantum Chromodynamics) occupies a special role due to its large interaction strength and
the self-couplings of its field quanta. On the one hand, QCD gives rise to novel nonper-
turbative phenomena in the vacuum, most notably the confinement of quarks into hadrons
and the chiral symmetry breaking (generating the major partof the visible mass in the
universe), whose underlying mechanisms are, however, not yet understood. On the other
hand, the Strong Force generates a very rich phase structureof its different matter states
(upon varying temperature and baryon density), which are even less understood. Pertinent
phase transitions are, in fact, closely connected with deconfinement and chiral symmetry
restoration. First principle numerical calculations of discretized (lattice) QCD at finite tem-
perature have clearly established a transition (or a rapid cross over) from hadronic matter
into a deconfined Quark-Gluon Plasma with restored chiral symmetry at a temperature of
Tc ≃ 0.175 GeV. This state of matter is believed to have prevailed inthe early Universe in
the first few microseconds after the Big Bang. A particularlyexciting aspect of this research
field is that such kind of matter can be reproduced, at least for a short moment, in present-
day laboratory experiments, by accelerating and collidingheavy atomic nuclei. However,
to analyze these reactions, and to extract possible evidence for QGP formation out of the
debris of hundreds to thousands of produced hadrons, is a formidable task that requires
a broad approach, combining information from lattice QCD, effective models of QCD in
a well-defined applicability range, and their implementation into heavy-ion phenomenol-
ogy. Large progress has been made at the Relativistic Heavy-Ion Collider (RHIC), where
clear evidence for the formation of thermalized QCD matter well above the critical energy
density has been deduced. The apparently small viscosity ofthe medium is inconsistent
with a weakly interacting gas of quarks and gluons, but is possibly related to recent results
from lattice QCD which suggest the presence of resonant correlations for temperatures up
to ∼2 Tc. We have argued that heavy quarks can serve as controlled probe of the transport
properties of the strongly coupled QGP (sQGP). The modifications of heavy-quark spec-
tra in Au-Au collisions at RHIC can be evaluated in a Brownianmotion framework which
allows to establish quantitative connections between the heavy-quark diffusion coefficients
and observables, such as the suppression of their spectra and especially their elliptic flow.
Theoretical analyses have confirmed that perturbative interactions are too weak to account
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for the measured heavy-quark observables (i.e., their electron decay spectra), while an ef-
fective resonance model seems to furnish the required nonperturbative interaction strength.
An appealing framework to calculate heavy-quark interactions (and transport properties)
in the medium is to extract interaction potentials from lattice QCD and iterate them in a
nonperturbativeT-matrix equation. This approach is, in principle, free of adjustable pa-
rameters, but currently subject to significant uncertainties, primarily in the definition of the
potentials and their applicability to light quarks and at high momentum. However, promis-
ing results have been obtained in that theT-matrix builds up resonance-like structures close
to the phase transition, which could be instrumental in explaining the observed elliptic
flow. In addition, the resonance correlations naturally explain the importance of quark co-
alescence processes for the hadronization of the QGP (as indicated by the measured light
hadron spectra). Clearly, a lot more work is required to elaborate these connections more
rigorously and quantitatively, to implement additional components toward a more complete
description (e.g., energy loss via gluon radiation or the effects of strong color fields), to
scrutinize the results in comparison to improved lattice QCD computations, and to confront
calculations with high precision RHIC (and LHC) data. The latter are expected to emerge
in the coming years and will surely hold new surprises, further pushing the frontier of our
knowledge of the Quark-Gluon Plasma.
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