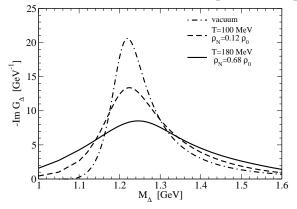
In-Medium Modifications of the Nucleon and Δ (1232) at RHIC

Hendrik van Hees and Ralf Rapp

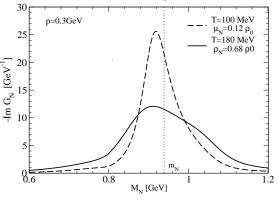
From asymptotic freedom of QCD, at sufficiently high temperatures and densities of nuclear matter, one expects a (pseudo-)phase transition to a quark-gluon plasma (QGP). Lattice calculations show that this transition is closely related with the restoration of the approximate chiral symmetry in the light-quark sector of QCD. Since in the restored phase the spectral functions of chiral-partner hadrons become degenerate, one expects significant medium modifications which one hopes to observe in ultra-relativistic heavy-ion collisions [1].

In this work, we employ a hadronic model to describe interacting pions, nucleons, and baryon resonances to investigate their properties within a hot and dense medium, particularly for the $\Delta(1232)$ resonance, which recently became accessible to experiment through the measurement of πN -invariant mass spectra at RHIC [2].


The $\pi N\Delta$ -coupling is taken as a p-wave interaction with a monopole form factor with a three-momentum cutoff of 290 MeV, which fits the π V-phase shift in the Δ (1232) channel [3].

To assess medium modifications, we dressed the $\Delta(1232)$ with self-energy contributions from scattering off thermal pions, including the baryon resonances N(1440), N(1520), N(1700), $\Delta(1600)$, $\Delta(1620)$, and $\Delta(1700)$. We furthermore included πN interactions as well as vertex corrections in the Δ -self-energy loop, employing standard Migdal parameters to account for short-range NN and $N\Delta$ correlations, to suppress an artificial threshold enhancement due to the in-medium pion-dispersion relation. The resulting model has been checked to approximately agree with photo-absorption data on nuclei.

As shown in Fig. 1, under RHIC conditions the peak position of the Δ -spectral function shifts to higher masses with increasing temperature and density, and the width increases as compared to the vacuum. The broadening is mainly caused by a Bose enhancement of the pion in the decay of the Δ and by resonant π - Δ interactions. For conditions resembling thermal freeze out (dashed line in Fig. 1), the peak position is located at about $M\cong1.226$ GeV and the width has increased to $\Gamma\cong177$ MeV to be compared to the vacuum values of $M\cong1.219$ GeV and $\Gamma\cong110$ MeV respectively, which is in qualitative agreement with preliminary data from the STAR collaboration [2].


We have also calculated the in-medium modifications of the nucleon with πN - and $\pi \Delta$ -loops. As shown in Fig. 2, the nucleon-spectral function becomes substantially broadened.

The next step in evaluating in-medium modifications of the Δ resonance will be the inclusion of interactions with vector and axial-vector mesons, with particular emphasis on the nature of the chiral phase transition.

Fig. 1: The Δ -spectral function at finite temperature and density in comparison to the vacuum.

- [1] R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000).
- [2] H. van Hees, R. Rapp, Phys. Lett. B 606, 59 (2005).
- [3] P. Fachini, J. Phys. G **30**, S735 (2004).
- [4] W. Weinhold, B. Friman, W. Nörenberg, Phys. Lett. B 433, 236 (1998).

Fig. 2: The nucleon-spectral function at finite temperature and density.