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Abstract

Recent developments in the evaluation of vector-meson spectral functions in hot
and dense matter are discussed with emphasis on connections to the chiral phase tran-
sition in QCD. Model independent approaches including chiral low-density expansions,
lattice QCD, chiral and QCD sum rules are put into context with model predictions for
in-medium vector-spectral function utilizing effective Lagrangians. Hadronic many-
body calculations predict a strong broadening (and little mass shift) of the ρ spectral
function which rapidly increases close to the expected phase boundary of hadronic
and quark-gluon matter. Pertinent dilepton rates appear to degenerate with pertur-
bative quark-antiquark annihilation in the Quark-Gluon Plasma, suggestive for chiral
symmetry restoration. Applications to low-mass dilepton spectra in heavy-ion colli-
sions result in quantitative agreement with recent high-quality data at the CERN-SPS.
Thermal radiation from temperatures around Tc consistently reproduces the experi-
mental dilepton excess observed at masses above 1 GeV as well. The interpretation
of dilepton sources at high transverse momentum appears to be more involved.
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1 Introduction

The quest for the elementary entities of matter has always been a central objective in
physics. Of no less interest is the emergence of the structure (or phases) of matter built
from its basic constituents and their interactions. The exploration of matter governed
by the strong force is at the forefront of contemporary research in nuclear physics. The
most common form of strongly interacting matter in the present-day universe is contained
in atomic nuclei, which are bound states of nucleons, i.e., protons and neutrons. Nuclear
matter as found in the center of heavy nuclei is characterized by a nucleon (energy) density
of about %0 = 0.16 fm−3 (ε0 = 0.15 GeV/fm3), rendering one table spoon of this material
a mass of about one million kilotons (1012 kg). The binding of nucleons is strong enough
to cause a reduction of nuclear masses by about 1% compared to the sum of the rest mass
of the individual nucleons, mN ' 940 MeV/c2. But how does the mass of a nucleon arise?
In the late 1960’s it was discovered that the nucleon itself is a composite object, built of
three “valence” quarks of up (u) and down (d) “flavor”. The bare masses of u and d quarks
are only about 5-10 MeV/c2, and believed to be generated by a condensate of (yet to be
discovered) Higgs bosons in the electroweak (EW) sector of the Standard Model of Ele-
mentary Particles. That is, about 98% of the nucleon’s mass is generated dynamically by
the strong interaction. Moreover, no individual quarks have been observed in nature thus
far: they are “confined” into hadrons, either baryons or mesons (conglomerates of three
valence quarks or of a quark and antiquark, respectively). In the 1970’s, the quantum
field theory underlying the strong force has been developed, Quantum Chromodynamics
(QCD), based on quarks and gluons as fundamental degrees of freedom. This theory has
been quantitatively confirmed in high-energy scattering experiments, where the strong
coupling constant, αs ' 0.1, is relatively small and perturbation theory can be reliably
utilized to obtain quantitative results for observables. However, at low momentum trans-
fers, αs becomes large, perturbation theory ceases to be applicable and nonperturbative
mechanisms take over. It is in this regime where quark confinement and mass generation
occur, posing formidable challenges for their theoretical understanding [1].

1.1 QCD Vacuum and Chiral Restoration

It turns out that confinement and mass generation are intimately connected with the phase
structure of strongly interacting matter (see, e.g., Ref. [2]). In fact, even the structure of
the QCD vacuum is far from trivial: similar to the EW sector, it is believed to be filled
with condensates, which are closely related to the origin of hadronic masses. There are,
however, important differences: the QCD condensates are made of (scalar) composites of
quarks and gluons (rather than elementary fields like the Higgs boson), and they do not
induce a breaking of the gauge symmetry. In what follows, the so-called “chiral” quark-
antiquark condensate, 〈0|q̄q|0〉 ' (−250 MeV)3, will be of particular importance. It breaks
the (approximate) chiral symmetry of QCD, which corresponds to the conservation of left
and right “handedness” of massless quarks (applicable for the light u and d quarks, whose
masses are parametrically small, mu,d � |〈0|q̄q|0〉|1/3). While the quark condensate cannot
be directly observed, its consequences are apparent in the excitations of the condensed
ground state, i.e., in the hadron spectrum. Since chiral symmetry is a global symmetry
(rather than a local one depending on space-time position), its spontaneous breaking must
be accompanied by (almost) massless Goldstone bosons. For two quark flavors the latter
are identified with the three charge states of the pion, whose mass, mπ ' 140 MeV, is
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“abnormally” small compared to that of all the other hadrons (e.g., mN ' 940 MeV).
The observed hadron spectrum encodes further evidences for the spontaneous breaking
of chiral symmetry (SBχS): chiral multiplets (e.g., ρ(770)-a1(1260) or N(940)-N∗(1535)),
which would be degenerate if the ground state were chirally symmetric, exhibit a large
mass splitting of typically ∆M ' 500 MeV. The effects of SBχS seem to (gradually) cease
as one goes up in mass in the hadronic spectrum [3]. This is one of the indications that
SBχS is a low-energy, strong-coupling phenomenon which is no longer operative at high
momentum transfers where perturbation theory becomes applicable.

When heating the QCD vacuum its condensate structure is expected to change. Loosely
speaking, thermally excited hadrons “evaporate” condensed q̄q pairs which eventually
leads to the restoration of the spontaneously broken chiral symmetry. Numerical compu-
tations of the lattice-discretized path integral for QCD at finite temperature predict chiral
symmetry restoration (χSR) to occur at a (pseudo-) critical temperature of Tc ' 160-
190 MeV [4, 5], corresponding to an energy density of about εc ' 1 GeV/fm3. The chiral
transition is characterized by a rapid decrease of the q̄q condensate, which, in fact, serves
as an order parameter of strongly interacting matter. In the limit of vanishing light quark
masses and for three quark flavors, this transition is of first order, while for realistic quark
masses as realized in nature (two light quarks u and d and a more heavy strange quark,
ms ' 120 MeV), it is more likely a rapid cross-over. Key manifestations of chiral symme-
try restoration are its (observable) consequences for the hadron spectrum. Chiral partners
must degenerate implying massive medium modifications of hadronic spectral functions
as the transition is approached. This notion is a quite general concept found, e.g., in
solid state physics where phase transitions are routinely diagnosed utilizing “soft-mode
spectroscopy”. This applies in particular to a second order phase transition where the
mode associated with an order parameter becomes massless (soft). But even for bulk
matter properties, rapid changes in the thermodynamic state variables are directly related
to changes in the relevant degrees of freedom at the typical thermal scale (temperature or
Fermi momentum). Interestingly, the chiral transition is accompanied by the dissolution
of hadrons into quarks, i.e., the deconfinement transition, at the same temperature (at
least for vanishing net baryon density). The reason for the apparent coincidence of the two
transitions is not understood. The deconfined and chirally restored strongly interacting
matter is commonly referred to as the Quark-Gluon Plasma (QGP). The experimental ver-
ification and theoretical understanding of the mechanisms leading to the QGP are central
objectives in modern nuclear research.

1.2 Ultrarelativistic Heavy-Ion Collisions

The only way to produce and study hot and dense strongly interacting matter in the
laboratory is by colliding atomic nuclei at high energies. Several large-scale experiments
at ultrarelativistic bombarding energies, Elab � mN , have been conducted over the past
∼20 years, most recently at the SPS at CERN (at center-of-mass energies up to

√
s =

17.3 AGeV) and at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven (up to√
s = 200 AGeV) [6, 7] with the heaviest available nuclei at A'200 (Pb and Au).

The first question that needs to be answered is whether these reactions produce equili-
brated matter, i.e., do the produced particles undergo sufficient rescattering to justify the
notion of an interacting medium characterized by bulk thermodynamic variables? Exten-
sive and systematic measurements of hadronic observables have lead to a positive answer.
This is extremely exciting as it puts within grasp the possibility to recreate, at least for a
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short moment, the matter which the early universe was made of just a few microseconds
after the Big Bang! While hadronic measurements are discussed and interpreted in depth
in other contributions of this volume, let us sketch some of their main features: transverse-
momentum (pT ) spectra of different hadron species (pions, kaons, protons, etc.), which
characterize the hadronic fireball just before break-up at its “thermal freeze-out”, exhibit
a collective explosion reaching an average speed of about half the speed of light at a final
temperature of T th

fo ' 100 MeV. The ratios of the observed hadron species point at a sig-
nificantly higher temperature of T ch

fo ' 160 MeV [8, 9], i.e., the chemistry of the fireball
(driven by inelastic scattering processes) appears to freeze out significantly earlier than
kinetic equilibrium (maintained by elastic interactions). This is consistent with the large
difference of empirical elastic (e.g., ππ → ρ→ ππ or πN → ∆→ πN) and inelastic (e.g.,
ππ → KK̄) hadronic cross sections, with typical values of ∼100 mb vs. ∼1 mb, respec-
tively. Since the cross sections determine the relaxation times according to τ ' (%hσvrel)

−1

(%h: hadron density, vrel: relative velocity of the colliding hadrons), one obtains a clear
hierarchy in the underlying relaxation times, τth � τch. The interacting hadronic phase
between chemical and thermal freeze-out will play an important role in the remainder of
this article. More differential analyses of the flow patterns of the measured hadrons allow
to trace back the matter properties to earlier times in the evolution of the fireball. In par-
ticular, the magnitude of the “elliptic flow” measured at RHIC indicates that the medium
thermalizes on a rather short time scale, τ ≤ 1-2 fm/c after initial impact, translating into
(energy-) densities of a factor 10 or more above the critical one1. A thermal (hydrody-
namic) description [10, 11, 12, 13] of the fireball in semi-/central collisions of heavy nuclei
at RHIC appears to be valid for hadrons up to momenta of pT ' 2-3 GeV, comprising
approximately 95% of all produced particles. At high transverse momenta, pT > 5 GeV,
hadron production is dominated by hard scattering, i.e., a primordial parton-parton colli-
sion at high momentum transfer within the incoming nucleons, followed by fragmentation
into (a spray of) hadrons (jets). In central Au-Au collisions at RHIC, a factor of ∼5
suppression of high-pT hadron production has been observed (“jet quenching”)2. While
these hadrons (or their parent quarks) do not thermalize, their suppression indicates a sub-
stantial coupling to the created medium, associated with an energy loss of a fast parton
propagating through the fireball. The (energy-) density of the medium required to ac-
count for this effect is roughly consistent with the estimate inferred from a hydrodynamic
description of the elliptic flow of low-pT hadrons.

A second level of questions concerns the relevant degrees of freedom of the produced
matter, i.e., whether there is explicit evidence that individual partons leave a distinctive
footprint in observables. It turns out that the elliptic flow is again revealing interesting
features in this context: it has been found [14, 15] that the elliptic-flow coefficient, vh2 (KT ),
of all measured hadrons, h=π, K, p, Λ, Σ, φ, ..., exhibits a remarkable universality as a
function of transverse kinetic energy, KT=mT −mh (mT=(p2

T+m2
h)1/2): when scaled with

1Elliptic flow characterizes the azimuthal asymmetry in the pT -spectra of particles (in the plane trans-
verse to the beam axis). In a non-central heavy-ion collision, the initial nuclear overlap (interaction) zone
is “almond-shaped”. If the system thermalizes before this spatial anisotropy is smeared out (e.g., due to
free streaming), a larger pressure gradient builds up along the “short’” compared to the “long” axis of
the initial almond. This thermal pressure drives a collective expansion of the “almond” which is stronger
along the short axis and thus results in particle momenta with a preference to be aligned with this axis.
The magnitude of the elliptic flow is thus sensitive to how fast thermalization is established.

2Jet quenching is probably also present at the SPS but it is quantitatively smaller than at RHIC (about
a factor of 2 suppression) and masked by a large initial pT broadening in the interpenetrating nuclei prior
to the hard scattering, known as “Cronin effect”.
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the constituent-quark number content, nq, of hadron h, all measured hadron-v2 data ap-
pear to collapse on a single curve, vq2(Kt≡KT /nq)=v

h
2 (KT )/nq. This has been interpreted

as evidence for a collectively expanding partonic source hadronizing via quark coalescence.
A fully consistent theoretical description of this phenomenon has not been achieved yet.

A third level of investigations has to address signals of the deconfinement and/or
chiral restoration transitions. In a rigorous sense, this requires the assessment of order
parameters associated with these transitions. However, changes in order parameters are
not always easily observable. This is particularly true in the present context and we are
led back to the idea of “mode spectroscopy”, to be conducted in the environment of a
short-lived, rapidly expanding fireball of a heavy-ion collision. Individual (stable) hadrons
emanating from the collision zone have all long recovered their free (vacuum) masses by
the time they are measured in the detectors. A better observable are invariant-mass
spectra of short-lived resonance decays, h → h1h2, with a lifetime, τh, comparable to, or
smaller than, the lifetime of the interacting fireball, τFB ' 10 fm/c. Such a resonance (e.g.,
∆→ πN or ρ→ ππ) has a large probability to decay inside the medium so that its decay
products can carry the information on its invariant-mass, m2

h = (p1 + p2)2, at the point
of decay to the detector. In principle, this would allow to determine the invariant-mass
distribution (or spectral function) of the resonance h in the medium. The problem is that
the decays products, h1 and h2, are likely to undergo further rescattering in the fireball
which destroys the desired invariant-mass information. The latter will thus be largely
restricted to the dilute (break-up) stages of the medium in a heavy-ion collision.

1.3 Dilepton Spectroscopy

The decisive step to obtain access to hadronic spectral functions in the hot and dense
regions of the medium is provided by electromagnetic (EM) probes, i.e., photons (γ) and
dileptons (arising from virtual (timelike) photons, γ∗ → l+l− with l=e or µ) [16, 17, 18].
These are not subject to the strong force and thus suffer negligible final-state interac-
tions, with a mean free path which is much larger than the typical size of the fireball,
RFB ' 10 fm. The natural candidates for in-medium spectroscopy are the vector mesons
(V ), which carry the quantum numbers of the photon (spin-parity JP=1−) and thus
directly couple to exclusive dilepton final states, V → l+l−. In the low-mass region
(M≤1 GeV), which is the region of interest to study chiral restoration, the prominent vec-
tor mesons are ρ(770), ω(782) and φ(1020). In fact, the famous vector dominance model
(VDM) [19] asserts that the coupling of a (real or virtual) photon to any EM hadronic
current exclusively proceeds via an intermediate vector meson (which is excellently sat-
isfied in the mesonic sector but subject to corrections in the baryonic sector). Thus,
if VDM holds in hadronic matter, dilepton emission is indeed equivalent to in-medium
vector-meson spectroscopy. In thermal equilibrium, the contribution from the (isovector)
ρ meson dominates over the ω by a factor of ∼10 (factor ∼5 over the φ, which, however, is
thermally suppressed due to its larger mass). Furthermore, it can be shown [20] that, in
the context of a heavy-ion collision, low-mass dilepton radiation from the hadronic phase
dominates over the emission from a putative QGP phase, even at collider energies (RHIC
and LHC)3. The excitement (and theoretical activity) in the field was further spurred by
the suggestion of Brown and Rho [21] that the ρ-meson mass should drop to (almost) zero

3This is due to the much larger three-volume in the hadronic phase; at larger dilepton masses, M>1 GeV,
the thermal Boltzmann factor, e−q0/T , augments the sensitivity to higher temperatures which increases
the QGP contribution relative to the hadronic one in the inclusive dilepton spectrum.
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Figure 1: Left panel: ratio of cross sections, R = σee→hadrons/σee→µµ, for electron-positron
annihilation into hadrons relative to muon-antimuons, as a function of center-of-mass
energy,

√
s. The experimental data exhibit a nonperturbative resonance regime up to√

s' 1.1 GeV, exhausted by the light vector mesons ρ, ω and φ, followed by a transition to
an almost structureless perturbative regime at

√
s&1.5 GeV. The latter is well described by

perturbative QCD (pQCD), especially for
√
s≥2 GeV, where residual “oscillations” (due

to excited vector resonances) have essentially ceased. The naive quark-model prediction
(leading-order pQCD, O(α0

s)) is given by RQM=Nc
∑

q=u,d,s e
2
q=2. Right panel: strong

coupling constant as a function of momentum transfer [33]; note the increase of αs toward
small Q suggestive for the emergence of nonperturbative phenomena.

as a consequence of χSR. Early dilepton measurements in S(200 AGeV)-Au collisions at the
CERN-SPS by the CERES collaboration [22] found a large enhancement of the spectrum
at invariant masses below the nominal ρ mass, i.e., for M'0.2-0.7 GeV. These data could
be well described by a dropping-mass scenario implemented into relativistic transport mod-
els within a mean-field description [23, 24]. Subsequently, more “conventional” medium
modifications of the ρ meson were investigated based on its rescattering on constituents
of a hadronic medium, see, e.g., Refs. [25, 26, 27, 28] for reviews. The generic finding of
these hadronic many-body calculations was a strong broadening of the ρ spectral function,
which, when extrapolated to the putative phase transition temperature, Tc ' 175 MeV,
leads to a complete “melting” of the resonance structure [29]. The broadening effect could
account for a large part of the low-mass dilepton excess observed in S-Au collisions. The
agreement was even better [30] with improved CERES/NA45 measurements carried out
in the heavier Pb(158 AGeV)-Au system [31, 32]. The connection of the ρ melting to χSR
appeared to be less direct than in dropping-mass scenarios. However, in Refs. [34, 30]
it was found that the hadronic dilepton rates following from the “melted” ρ close to Tc
rather closely resemble the rates computed in a partonic description, i.e., perturbative
quark-antiquark annihilation. In the vacuum, such a phenomenon is well known from the
e+e− annihilation into hadrons: for M≥1.5 GeV the total cross section is well described
within perturbative QCD using quark-antiquark final states, known as “parton-hadron
duality”, cf. Fig. 1. It was therefore suggested that the conceptual implication of the ρ
melting is a reduction of the “duality threshold” [34, 30], from Mdual=1.5 GeV in the vac-
uum to essentially zero around Tc. Note that a “perturbative” dilepton rate automatically
implies chiral restoration (i.e., degeneracy of vector and axialvector channels).

The accuracy in the 1995/1996 CERES/NA45 dielectron data [31, 32] did not allow
for a decisive experimental discrimination of the dropping-mass and melting-resonance
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scenarios. An important step forward was realized with the NA60 dimuon spectra [35] in
In(158 AGeV)-In collisions at the SPS. Excellent mass resolution and superior statistics
enabled, for the first time, an isolation of the “excess radiation” (by subtraction of final-
state hadron decays). The shape of the excess spectrum clearly favors a broadened ρ
spectral function over scenarios involving dropping masses. The original predictions of
hadronic many-body theory [30, 20] are, in fact, in quantitative agreement [36] with the
inclusive mass spectra in semi-/central In-In collisions. In the last round of CERES/NA45
data [37] excess spectra have also been extracted in Pb-Au collisions (by subtraction of
final-state hadron decays using a statistical model [8]). While the overall data quality
does not reach the level of NA60, the larger collision system and the access to very small
dilepton masses in the dielectron channel (dimuons have a threshold of 2mµ=210 MeV)
can provide additional insights.

The dilepton program at the CERN-SPS has thus far reached the highest level of
maturity in the heavy-ion context. It also included a CERES/NA45 measurement in
a low-energy Pb(40 AGeV)-Au run [38], which produced tantalizing hints for an even
larger excess than at 158 AGeV, but was unfortunately hampered by low statistics. At
much lower, relativistic bombarding energies (1-2 AGeV), the DLS collaboration at the
BEVALAC reported a very large dilepton excess [39], which has recently been confirmed by
the HADES collaboration at SIS [40, 41]. On the other hand, the dilepton measurements
at RHIC are still in their infancy (first data indicate substantial excess radiation [42]),
but it will become a central component in future runs [43]. Very interesting results are
also emerging from vector-meson spectroscopy in cold nuclei using elementary projectiles,
i.e., photons [44, 45] or protons [46]. It turns out that all of these observables are closely
related, and their broad understanding is essential for the determination of the in-medium
vector-meson spectral functions. Of particular importance is the consistency of theoretical
descriptions beyond phenomenological applications and the interrelations between different
approaches (including effective hadronic and quark models, lattice QCD and constraints
from sum rules), which will ultimately reveal the mechanisms of chiral restoration. In this
article, we give an up-to-date account of these efforts with special emphasis on a broader
picture in the context of χSR.

1.4 Outline

Our article is organized as follows. In Sec. 2, we start by recollecting basic features of
spontaneous chiral symmetry breaking in the QCD vacuum with emphasis on condensate
structures and consequences for the hadronic excitation spectrum (sub-Sec. 2.1), followed
by a discussion of in-medium condensates within the landscape of the QCD phase dia-
gram (sub-Sec. 2.2). In Sec. 3, we scrutinize the links of the chain with which one hopes
to connect thermal dilepton rates and (partial) χSR. We first introduce the EM correlation
function which is the basic quantity figuring into the thermal dilepton rate (sub-Sec. 3.1).
Model-independent evaluations of medium effects can be obtained in the low-density limit
from current algebra, in the high-temperature limit from perturbative QCD and, for van-
ishing baryon-chemical potential from lattice QCD (sub-Sec. 3.2). A valuable source of
model-independent constraints is provided by chiral and QCD sum rules (sub-Sec. 3.3)
which are energy moments of spectral functions that directly relate to order parameters of
QCD and are generally not restricted in temperature and density. For practical applica-
tions, effective hadronic models are an indispensable tool (sub-Sec. 3.4); their reliability,
based on the choice of interaction vertices and associated parameters, crucially hinges
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on a thorough procedure of theoretical and phenomenological constraints; an important
question will also be the fate of the vector dominance model in the medium. In Sec. 4 the
theoretical developments are tested in recent dilepton production experiments, starting
with elementary reactions off nuclei representative for medium effects in cold nuclear mat-
ter (sub-Sec. 4.1). The main part of Sec. 4 is devoted to an analysis of dilepton spectra
in ultrarelativistic heavy-ion reactions (sub-Sec. 4.2), focusing on recent results obtained
at the CERN-SPS by the NA60 and CERES/NA45 collaborations. The spectral analysis
is completed by a critical assessment of the combined theoretical and experimental status
to date (sub-Sec. 4.3). We finish with concluding remarks in Sec. 5.

2 Chiral Symmetry, Condensates and Chiral Restoration

It is generally accepted that strong interactions are described by Quantum Chromody-
namics (QCD), introduced in 1973 [47, 48, 49], with a Lagrangian density given by

LQCD = q̄(iγµDµ −Mq)q −
1

4
GaµνG

µν
a , Dµ = ∂µ + igs

λa
2
Aaµ , (1)

formulated in terms of elementary quark (q) and gluon (Aaµ) fields (γµ and λa: Dirac and
Gell-Mann matrices, respectively,Mq=diag(mu,md, . . . ): current-quark mass matrix). In
addition to the local SU(3) color gauge symmetry, LQCD possesses several global symme-
tries. The most relevant one in the present context is Chiral Symmetry, which can be ex-
hibited by rewriting LQCD in terms of left- and right-handed quark fields, qL,R=1

2(1∓γ5)q:

LQCD = q̄Liγ
µDµqL + q̄Riγ

µDµqR − (q̄LMqqR + q̄RMqqL)− 1

4
GaµνG

µν
a . (2)

For small quark masses, i.e., u and d quarks, LQCD is approximately invariant under
rotations qL,R → e−i~αL,R·~τ/2qL,R, where ~αR,L are 3 real angles and τ operates in (u-d)
isospin space. Chiral invariance of the QCD Lagrangian thus refers to the conservation
of quark handed-ness and isospin. Alternatively, one can rewrite the chiral rotations
as q → e−i~αV ·~τ/2q and q → e−iγ5~αA·~τ/2q, giving rise to conserved isovector-vector and
-axialvector currents,

~jµV = q̄γµ
~τ

2
q , ~jµA = q̄γµγ5

~τ

2
q . (3)

2.1 Condensates and Hadron Spectrum in Vacuum

As emphasized in the Introduction, the nonperturbative structure of the QCD vacuum
is characterized by its condensates. A special role is played by the quark-antiquark (qq̄)
and gluon (G2) condensates. Apart from being the condensates involving the minimal
number of quark- and gluon-fields, the former is a main order parameter of SBχS while
the latter dominantly figures into the energy-momentum tensor of the theory. The vacuum
expectation value of the latter’s trace is given by

〈Tµµ 〉 = ε− 3P = −〈G2〉+mq〈q̄q〉 (4)

whereG2 = −(β(gs)/2gs)G
µν
a Gaµν involves the gluon-field strength tensor and the renorma-

lization-group beta function, β(gs). The latter appears because the nonvanishing vacuum
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Figure 2: Experimental data [50] of the isovector-vector (IJP=11−, left panel) and
isovector-axialvector (IJP=11+, right panel) spectral functions from hadronic decays of
τ leptons (produced in

√
s=91 GeV e+e− annihilation at LEP) into even and odd numbers

of pions/kaons, respectively. The lines indicate theoretical calculations using pQCD.

value of Tµµ breaks the scale invariance of the classical QCD Lagrangian, induced by quan-
tum loop corrections. The small current light-quark masses, mq'5 MeV, render the con-
tribution of the quark condensate to Tµµ small. The absolute value of the gluon condensate
is not precisely known, but presumably rather large, around 1.5 GeV/fm3'(330 MeV)4.
In fact, the magnitude of the quark condensate is not small either, 〈q̄q〉'(-250 MeV)3

per light-quark flavor, and about 50% of that for strange quarks. This implies that the
vacuum is filled with ∼5 quark-antiquark pairs per fm3! Also note that the quark con-
densate maximally violates chiral symmetry by mixing right- and left-handed quarks,
〈q̄q〉=〈q̄LqR + q̄RqL〉, implying that a quark propagating through the vacuum can flip its
chirality by coupling to the condensate. The intimate relation between chiral symmetry
breaking and the associated Goldstone-boson nature of the pion is highlighted by the
Gell-Mann-Oakes Renner (GOR) relation,

m2
πf

2
π = −2mq〈q̄q〉 , (5)

which combines the effects of explicit chiral symmetry breaking, m2
π∝mq, and SBχS with

the pion decay constant as order parameter.
One of the best direct empirical evidences for the spontaneous breaking of chiral

symmetry is found in the vector channel, more specifically the isovector-vector channel
(IJP=11+) and its chiral partner, the isovector-axialvector one (IJP=11−), precisely the
Noether currents in Eqs. (3). The pertinent spectral functions have been measured with
excellent precision (and a detailed decomposition of the hadronic final states) at the Large
Electron-Positron collider (LEP) in hadronic τ decays by the ALEPH [50] and OPAL [51]
collaborations, cf. Fig. 2. In the low-mass region, the strength of each of the two spectral
functions is largely concentrated in a prominent resonance, i.e., the ρ(770) and a1(1260).
This very fact indicates that the low-mass regime is dominated by nonperturbative ef-
fects, while the (large) difference in mass and width of these resonances signals chiral
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gies [8]; the bands indicate lattice-QCD and model estimates of the transition regions be-
tween HM, QGP and CSC; with the HM-QGP transition (along the finite T , µB=0 axis)
presumably a cross-over, and the HM-CSC one (along the finite µB, T=0 axis) possibly first
order, there is presumably a second order endpoint, e.g., around (µB, T )≈(400,160) MeV.

symmetry breaking. This connection can be quantified by chiral sum rules developed by
Weinberg [52] and others [53] in the late 1960’s based on current algebra of chiral sym-
metry. These sum rules relate moments of the difference between vector and axialvector
spectral functions to chiral order parameters. In the chiral limit (mπ=0) one has

fn = −
∞∫

0

ds

π
sn [Im ΠV (s)− Im ΠA(s)] , (6)

f−2 = f2
π

〈r2
π〉
3
− FA , f−1 = f2

π , f0 = 0 , f1 = −2παs〈O〉 (7)

(rπ: pion charge radius, FA: coupling constant for the radiative pion decay, π± → µ±νµγ,
〈O4〉: four-quark condensate).

2.2 Phase Diagram and Chiral Restoration

A schematic view of the QCD phase diagram is displayed in Fig. 3. It is roughly character-
ized by three major regimes (all of which most likely exhibit rich substructures): hadronic
matter (HM) at small and moderate temperature (T ) and baryon chemical potential (µB),
Quark-Gluon Plasma (QGP) at high T and Color Super-Conductors (CSCs) at high µB
but low T . The latter may occur in the core of neutron stars, but are unlikely to be
produced in heavy-ion collisions and will not be further discussed here.

A key issue toward understanding the phase structure of QCD matter is the tem-
perature and density dependence of its condensates. Various condensates serve as order
parameters of broken symmetries and govern the (hadronic) excitation spectrum. The lat-
ter provides the connections to observables. A first estimate of the medium modifications
of the condensates can be obtained in the low-density limit [55, 56], by approximating the
thermal medium by non-interacting light hadrons, i.e., pions at finite T an nucleons at
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finite %N . For the quark condensate, this leads to a linear density expansion of the type

〈〈q̄q〉〉(T, µB)

〈q̄q〉 = 1−
∑
h

%shΣh

m2
πf

2
π

' 1− T 2

8f2
π

− 1

3

%N
%0
− · · · , (8)

where ρsh denotes the scalar density of hadron h, and Σh denotes its “σ”-term (Σh/mq may
be interpreted as the number of q̄q pairs inside hadron h which diminish the (negative)
q̄q density of the condensate). In obtaining Eq. (8), the GOR relation (5) has been used.
Alternatively, one can directly use the definition of the quark condensate in terms of the
quark-mass derivative of the thermodynamic potential,

〈〈q̄q〉〉 =
∂Ω

∂mq
, (9)

and evaluate the temperature and density-dependent part, Ω̄(µB, T ) ≡ Ω(µB, T )−Ωvac, in
the free gas approximation. A similar strategy can be adopted for the gluon condensate,
by utilizing its relation, Eq. (4), to the trace anomaly,

〈〈G2〉〉 = −(ε− 3P ) +mq〈〈q̄q〉〉 , (10)

and estimating the %B- and T -dependent parts of pressure and energy density in suitable
expansions. At finite temperature, for a massless pion gas, one has ε=3P and thus no
correction to order T 4 (the system is scale invariant). It turns out that the lowest-order
interaction contribution from (soft) ππ scattering does not contribute either so that the
leading temperature dependence of the gluon condensate arises at order T 8 [54]. With the
leading nuclear-density dependence as worked out in Refs. [55, 56], one has

〈〈G2〉〉 = −〈G2〉 − (mN − ΣN )%N −
π2

270

T 8

f4
π

(
ln

Λp
T
− 1

4

)
(11)

(Λp'275 MeV is a renormalization scale). The above relations allow for some interesting
insights. As already noted in Ref. [56], the linear-density expansions suggest that the gluon
condensate is much less affected then the quark condensate, cf. also the upper panels in
Fig. 4. It is not obvious whether recent finite-T lattice computations in QCD with 2+1
flavors support this picture (see the lower panels of Fig. 4), especially when approaching
the critical temperature: both 〈〈q̄q〉〉 and 〈〈G2〉〉 drop significantly around Tc and reach
approximately zero at roughly 1.5Tc (the perturbative interaction contribution to ε− 3P
renders the gluon condensate negative at high T ). The low-density expansion of the quark
condensate seems to suggest that temperature effects are weaker than density effects (upper
left panel in Fig. 4). This is, in fact, not the case: as a function of (pion-) density, the
leading reduction of 〈〈q̄q〉〉 in a heat bath is quite comparable to cold nuclear matter, as
determined by the coefficient in Eq. (8) which is in essence given by the respective σ terms,
Σπ'70 MeV compared to ΣN=45±15 MeV.

Another interesting observation can be made when taking the expectation value of the
trace of the energy momentum tensor over a single nucleon state,

〈N |Tµµ |N〉 = −mN = 〈N |G2|N〉+mq 〈N |q̄q|N〉 . (12)

Since the second term (related to the σ term) is small (or zero in the chiral limit), this
relation seems to suggest that the major part of the nucleon mass is generated by the
gluon condensate. This is to be contrasted with effective quark models (e.g., Nambu
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Figure 4: Upper panels: density and temperature dependence of the chiral (left) and the
gluon condensate (right), normalized to their vacuum values [57], obtained in a low-T and -
%N expansions. Lower panels: T dependence at µq=0 of the (subtracted and renormalized)
chiral condensate (left) [58] and of the gluon condensate (right) [59] as obtained from
Nf=2+1 lattice QCD computations.

Jona-Lasinio) which, in mean field approximation, attribute the constituent quark mass
entirely to the quark condensate, m∗q=Geff〈q̄q〉. One should also note that, at least in
the QGP phase, the vanishing of the quark or gluon condensate does not necessarily
imply quark “masses” to vanish. E.g., in perturbative QCD, partons in the QGP acquire
a thermal mass mth

q,g∼gT . This mass term does not break chiral symmetry (its Dirac
structure includes a γ0 matrix) and presumably persists until close to Tc, thus supplanting
the constituent quark mass, m∗q , well before the latter vanishes. This has, of course,
important consequences for the masses of hadronic states in the vicinity of Tc. In addition,
large binding-energy effects can be present, e.g., for the pion: if the chiral transition is
continuous, the pion’s Goldstone-boson nature could very well imply that it survives as a
bound state at temperatures above Tc [60, 61, 62].

As emphasized above, the only known direct way to extract observable consequences
of changes in the QCD condensate structure is to probe medium modifications in its
excitation spectrum. This applies in particular for the quark condensate which has a
rather small impact on the bulk properties of QCD matter being suppressed by mq (the
relation of the gluon condensate to the equation of state could, in principle, be tested via
hydrodynamic or transport properties, but this turned out to be difficult in the context
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of heavy-ion collisions [10]). The generic model-independent consequence of χSR for the
in-medium hadronic spectrum is the degeneracy of the spectral functions within chiral
multiplets (i.e., for chiral partners) , e.g., π-“σ”, N -N∗(1535) and ρ(770)-a1(1260). In the
“σ” channel (which asymptotically corresponds to a scalar-isoscalar pion pair), interesting
medium effects have been observed in pion- and photon-induced production of S-wave pion
pairs off nuclei [63, 64, 65]. An accumulation of strength close to the two-pion threshold
(which is not observed in the isotensor π-π channel) has been associated with an in-
medium reduction of the “σ”-meson mass as a precursor effect of χSR [66] (note that the
leading-density approximation, Eq. (8), predicts a reduction of the quark condensate by
∼30% already at normal nuclear matter density). However, nuclear many-body effects [67,
68], in particular the renormalization of the pion propagator in the nuclear medium, can
essentially explain the experimental findings4. This raises an important question: to what
extent do “conventional” in-medium effects encode mechanisms of χSR? From the point of
view of the “σ” spectral function alone, it is not possible to distinguish whether a softening
is caused by many-body effects or genuine mass changes figuring via medium modifications
of the mass parameter in the underlying effective Lagrangian. Thus, a distinction of
medium effects into “conventional” ones and those associated with an apparent “direct”
connection to χSR is meaningless. Rather, a careful and exhaustive treatment of hadronic
many-body effects is an inevitable ingredient for evaluating mechanisms of χSR. As already
alluded to in the Introduction, a practical problem of using the ππ decay channel for
studying medium effects are the strong final-state interactions of the individual pions when
exiting the nuclear medium [69]. The same applies to the heavy-ion collision environment,
implying that the ππ channel can only probe the dilute stages of the produced medium.
This problem is overcome by dilepton final states, on which we will focus in the following.

3 Vector Mesons in Medium

3.1 Dileptons and Electromagnetic Correlation Function

For a strongly interacting medium in thermal equilibrium the production rate of dileptons
can be cast into the form [16, 18],

dNll

d4xd4q
= − α2

em

π3M2
fB(q0;T )

1

3
gµν Im Πµν

em(M, q;µB, T ) . (13)

This expression is to leading order in the electromagnetic (EM) coupling constant, αem,
but exact in the strong interaction. The latter is encoded in the EM spectral function,
defined via the retarded correlator of the hadronic EM current, jµem(x),

Πµν
em(q0, q)) = −i

∫
d4x eiq·x Θ(x0) 〈〈[jµem(x), jνem(0)]〉〉 . (14)

In the vacuum, the spectral strength is directly accessible via the total cross section for
e+e− annihilation,

σ(e+e− → hadrons) =
4πα2

em

s

(−12π)

s
Im Πvac

em (s) , (15)

recall Fig. 1 (the first factor is simply σ(e+e−→µ+µ−)=4πα2
em/s). As a function of invari-

ant dilepton mass, M2=q2
0 − ~q2, the spectrum basically decomposes into two regimes. In

4Similar results are obtained from a transport treatment of pion reinteractions in the medium [69].
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the low-mass region (LMR, M≤1 GeV), the strength is absorbed in the three vector mesons
ρ(770), ω(782) and φ(1020) representing the lowest resonances in the two-pion, three-pion
and kaon-antikaon channels, respectively. Thus, the EM current is well described within
the vector dominance model (VDM) [19] as given by the field current identity,

jµem(M ≤ 1 GeV) =
m2
ρ

gρ
ρµ +

m2
ω

gω
ωµ +

m2
φ

gφ
φµ . (16)

In the intermediate mass region (IMR, 1 GeV<M≤3 GeV), the strength is reasonably well
accounted for by a partonic description,

jµem(M > 1.5 GeV) =
∑

q=u,d,s

eq q̄γ
µq , (17)

where eq denotes the electric quark charge in units of the electron charge, e. The connection
between the two representations can be exhibited by rearranging the charge-flavor content
of the quark basis into hadronic isospin quantum numbers,

jµem =
1√
2

[
ūγµu− d̄γµd√

2
+

1

3

ūγµu+ d̄γµd√
2

−
√

2

3
s̄γµs

]
, (18)

reflecting the quark content of the (normalized) ρ (isospin I=1), ω (I=0) and φ (I=0)
wave functions, respectively. Converting the isospin coefficients into numerical weights in
the EM spectral function, one obtains

Im Πem ∼
[
ImDρ +

1

9
ImDω +

2

9
ImDφ

]
, (19)

which identifies the isovector (ρ) channel as the dominant source (experimentally it is
even larger as given by the electromagnetic decay widths, Γρ→ee/Γω→ee' 11). Explicitly
evaluating the EM correlators using the currents (16) and (17) yields

Im Πvac
em (M) =


∑

V=ρ,ω,φ

(
m2

V
gV

)2
ImDvac

V (M) , M < Mvac
dual,

−M2

12π (1 + αs(M)
π + . . . ) Nc

∑
q=u,d,s

(eq)
2 , M > Mvac

dual

(20)

(Mvac
dual' 1.5 GeV, Nc=3: number of quark colors, DV = 1/[M2−m2

V −ΣV ]: vector-meson
propagators). The associated processes in the thermal dilepton production rates are, of
course, the inverse of e+e− annihilation, i.e., two-pion, three-pion and KK̄ annihilation
(channeled through the ρ, ω and φ) in a hadronic phase5 and qq̄ annihilation in a QGP.
But what about hadronic emission in the IMR and QGP emission in the LMR? The
former follows from time-reversal invariance of strong interactions: to the extent that the
hadronic final state in e+e− annihilation can be represented by a statistical (thermal)
distribution (which is empirically approximately satisfied), hadron-gas emission in the
IMR corresponds to multi-hadron annihilation (4π, 6π → e+e−, etc., which may be built
from 2ρ, πa1, πω, etc.), with a total strength given by the partonic continuum. QGP
emission in the LMR is, of course, closely related to a central question of this review: How

5Note that the dominance of the isovector channel is naturally associated with the annihilation of the
two lightest constituents in a hadronic medium.
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Figure 5: Left panel: vector and axialvector spectral functions as measured in hadronic
τ decays [50] with model fits using vacuum ρ and a1 strength functions supplemented
by perturbative continua [70]; right panel: scenarios for the effects of chiral symmetry
restoration on the in-medium vector- and axial-vector spectral functions.

does the dilute hadronic resonance gas rate evolve into the chirally restored, deconfined
QGP rate? At sufficiently low temperatures and/or baryon densities virial expansions in
a hadronic basis can provide initial insights. With increasing T and %B resummations
become necessary for which many-body approaches are a suitable tool. It is currently
an open question how far up in %B and T these calculations are reliable. Selfconsistent
schemes are, in principle, capable of describing phase-transition dynamics, which, ideally,
could be constrained by unquenched lattice-QCD calculations of the dilepton rate below
Tc (energy sum rules turn out to be particularly useful to connect spectral functions to
order parameters). Eventually, in the high-temperature limit, the LMR rate should recover
perturbative qq̄ annihilation, where a systematic evaluation of corrections becomes feasible
again. The remainder of this section is devoted to a discussion of these approaches. With
hindsight to Sec. 4, we will focus on models for which quantitative applications to dilepton
observables have been made, with the isovector (ρ) channel playing the leading role. In the
following, for brevity, we refer to the IJP=11± chiral partner channels as vector (V ) and
axialvector (A) ones. In the vacuum, both can be well represented by a low-lying resonance
pole (ρ and a1) and a continuum above, see left panel of Fig. 5. Two schematic scenarios
for the degeneration of vector and axialvector channels at chiral restoration (“dropping
mass” and “resonance melting”) are sketched in the right panel of Fig. 5.

3.2 Medium Effects I: Model Independent

In principle, model-independent assessments of medium effects do not involve free param-
eters. These can be realized by virial expansion schemes based on experimental input for
vacuum spectral functions (valid for dilute hadronic matter), perturbative QCD calcula-
tions (valid in the high-T limit) or first-principle lattice QCD computations.
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3.2.1 Chiral Reduction and Mixing

The leading temperature dependence of vector and axialvector correlators, Πµν
V,A, i.e., their

modification in a dilute pion gas, can be inferred from chiral reduction and current algebra.
They allow to simplify 1-pion matrix elements of any operator according to

〈0|O|πa〉 = − i

fπ
〈0|[QaA,O]|0〉 , [QaA, j

µ,b
V,A] = iεabcjµ,cA,V , (21)

where {a, b, c} are isospin indices. Evaluating the Fourier transforms of the thermal expec-
tation values in the chiral and soft pion limit (i.e., mπ=0 and neglecting any momentum
transfer k from thermal pions in the heat bath), one obtains the “mixing” theorem [71]

ΠV,A(q) = (1− ε) Π0
V,A(q) + ε Π0

A,V (q) (22)

with the mixing parameter ε=T 2/6f2
π (the Lorentz structure remains as in the vacuum).

The leading-T effect on the V and A correlators is a mere admixture of the chiral partner
with a corresponding reduction of its original strength, via processes of the type π+V ↔ A
and π + A ↔ V ; width and mass of the vacuum correlators are unaffected. For dilepton
production, this implies a reduced ρ pole strength as well as an enhancement of the “dip”
region, M'1-1.5 GeV, where the a1 resonance provides a “maximal feeding”.

When naively extrapolating the mixing expression, Eq. (22), to chiral restoration
(ε=1/2), one finds Tc=

√
3fπ=160 MeV. This is, however, misleading for several reasons.

First, this estimate does not coincide with a similar extrapolation for the vanishing of the
chiral condensate, cf. Eq. (8). Second, even a moderate amendment in terms of a finite
pion mass in the scalar density shifts the estimate to Tc'225 MeV. Both facts underline the
inadequacy of the extrapolation of a lowest-order result. Third, the chiral and soft-pion
limits are kinematically not a good approximation (e.g., at T=150 MeV, thermal pions
typically bring in an energy of ∼300-400 MeV). In cold nuclear matter, a similar mixing
is operative via the coupling of the pion cloud of ρ and a1 to the nuclear medium [72, 73].

A much more elaborate treatment of the chiral reduction formalism has been conducted
in Refs. [74, 75, 76]. These calculations are based on realistic fits to vacuum correlators,
do not invoke kinematic approximations (chiral or soft-pion limits) and include both pion
and nucleon ensembles. The leading-density part has been subjected to constraints from
nuclear photo-absorption including the first and second resonance region via ∆(1232) and
N(1520) excitations. This allows for meaningful applications to dilepton spectra which
have been carried out and will be discussed in Sec. 4. Note that these calculations do
not explicitly invoke the notion of VDM, but the fact that the vacuum correlators are
constructed with ρ and a1 pole dominance, which is not upset in the linear density scheme,
implies that VDM is still present upon inclusion of medium effects.

3.2.2 Lattice QCD and Susceptibilities

First-principle computations of light-hadron correlation functions in medium are based
on a lattice discretized form of the finite-T QCD partition function. Besides a finite lat-
tice spacing, additional approximations currently involve the restriction to finite volumes
as well as the use of unphysically large up- and down-quark masses in the simulations.
Furthermore, the implementation of chiral symmetry is not trivial in the lattice formula-
tion. The numerical evaluation of the QCD path integral, is facilitated by transforming
the action to imaginary (Euclidean) time, which converts the oscillatory behavior of the
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Figure 6: Left panel: vector correlation function as a function of Euclidean time as eval-
uated in quenched lattice QCD for a gluon plasma at temperatures above Tc [77]. The
in-medium correlators are normalized to the free one using the integration Kernel at the
same temperature (the so-called “reconstructed” correlator). Right panel: thermal dilepton
rates, dN/(d4qd4x), in quenched lattice QCD as extracted from the correlation functions
shown in the left panel using the maximum entropy method. The lattice results are com-
pared to calculations in perturbation theory, either to leading order (O(α0

s)) qq̄ annihilation
(solid line) or within the hard-thermal-loop (HTL) framework [78] (dashed line). All rates
are calculated at a total pair 3-momentum of q=0, i.e., the dilepton energy, ω=q0, equals
its invariant mass, M .

integrand in the partition function into an exponential damping. The pertinent Euclidean
correlation function, Π(τ), is related to the physical spectral function, ρ = −2 Im Π, via

Π(τ, q;T ) =

∞∫
0

dq0

2π
ρ(q0, q;T )

cosh[(q0(τ − 1/2T )]

sinh[q0/2T ]
. (23)

The resulting Euclidean vector correlators in “quenched” QCD6 above Tc shows a moderate
enhancement over the free correlator, cf. left panel of Fig. 6 [77]. The extraction of
the spectral function requires an inverse integral transform over a finite number of τ
points7 which can only be achieved with a probabilistic treatment based on the “Maximum
Entropy Method” [79]. The resulting strength function has been inserted into the dilepton
rate and is compared to perturbative QCD (pQCD) rates in the right panel of Fig. 6. The
leading-order pQCD corresponds to the qq̄ strength distribution in Eq. (20), lower line,
while the hard-thermal-loop (HTL) improved rate is from Ref. [78]. The latter shows the
expected divergence for M → 0 which is caused by the Bose factor and photon propagator
which overcome the ρ ∝ q0 dependence of a retarded correlation function (cf. also Ref. [80]).
This feature is not shared by the lattice result which might be an artifact of, e.g., the finite-
volume restriction (it would also suggest a small or even vanishing photon production
rate). On the other hand, the enhancement in the Euclidean correlator translates into an
enhanced dilepton rate at energies of a few times the temperature. Whether this reflects
a broad resonance structure is not clear at present.

6In the ”quenched” approximation the fermionic part of the QCD action is neglected in the evaluation
of the Euclidean path integral. This amounts to neglecting fermion loops.

7The (anti-) periodicity of the boson (fermion) fields at finite T restricts the Euclidean time direction
to the interval [0, β] where β = 1/T .
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Figure 7: Isoscalar (left) and isovector (right) quark-number susceptibility for various
quark chemical potentials, µq = µB/3, as computed in unquenched lattice QCD [81].

Additional constraints from lattice QCD are provided by susceptibilities which are
defined as second-order derivatives of the thermodynamic potential. In our context, the
quark-number susceptibilities are of special interest,

χα ∼
∂2Ω

∂µ2
α

∼ Πα(q0 = 0, q → 0) , (24)

which can be decomposed in isoscalar (µq = (µu + µd)/2) and isovector (µI = (µu −
µd)/2) channels carrying the quantum numbers of the ω and ρ, respectively. The spacelike
limits of the correlators basically represent the screening masses in the respective channels.
Lattice QCD computations of the quark-number susceptibilities indicate that both ρ and
ω channels behave smoothly with temperature for small chemical potentials, see Fig. 7.
However, as µq increases, χq develops a peak whereas χI remains smooth. The former
indicates an increase in the (local) baryon-number fluctuations and may be a precursor of
the baryon-number discontinuity between hadronic and QGP phase as one is approaching
a first-order line. Remarkably, this is not seen for the isospin fluctuations.

3.3 Sum Rules and Order Parameters

Sum rules are currently the most promising tool to connect the nonperturbative physics
encoded in spectral functions to the condensate structure of the QCD vacuum. In partic-
ular, the Weinberg sum rules directly relate order parameters of χSR to the axial-/vector
spectral functions, which, in the medium, have not been exploited much to date.

3.3.1 Chiral Sum Rules

The Weinberg and DMO sum rules [52, 53], Eqs. (6), directly relate moments of the
“vector minus axialvector” spectral functions to chiral order parameters. This is a rather
fortunate situation in view of the dominant role that the isovector-vector (ρ) channel plays
in dilepton production, recall Eq. (19). For Nf=2, the ω is a chiral singlet, while in the
strangeness sector (φ), i.e., for Nf=3, chiral symmetry becomes much less accurate (e.g.,
〈〈s̄s〉〉 persists much farther into the QGP).
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As has been shown in Ref. [82], the Weinberg sum rules remain valid at finite tem-
perature, albeit with two important modifications induced by the breaking of Lorentz
invariance caused by the heat bath which defines a preferred rest frame: (i) each energy
sum rule applies for a fixed three-momentum, and (ii) at finite three-momentum, the
vector and axialvector spectral functions split into longitudinal and transverse modes,

Πµν
V = ΠT

V,AP
µν
T + ΠL

V,AP
µν
L , (25)

with individual sum rules for each of them. The explicit form is as follows:

−
∞∫

0

dq2
0

π(q2
0 − q2)

[
Im ΠL

V (q0, q)− Im ΠL
A(q0, q)

]
= 0, (26)

−
∞∫

0

dq2
0

π

[
Im ΠL,T

V (q0, q)− Im ΠL,T
A (q0, q)

]
= 0, (27)

−
∞∫

0

q2
0

dq2
0

π

[
Im ΠL,T

V (q0, q)− Im ΠL,T
A (q0, q)

]
= −2παs〈〈O4〉〉 . (28)

In writing Eqs. (26)-(28) the pionic piece of the (longitudinal) axialvector correlator has
been absorbed into the definition of the in-medium spectral function, Im ΠL

A(q0, q); in the
vacuum and in the chiral limit it is represented by a sharp state, Im Πµν

π =f2
πM

2δ(M2)PµνL .
In this form it only contributes to the first sum rule, Eq. (26). However, in matter (and
for mπ>0) this is no longer true since the pion is expected to undergo substantial medium
effects.

The in-medium chiral sum rules constitute a rich source of constraints on both energy
and three-momentum dependence of in-medium spectral functions. The energy moments
demonstrate that chiral restoration requires degeneracy of the entire spectral functions.
Combining lQCD computations of order parameters with effective model calculations thus
provides a promising synergy for deducing chiral restoration from experiment [43].

3.3.2 QCD Sum Rules

QCD sum rules are based on a (subtracted) dispersion relation for a correlation function
in a given hadronic channel α, formulated for spacelike momenta q2=−Q2<0 [83],

Πα(Q2) = Πα(0) + Π′α(0) Q2 +Q4

∫
ds

πs2

Im Πα(s)

s+Q2
. (29)

The right-hand-side (rhs) contains the spectral function which is usually related to ob-
servables or evaluated in model calculations. On the left-hand-side (lhs), the correlation
function is expanded into a power series of 1/Q2 (operator-product expansion = OPE)
where the (Wilson) coefficients contain perturbative contributions as well as vacuum-
expectation values of quark and gluon operators (the nonperturbative condensates; for
practical purposes the convergence of the OPE is improved by means of a so-called Borel
transformation which we do not discuss here). The explicit form of the OPE for vector
and axialvector correlators reads (truncating higher order terms in mq, αs, etc.)

Πvac
V

Q2
= −1 + αs

π

8π2
ln
Q2

µ2
+
mq〈q̄q〉
Q4

+
1

24Q4
〈αs
π
Gaµν

2〉 − 112παs
81Q6

κ 〈q̄q〉2 + · · · (30)

Πvac
A

Q2
= −1 + αs

π

8π2
ln
Q2

µ2
− mq〈q̄q〉

Q4
+

1

24Q4
〈αs
π
Gaµν

2〉+
176παs
81Q6

κ̃ 〈q̄q〉2 + · · · (31)
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Figure 8: QCD sum rule constraints on ρ meson mass and width as inferred from Breit-
Wigner parameterizations of its spectral function [87] (left panel: vacuum, right panel: cold
nuclear matter at saturation density). “Allowed” regions of mass and width are indicated
by the bands between solid and dashed curves, corresponding to maximal deviations between
the l.h.s and r.h.s. of the SR of 0.2% and 1%, respectively. The diamond depicts the
corresponding vacuum parameters.

where the four-quark condensates have been approximated by factorizing them into the
squared two-quark condensate with parameters κ, κ̃ which simulate intermediate states
other than the ground state (the scale µ is typically chosen around 1 GeV). Note that SBχS
is nicely reflected by the opposite signs of the quark-condensate terms in ΠV and ΠA, while
the “flavor-blind” gluon condensate enters with the same sign. Qualitatively, the (positive)
gluon condensate actually induces a softening of the spectral function (i.e., a larger weight
at small s in the dispersion integral) [84]. On the other hand, for the vector channel, the
negative contributions from the quark condensates on the lhs of the sum rule push spectral-
function strength to larger s, relative to the axialvector channel (this may seem surprising
in view of the masses of the pertinent resonances, mρ=0.77 GeV vs. ma1=1.23 GeV; recall,
however, that the (longitudinal) axialvector channel contains a contribution from the
axialvector current of the pion). Inserting numerical values, αs=0.35, mq=0.005 GeV,
〈q̄q〉=(-0.25 GeV)3 and 〈αs

π G
a
µν

2〉=0.012 GeV4, leads to

Πvac
V

Q2
=

1

8π2

(
−1.11 ln

Q2

µ2
− 0.0062 GeV4

Q4
+

0.039 GeV4

Q4
− 0.029 GeV6 κ

Q6

)
, (32)

illustrating that the leading contributions arise from the gluon and four-quark condensates
(especially for typical values of κ'2.5), while the impact of the quark condensate is rather
moderate. For the vector channel, and in vacuum, there is a large cancellation between
the gluon and 4-quark condensate terms. However, in the medium this is presumably
lifted, especially at low T and ρB where quark and gluon condensates change rather
differently. The stronger reduction of the “repulsive” 4-quark condensate relative to the
“attractive” gluon condensate induces a softening of the spectral function in the dispersion
integral. The softening can be satisfied by both broadening and/or a downward mass
shift [85, 86, 87, 88, 89]. Quantitative studies (which also include effects of non-scalar
condensates induced by hadron structure of the heat-bath particles) based on Breit-Wigner
model spectral functions are displayed in Fig. 8. For the axialvector channel, the reduction
in both condensates suggests a substantial loss of soft-mode strength which points at the
dissolution of the pion mode (whose polestrength is given by fπ) as a consequence of (the
approach toward) χSR.
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Finally, it is instructive to compare ω and ρ mesons: while their OPE side is rather
similar (governed by 4-quark condensates), the subtraction constant, ΠV (0) = %N/4MN

to leading order in %N , makes a difference. It is given by the Thompson limit of the V N
scattering amplitude and turns out to be identical in the ρ and ω sum rule. However,
since Im Πρ is larger than Im Πω by an isospin factor of (gω/gρ)

2'9 (recall Eq. (19)), the
finite-%N subtraction actually stabilizes the ω sum rule, implying stronger medium effects
(softening) on the ρ than on the ω (it amounts to a “repulsive” contribution on the OPE
side counterbalancing the reduction in the 4-quark condensate).

3.4 Medium Effects II: Chiral Effective Models

Model-independent and/or low-density approaches as discussed above provide valuable
constraints on the vector and axialvector correlators and their connections to QCD vac-
uum structure. However, quantitative calculations suitable for comparison with experi-
ment require the construction of effective models. As indicated in the Introduction, in
the low-mass region most of the thermal dilepton yield in heavy-ion collisions is expected
to emanate from the hot/dense hadronic phase (even at collider energies), especially from
the ρ channel. Hadronic chiral Lagrangians are therefore a suitable starting point, ex-
tended by the implementation of the low-lying vector mesons. This is usually done by a
local gauging procedure of the chiral pion Lagrangian, thus realizing the gauge principle
at the composite (hadronic) level. The most common approaches are based on non-linear
realizations of chiral symmetry (i.e., without explicit σ meson) within the Hidden Local
Symmetry (HLS) [90] or Massive Yang Mills (MYM) [91] schemes. Rather than review-
ing these in a comprehensive form, we here focus on recent developments with relevance
for dilepton production, i.e., the “vector manifestation” (VM) scenario of SBχS within
HLS [92] (Sec. 3.4.1), as well as hadronic many-body theory within MYM (Sec. 3.4.2).

3.4.1 Hidden Local Symmetry and Vector Manifestation

Within the HLS framework, an alternative realization of chiral symmetry in the meson
spectrum has been suggested in Ref. [92], by identifying the chiral partner of the pion
with the (longitudinal) ρ (rather than with the σ). This “vector manifestation” of chiral
symmetry has been shown to give a satisfactory phenomenology of hadronic and EM decay
branchings in the vacuum. When applied within a finite-T loop expansion, the ρ-meson
mass was found to be affected at order T 4 (consistent with chiral symmetry), showing a
slightly repulsive shift. However, when matching the hadronic axial-/vector correlators to
pQCD in the spacelike regime (using an OPE), a reduction of the bare ρ mass has been
inferred, consistent with “Brown-Rho” scaling [21]. In addition, vector dominance was
found to be violated in the medium, leading to a gradual decoupling of the ρ from the
EM current toward the critical temperature. However, the finite-T EM formfactor, which
determines the dilepton production rate, clearly shows the downward moving ρ peak [93],
see Fig. 9. An interesting question is how these features develop in the presence of finite
baryon density.
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Figure 9: Pion EM formfactor at finite temperature in the HLS vector manifestation
framework [93]; left panel: with finite-T loop effects; right panel: additionally including a
T -dependence of the bare ρ mass above T=0.7Tc.

3.4.2 Massive Yang-Mills and Hadronic Many-Body Theory

As in HLS, the basic building block of the MYM Lagrangian is the chiral pion Lagrangian
based on the unitary pion field,

U = exp(i
√

2φ/fπ) , φ ≡ φa
τa√

2
. (33)

Hadronic gauge fields, AµL,R are introduced via the covariant derivative,

DµU = ∂µ − ig(AµLU − UA
µ
R) (34)

and supplemented with kinetic and mass terms (with bare mass m0). One has

Lmym =
1

4
f2
π tr

[
DµUD

µU †
]
− 1

2
tr
[
(FµνL )2 + (FµνR )2

]
+m2

0 tr
[
(AµL)2 + (AµR)2

]
−iξ tr

[
DµUD

µU †FµνL +DµUD
µU †FµνR

]
+ σ tr

[
FµνL UFRµνU

†
]
, (35)

where the last two (non-minimal) terms are necessary to achieve a satisfactory phe-
nomenology in the vacuum. After the identifications ρµ ≡ V µ=AµR + AµL, Aµ=AµR − A

µ
L

(and a field redefinition of the axialvector field to remove a ∂µ~πAµ term), the leading
terms of the MYM Lagrangian take the form

Lmym =
1

2
m2
ρ~ρ

2
µ +

1

2

[
m2
ρ + g2f2

π

]
~a1

2
µ + g2fπ~π × ~ρµ · ~a1µ +

g2
ρππ

[
~ρ2
µ~π

2 − ~ρµ · ~π ~ρµ · ~π
]

+ gρππ~ρµ · (~π × ∂µ~π) + . . . (36)

(g2
ρππ=1

2g
2). Note that the Higgs mechanism induces the splitting of ρ and a1 masses,

m2
a1 = m2

ρ + g2f2
π , m2

ρ = m2
0 , (37)

which is entirely due to SBχS (via fπ). The bare ρ mass itself is an external parameter,
which is different from the HLS scheme discussed in the previous section. Electromag-
netism is readily included into the MYM Lagrangian by adding the vector dominance
coupling [91]

Lργ =
em2

ρ

gρππ
Bµ ρ

µ
3 , (38)
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Figure 10: Graphical representation of self-energy diagrams characterizing the interactions
of the ρ meson in hot and dense hadronic matter: (a) renormalization of its pion cloud due
to modified pion propagators, and direct interactions of the ρ meson with (b) baryons and
(c) mesons, typically approximated by baryon- and meson-resonance excitations [94, 30].

where Bµ denotes the photon field. In this scheme, VDM remains valid in the medium,
and the task of computing the low-mass isovector axial/-vector correlators amounts to
assessing the medium modifications of ρ and a1 mesons.

The ρ-meson propagator in hot and dense hadronic matter can be written as

DL,T
ρ (q0, q;µB, T ) =

1

M2 −m2
V − ΣL,T

ρππ − ΣL,T
ρM − ΣL,T

ρB

, (39)

with transverse and longitudinal modes as defined in Eq. (25). The key quantities are
the in-medium selfenergies, ΣL,T

ρ , which may be classified as follows (cf. Fig. 10): Σρππ

accounts for the pion cloud of the ρ, which in the vacuum gives rise to its finite width
via ρ → ππ. Direct interactions of the ρ with mesons (M=π, K, ρ, . . . ) and baryons
(B=N , Λ, ∆, . . . ) from the heat bath are represented by ΣρM and ΣρB, respectively; they
vanish in the vacuum. In terms of underlying scattering processes, the latter are typically
resonance excitations (e.g., ρπ → a1 or ρN → N(1520)) while medium modifications
of pions (e.g., πN → ∆) in Σρππ correspond to, e.g., t-channel π exchange processes
(ρN → π∆). When evaluating interactions which are not directly constrained by chiral
(or gauge) symmetry (especially those involving higher resonances), phenomenological
information is essential for a reliable determination of the coupling constants (and cutoff
parameters in the hadronic formfactors to account for the finite size of the hadrons). The
simplest form of such constraints are hadronic decay widths of resonances (e.g., a1 → ρπ),
supplemented by radiative decays (e.g., a1 → γπ). However, especially for “subthreshold”
states (e.g., ω → ρπ or N(1520)→ ρN), where the coupling is realized via the low-energy
(ππ decay) tail of the ρ spectral function, empirical information can be rather uncertain.
In this case, comprehensive constraints inferred from scattering data become invaluable.
Unfortunately, in practice this is only possible for ρN interactions (e.g., via πN → ρN or
γN scattering), but, as it turns out, the modifications of the ρ due to interactions with
nucleons are generally stronger than with pions. In addition, by using nuclear targets, one
has the possibility to constrain (or test) the modifications in nuclear matter, rather than
on a single nucleon (which corresponds to the leading-order density effect).

Let us start by discussing finite-T effects. Calculations of the ρ propagator in a
hot pion gas based on the MYM scheme [95] have shown small medium effects. An
extended analysis [96] of the ρ in hot meson matter, including resonance excitations
(ρπ → a1, ω, h1, π

′, a2(1320), ρK → K∗,K1, ρρ → f1(1285)) and pion Bose enhance-
ment in Σρππ, leads to total broadening of ∼80 MeV at T=150 MeV (corresponding to a
pion density %π=0.12 fm−3'0.75 %0), with little mass shift. Approximately ∼20 MeV of
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Figure 11: Comparison of ρ-meson spectral functions in cold nuclear matter within the
hadronic many-body approaches of Refs. [100] (left panels, based on two different phase
shift analysis of πN scattering [101, 102]) and [94, 30] (right panel).

the broadening is due to the ππ Bose factor (cf. also Ref. [97]) and ∼50-60 MeV due to
meson resonances. The latter is comparable to Refs. [98, 99] which are directly based on
ρπ and ρK scattering amplitudes.

Next, we turn to modifications in cold nuclear matter. Fig. 11 shows two calcula-
tions in which the underlying ρ self-energies have been rather thoroughly constrained.
In Ref. [100] (left panels), a ρN resonance model (corresponding to ΣρN ) has been con-
structed utilizing a detailed analysis of empirical πN → ρN phase shifts and inelastici-
ties [101, 102]. The resulting ρ spectral functions are displayed at normal nuclear density
(taken as %N=0.15 fm−3) for various three-momenta and two distinct data sets for con-
straints. A substantial broadening of close to ∼200 MeV is found, with a slight upward
peak shift of a few tens of MeV; the three-momentum dependence is relatively weak. In
Refs. [94, 30], ΣρN and an in-medium pion cloud, Σρππ (incorporating P -wave “pisobar”
nucleon- and ∆-hole excitations and associated vertex corrections), have been calculated
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Figure 13: In-medium spectral functions of light vector mesons in hot and dense hadronic
matter based on the hadronic many-body approach of Refs. [103, 30, 105]; upper panel:
under conditions resembling heavy-ion collisions at SPS (i.e., along an isentropic tra-
jectory in the phase diagram which preserves the measured hadron ratios determined at
(µchem
B , Tchem) ' (230, 175) MeV) [106]; lower panels: at (µB, T ) ' (25, 180) MeV (re-

sembling chemical freeze-out at RHIC) with (short-dashed lines) and without (long-dashed
lines) medium effects induced by anti-/baryons [20].

and constrained by total photoabsorption data on the nucleon and nuclei [103], as well as
total πN → ρN cross sections. The resulting spectral functions are quite similar to the
ones of Ref. [100], with a somewhat stronger broadening of ∼300 MeV at %N=0.16 fm−3

and a comparable mass shift of ∼40 MeV. It is quite remarkable that the predicted in-
medium mass and width of ∼(810,450) MeV are in good agreement with the QCD sum
rule constraints derived in Ref. [87], cf. right panel in Fig. 8. Both broadening and mass
shift decrease at higher three-momentum, e.g., (∆mρ,∆Γρ)'(30,150) MeV at q=1 GeV.
Both calculations [100, 94] include a rather strong coupling to ρN(1520)N−1 excitations
(appearing as a low-mass peak or shoulder in the ρ spectral function). This has been ques-
tioned in Ref. [104] based on a coupled channel analysis of S-wave ρN and ωN scattering,
where all nucleon resonances but the ∆(1232) are generated dynamically via four-point
interactions. The (generated) N(1520) is deduced to primarily couple to ωN rather than
ρN , entailing an in-medium ρ with significantly less broadening.

Finally, we turn to a hot and dense hadronic medium as expected to be formed in high-
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energy heavy-ion collisions. In Fig. 12 the ρ spectral functions of the hadronic many-body
calculations [94, 30] are compared to those obtained in the scattering-amplitude approach
of Ref. [99]. The latter exhibit less broadening and a small (if any) downward mass shift of
the ρ peak, compared to the upward shift in the many-body approach (mostly induced by
baryonic effects). Consequently, in terms of spectral strength, the discrepancies between
the two calculations are largest for masses around M'0.7 GeV, as well as for very low
mass, M≤0.4 GeV, by up to a factor of ∼2. This mass region is much magnified in thermal
dilepton production rates due to the Boltzmann factor and a photon propagator ∝ 1/M2.
However, the amplitude approach only accounts for interactions with pions and nucleons,
while the many-body calculations include estimates of ρ interactions with strange baryons
and resonances [30]. This difference may account for some of the discrepancy.

In preparation for applications to dilepton spectra in URHICs, we summarize in Fig. 13
in-medium V -meson spectral functions in the many-body approach under conditions rel-
evant for SPS (upper panels) [30, 106] and RHIC (lower panels) [105]. The ρ meson (left
panels) “melts” when extrapolated to temperatures close to the expected phase boundary.
Baryons play an essential role in the melting, even at RHIC (where the net baryon density
is small), since the relevant quantity is the sum of baryon and antibaryon densities. The
effects due to baryons and antibaryons are most prominent as an enhancement in the mass
region below M'0.5 GeV. The ω and especially φ spectral functions (right panels) appear
to be more robust. One should also point out that at T=120,150 MeV in the upper panels
appreciable pion and kaon chemical potentials are present which sustain larger hadron
densities and thus support stronger medium effects than in chemical equilibrium.

3.5 Thermal Dilepton and Photon Rates

The in-medium vector-meson propagators discussed in the preceding section are converted
to thermal dilepton rates via Eqs. (20) (upper line) and (13). This is based on the as-
sumption that VDM for the EM correlator remains valid in the medium8. The resulting
three-momentum integrated thermal dilepton rates are summarized in Fig. 14. The left
panel, which displays the isovector channel, reiterates that the ρ resonance signal dis-
appears from the mass spectrum as one approaches the putative phase boundary. The
hadronic rates also include an estimate of the leading-T chiral mixing effect, Eq. (22), in
the mass region M=1-1.5 GeV. The comparison to perturbative qq̄ annihilation reveals
that the the top-down extrapolated QGP rate closely coincide with the bottom-up ex-
trapolated in-medium hadronic one, especially in case of the HTL-improved qq̄ rate. This
feature suggests that the hadronic rate has indeed approached χSR (since the QGP rates
are chirally symmetric at any finite order in perturbation theory) [34, 30]. The “matching”
of QGP and hadronic rates occurs directly in the timelike regime without the need for
in-medium changes of the bare parameters in the effective Lagrangian. Medium effects due
to baryons play an important role in this mechanism; the situation is similar for small µB
and close to Tc where the sum of baryon and antibaryon densities is appreciable, see right
panel of Fig. 14. ω and especially φ mesons appear to be more robust, possibly surviving
above Tc. The dilepton rates in the vector manifestation of HLS [93] look rather different;
based on the pertinent pion EM formfactor, Fig. 9, a distinct ρ peak survives in the rate
up to temperatures of at least T=0.85Tc'155 MeV (assuming Tc'180 MeV).

8Strictly speaking, the EM correlator of Refs. [94, 30] includes corrections to VDM in the baryon sector
as determined via photoabsorption spectra on the nucleon and nuclei [103]; the assumption is that this
modified version of VDM is not affected at higher densities and at finite temperature.
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Figure 14: Three-momentum integrated thermal dilepton rates at fixed tempera-
ture [70, 107] for the vacuum ρ (dotted lines), the hadronic many-body approach of
Refs. [103, 30] (solid lines) and for the QGP using either free qq̄ annihilation (dashed
line) or hard-thermal loop improved rates [78] (dash-dotted line). The left panel refers
to the isovector (ρ) channel, under conditions resembling heavy-ion collisions at the SPS
(fixed µB=270 MeV). The right panel additionally includes isoscalar (ω and φ) channels
and corresponds to small µB'25 MeV appropriate for the conditions at collider energies.

Emission rates of dileptons are closely related to those of real photons which are de-
termined by the lightlike limit (q0 =| ~q |) of the EM spectral function,

q0
dNγ

d4xd3q
= −αem

π2
fB(q0;T ) Im Πem(M = 0, q;µB, T ) . (40)

In Ref. [108] the in-medium ρ of Refs. [103, 30] has been found to constitute the dominant
hadronic source of thermal photons for momenta up to q'1 GeV; above, t-channel meson
exchange reactions not included in the spectral function (most notably π and ω exchange in
πρ→ πγ) take over, cf. left panel of Fig. 15. Similar to the dilepton case, at temperatures
of 150-200 MeV, the strength of the combined thermal rate for hadronic photon production
turns out be very comparable to perturbative QGP emission, especially for the complete
leading-order result [110].

4 Interpretation of Dilepton Spectra

In this section we will scrutinize experimental results for dilepton spectra in light of the
theoretical developments elaborated above. A brief discussion of production experiments
off nuclei, representing cold nuclear matter up to saturation density, will be followed by
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and compared to 1-loop [109] and full leading-order [110] QGP emission (right panel).
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Figure 16: Invariant-mass spectra of e+e− in proton- (left) [46] and photon-induced
(right) [45] reactions off nuclear targets.

a more extensive study of invariant-mass and momentum spectra in heavy-ion reactions
involving hot and dense matter possibly probing the transition regime to the QGP.

4.1 Medium Effects in Nuclei

Dilepton production experiments off nuclei have the advantage over heavy-ion collisions
that the medium is well-defined. Medium- to heavy ground-state nuclei resemble in their
interior infinitely extended nuclear matter at vanishing temperature. Therefore the exper-
iments probe to a large extent the properties of “cold nuclear matter”. However, a good
knowledge of the production process is required, and medium effects are typically rather
moderate, further reduced by surface effects and decays outside the nucleus especially at
large three-momenta (which, in turn, are needed in the production process).

The E325 experiment at KEK [46] used 12 GeV proton projectiles and found significant
differences in the spectra between C and Cu targets, see left panel of Fig. 16. After
subtraction of combinatorial background as well as η and ω Dalitz decays, the best fit
to the excess spectra using ω and ρ Breit-Wigner distributions was obtained with a mass
shift of ca. 9% at nuclear matter density, and a ρ/ω ratio of about ∼0.45.

The CLAS experiment [45] used a photon beam at Jefferson Lab with incident en-
ergies Eγ=0.6-3.8 GeV, directed on various nuclear targets. After subtraction of the
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combinatorial background, determined with absolute normalization, the invariant-mass
spectra are best reproduced with a ρ spectral distribution with a mass and width of
(mρ,Γρ)=(775±5,220±15) MeV, cf. right panel of Fig. 16. These values are well repro-
duced by Boltzmann transport calculations [111], and are consistent with the predictions of
Refs. [94, 30] at %N=0.5 %0 and q=1 GeV, where (∆mρ,∆Γρ)'(15,75) MeV, see Ref. [112]
for a recent calculation. An apparent difference between the E325 and CLAS spectra is
that the background subtraction in the former removes any excess for M'0.85-1 GeV; this
suppresses (and possibly shifts down) the ρ contribution in the E325 fit.

Photoproduction experiments (Eγ=0.8-1.12 GeV) of P -wave π+π− pairs off 2H, 3He
and 12C were conducted by the TAGX collaboration [113]. The spectra for the 12C target
support medium effects in line with hadronic many-body ρ spectral functions [94, 30].

4.2 Heavy-Ion Collisions

In contrast to production experiments off nuclei, the (energy-) density of the medium
created in heavy-ion collisions undergoes a rapid evolution after initial nuclear impact
until break-up. Even under the simplifying assumption of local thermal equilibrium, a
good knowledge of the temperature and baryon-density evolution is necessary to convert
the dilepton rates discussed above into a space-time integrated spectrum In addition,
sources other than thermal radiation have to be considered, especially toward higher mass
or qt where the assumption of equilibrium becomes increasingly questionable. These issues
are addressed in Sec. 4.2.1. Phenomenological analyses of dilepton spectra focus on recent
SPS data from NA60 and CERES/NA45 in Secs. 4.2.2 and 4.2.3, respectively, with a short
digression to direct photons (W98) and a brief outlook to future experiments in Sec. 4.2.4.

4.2.1 Thermal Evolution and Dilepton Sources

As discussed in Sec. 1.2, hadronic observables in URHICs point at a reasonable degree
of thermalization of the bulk medium produced in these reactions. Therefore, we here
focus on hydrodynamic and expanding fireball approaches utilizing the assumption of
local thermal equilibrium.9

Thermal emission spectra follow from the convolution of the production rate, Eq. (13),
over the space-time evolution of the medium,

dNll

dMdy
=

M

∆y

τfo∫
0

dτ

∫
VFB

d3x

∫
d3q

q0

dNll

d4x d4q
(M, q;T, µN , µs, µi) Acc(M, qt, y), (41)

where Acc(M, qt, y) accounts for the detector acceptance and ∆y denotes the correspond-
ing rapidity interval. The temperature and chemical potentials in general depend on
space-time, (τ ,~x). Note that while µN and µs correspond to exact conservation of baryon
number and strangeness, effective chemical potentials µi = µπ,K,η,... are needed to preserve
the experimentally observed hadron ratios in the evolution of the hadronic phase between
chemical (Tch=155-175 MeV) and kinetic freezeout (Tfo=100-140 MeV).

An overview of several key input parameters of three thermal approaches [36, 106,
117, 118, 119, 120], which have been used to compute dimuon spectra in comparison

9Comparisons of dilepton spectra computed in hydrodynamic/fireball and transport calculations (based
on similar in-medium spectral functions) have shown rather good agreement, see e.g. Refs. [114, 30],
Ref. [115], or Refs. [106, 116].
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DZ RR HR

T0 220 MeV (peak) 250 MeV (peak) 190 MeV (average)

Tc 170 MeV 170 MeV 175(160/190) MeV

Tfo 130 MeV 130 MeV 120(135) MeV

spatial Glauber (initial) Woods-Saxon isotropic

vs
fo ∼0.5-0.55 0.57 0.53

v(r) approx. linear ρt ∝
√
r vt ∝ r

τFB ∼ 8-9 fm/c ∼ 7.5 fm/c ∼ 6.5 fm/c

QGP-EoS massless (Nf=3) quasi-particle model massless (Nf=2.3)

HG-EoS lowest SU(3) multipl. mB,M ≤ 2, 1.5 GeV mB,M ≤ 2, 1.7 GeV

s/%B 42 26(?) 27

µfo
π 0 ? ( 6= 0) 80(35) MeV

EM rates chiral virial empirical scatt. ampl. hadronic many-body

Table 1: Fireball parameters employed in the calculations of dilepton spectra in
In(158 AGeV)-In collisions in Refs. [117, 118] (DZ), [119, 120] (RR) and [36, 106] (HR).

to NA60 data, is compiled in Tab. 1 (see also Ref. [125]). The overall range of the
underlying parameters and assumptions is rather similar. This is not a coincidence but a
consequence of constraints from measured hadron spectra at SPS energies [121, 122, 123,
124] which all of the three models have been subjected to. There are, however, noticeable
differences. E.g., all approaches operate with a for SPS energies “canonical” formation
time of τ0=1 fm/c, but the initial peak temperature in Ref. [120] is about 15% larger than
in Ref. [117] (e.g., due to differences in the underlying QGP EoS). Averaging over the initial
spatial density profile typically leads to a 15% smaller average temperature [126]; thus,
T̄0'190 MeV in Ref. [36] is quite consistent with Tmax

0 '220 MeV in Ref. [117]. The slightly
larger expansion velocity in Ref. [120] (surface velocity vs

fo=0.57 at thermal freezeout),
together with its square-root radial profile, imply larger boost factors in the qt spectra
which becomes significant at high momenta. In this approach preliminary NA60 pion
spectra in semicentral In-In are saturated by thermal emission over the entire measured
range up to pT'3 GeV. Alternatively, in Ref. [106], based on an analysis of pion spectra in
Pb-Au and S-Au collisions at SPS, the thermal component was found to account for the
pion yields only up to pT'1 GeV, requiring the introduction of a “primordial” component
associated with initial hard scattering of the incoming nucleons. This interpretation is
supported by the observation that the pion spectra for pT≥2 GeV essentially scale with
the number of binaryN -N collisions (Ncoll), indicating that the hard component dominates
the spectra at these momenta. The preliminary NA60 pion spectra are also well predicted
in this approach, with a crossing of thermal and hard components at pT'1.2 GeV. As
discussed in Sec. 1.2, a valuable indicator of the degree of thermalization is the elliptic flow,
v2(pT ). At SPS energies, ideal hydrodynamics overpredicts this quantity even at low pT by
about 30-50% (possibly due to neglecting effects of finite viscosity, in connection with initial
temperatures in the vicinity of Tc where the EoS is presumably rather soft). Moreover, the
experimental v2(pT ) in semicentral Pb-Au levels off at pT=1.5-2 GeV [127, 128], indicative
for a transition to a kinetic regime, while hydrodynamic results keep rising, overpredicting
v2(pT=2 GeV) by about a factor of ∼2.

Concerning effective chemical potentials for pions (and other stable particles) between
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chemical and thermal freezeout, their main effect is a faster cooling in the evolution of
T (τ) (the equation of state, P (ε), is largely unaffected) [129, 130]. E.g., for µπ=80 MeV
at T=120 MeV [36], the pion density, %π(T, µπ), is enhanced by a factor of ∼e80/120∼2
relative to µπ=0, and as large as %π(T=150 MeV,0). Therefore, thermal freezeout at
(Tfo,µfo

π )=(130,0) MeV [117] corresponds to a smaller pion density (and thus larger volume)
than at (Tfo,µfo

π )=(120,80) MeV [36], consistent with the longer lifetime in Ref. [117].
Implications of varying critical and chemical-freezeout temperatures for dilepton spec-

tra have been studied in Ref. [106]. The value of Tc affects the relative partition of QGP and
hadronic emission, especially at masses M≥1 GeV where the Boltzmann factor augments
the sensitivity to earlier phases and the hadronic rates are not enhanced by resonances.
However, if hadronic and QGP rates are “dual” around Tc, this distinction is largely aca-
demic. Smaller Tch’s lead to smaller µi’s in the subsequent hadronic evolution, and thus
higher kinetic freezeout temperatures, e.g., (Tfo,µfo

π )=(135,35) MeV for Tch=160 MeV.
Experimentally measured dilepton spectra contain sources other than thermal radia-

tion represented by Eq. (41). A systematic evaluation of these sources has recently been
conducted in Ref. [106], in terms of (i) final-state decays and (ii) primordial sources.

Dilepton decays of long-lived hadrons (mostly η, η′, ω and φ mesons) after thermal
freezeout, commonly referred to as “hadron decay cocktail”, are usually based on chemical
freezeout for their abundance and thermal freezeout for their pT spectra. The situation is
more involved for the ρ-meson, since its continuous regeneration implies relative chemical
equilibrium with pions until thermal freezeout (to a certain extent this may also apply to
ω and φ) . In addition, its short lifetime is not well separated from the typical duration of
the freezeout process. In Ref. [30], the final generation of ρ decays has been approximated
by an extra 1 fm/c of fireball lifetime. However, as has been clarified in Refs. [131, 106],
when treating the final generation of ρ’s as a cocktail decay, the time dilation of the moving
ρ’s generates a hardening of its qt spectrum by a factor γt=Mt/M (M2

t =M2+q2
t ). The

resulting spectrum recovers the standard Cooper-Frye [132] description for freezeout at a
fixed time in the laboratory frame (cf. also Refs. [133, 134]). This, in turn, implies that the
apparent temperature of the radiation formula (41) is smaller than the actual temperature
figuring into the Boltzmann factor (independent of flow effects) by about ∼10%.10

In analogy to the pion-pT spectra discussed above, the ρ spectra are expected to have
a primordial component (emanating from hard N -N collisions) which does not equilibrate
with the medium. Such a component has been introduced in Refs. [131, 106] including a
schematic treatment for Cronin effect and jet-quenching as inferred from pion spectra in
S-Au and Pb-Au collisions at SPS [135] (also note that, at high qt, this component scales
with Ncoll, rather than Npart as for the (low-pT ) cocktail).

Another primordial dilepton source is the well-known Drell-Yan (DY) process, i.e.,
quark-antiquark annihilation in binary N -N collisions. To leading order qq̄ → e+e− is
O(α0

sα
2) and can be reliably calculated in perturbation theory at sufficiently large masses,

M&2 GeV, utilizing parton distribution functions as input [136]. A finite pair momentum,
qt>0, can be generated by intrinsic parton kt and at next-to-leading order (NLO) (the
latter is the dominant effect). The extrapolation of DY to small masses is problematic,
but at a scale of qt'2 GeV its contribution to dilepton spectra at SPS is potentially sizable.
In Ref. [106] it has been suggested to estimate the spectrum of slightly virtual DY pairs,
i.e., for M2 � q2

t , by an extrapolation of a finite-qt DY expression to zero mass and
constrain the resulting photon spectrum by measured photon spectra in p-A collisions.

10The time dilation factor for ρ decays in the thermal radiation formula is compensated by the same
time dilation in ρ formation, as a consequence of detailed balance.
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Semileptonic final-state decays of correlated of D and D̄ mesons (i.e., corresponding to
an associately produced cc̄ pair) lead to an irreducible dilepton signal. The pertinent mass
spectrum is, in fact, sensitive to reinteractions of the charm quarks and/or hadrons in the
medium. At SPS energies, the relevance of this effect for correlated DD̄ decays is currently
an open question [137]. Theoretical calculations discussed in the following are employing
Ncoll-extrapolated spectra from p-p collisions (based on PYTHIA [139] simulations) as
provided by the NA60 collaboration [35].

4.2.2 CERN-SPS I: NA60

In section we discuss several calculations of µ+µ− spectra in semicentral In(158 AGeV)-
In collisions as measured by NA60. The excellent mass resolution and statistics of the
data allowed for a subtraction of the hadronic cocktail (excluding ρ and DD̄ decays),
resulting in the so-called “excess spectra” (in more recent, acceptance-corrected, NA60
spectra [138] correlated DD̄ decays are also subtracted, with some caveat as to their
medium modifications, as mentioned above).

Theoretical predictions [20] of the low-mass excess spectra utilizing the in-medium ρ
spectral function of Ref. [30] (cf. Sec. 3.4.2) showed good agreement with the first data
of NA60 [35]. More complete calculations including QGP radiation (as in Ref. [140] but
with hard-thermal loop resummed rates [78]), in-medium ω and φ decays [105], 4π-like
annihilation (relevant at intermediate mass) [36], as well as primordial ρ and Drell-Yan
(DY) contributions (relevant at high qt), are summarized in Fig. 17. In connection with a
slight update of the fireball model (larger acceleration implying smaller lifetime), the re-
sulting description of the NA60 invariant-mass spectra is quite satisfactory over the entire
range, including projections onto low (qt<0.5 GeV) and high (qt>1.0 GeV). In-medium ω
and φ contributions are rather localized in mass, while QGP and DY radiation are at
the 10-15% level at masses below 1 GeV. The in-medium plus freezeout (FO) ρ contri-
butions [20] remain the dominant source confirming the notion that the NA60 low-mass
data probe the in-medium ρ spectral function. This is also borne out of the acceptance-
corrected qt-spectra where, for M<1 GeV the ρ contribution prevails up to momenta of
qt' 1 GeV.11 At qt>1 GeV DY and primordial ρ-mesons become an increasingly important
source, but the data for M=0.4-0.6 GeV and 0.6-0.9 GeV cannot be fully accounted for.
These discrepancies are less pronounced for central In-In collisions, and may possibly be
resolved by a stronger transverse expansion within the constraints of the hadronic spectra
(we return to this question below). At masses M=1-1.4 GeV, the most significant sources
are hadronic emission from multi-pion states (e.g., π-a1, ρ-ρ or π-ω annihilation), QGP
and DD̄ decays. The hadronic contribution is significantly enhanced (by maximally a
factor of ∼2 around M'1 GeV) due to the effects of chiral mixing [36] (recall Sec. 3.2.1),
which currently cannot be discriminated by the data. The qt spectra for M=1-1.4 GeV
are well described over the entire momentum range.

Fig. 18 summarizes the results of hydrodynamic calculations [117, 118] based on
hadronic emission rates within the chiral-reduction approach [74, 75, 76] (cf. Sec. 3.2.1),
freezeout ρ mesons (including the proper γ factor relative to thermal radiation) and per-
turbative qq̄ annihilation in the QGP (pQGP). The overall structure of the NA60 mass
spectrum is roughly reproduced (cf. upper left panel of Fig. 18), but the ρ resonance figur-

11The experimental qt-spectra in Figs. 17, 18, 19 are not absolutely normalized; the theoretical qt-spectra
in Fig. 17 are normalized using the M -spectra at low qt; however, whereas the experimental M -spectra for
qt>1 GeV are reasonably reproduced, the qt-spectra for M=0.4-0.6 GeV are underestimated for qt>1 GeV.
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Figure 17: Dimuon invariant-mass (left panels) and acceptance-corrected transverse-
momentum (right panels) spectra in semi-central In(158 AGeV)-In collisions. Calcula-
tions [106] for thermal emission utilizing in-medium ρ, ω and φ spectral functions based
on hadronic-many body theory [30, 105], 4π annihilation including chiral mixing [36] and
QGP emission, supplemented by non-thermal sources (Drell-Yan annihilation, primordial
and freeze-out ρ-meson, open-charm decays), are compared to NA60 data [35, 141, 142].

ing into the EM correlator lacks significant in-medium broadening, despite the reduction
in peak strength due to the mixing effect (the agreement improves for semiperipheral and
peripheral collisions [117]). The freezeout-ρ contribution compares quite well with the one
in the upper left panel of Fig. 17 which includes a broadening but also occurs at higher
pion density (recall the discussion in Sec. 4.2.1). The level of the pQGP contribution is
very similar to the fireball model of Refs. [36, 106] in Fig. 17. As in Refs. [36, 106] the
hadronic contribution at M>1 GeV is based on a fit to the EM correlator in vacuum,
but the mixing effect is less pronounced in the virial scheme, leading to a slightly smaller
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Figure 18: NA60 dimuon spectra [35, 141, 142] compared to calculations [117, 118] employ-
ing thermal rates from the chiral reduction approach [75] and perturbative qq̄ annihilation,
folded over a hydrodynamic expansion for semicentral In(158 AGeV)-In collisions, sup-
plemented with free ρ-meson decays after thermal freezeout. Upper left: M -spectra; other
panels: qt spectra in three mass bins.

contribution in the dilepton spectrum (possibly also due to the absence of pion chemical
potentials). The shapes of the qt spectra (local slopes) of all 3 contributions displayed in
Fig. 18 (in-medium hadronic, freezeout ρ and QGP) agree well with the fireball calcula-
tions of Refs. [36, 106] as demonstrated in a direct comparison in Ref. [141]. This suggests
good consistency of the fireball and hydrodynamic evolution.

In Ref. [120] a thermal fireball expansion (cf. Tab. 1, middle column) has been applied
to compute dimuon spectra utilizing in-medium ρ and ω spectral functions (based on
empirical scattering amplitudes on pions and nucleons, recall solid lines in Fig. 12) [99],
vacuum 4π annihilation (with both charged [144] and neutral pions), as well as QGP rates
based on the quasiparticle model of Ref. [143], cf. Fig. 19. The overall shape and magnitude
of the mass spectra is rather well reproduced, except close to the dimuon threshold where
the importance of baryon effects is apparently underestimated (the underlying ρ spectral
function at T=150 MeV shows little variation between baryon densities of %B=0.5 %0 and
%0 [120]). The qt spectra can be reasonably well described without contributions from
DY or primordial ρ’s, which differs from the hydrodynamic (DZ) [117, 118] and HR-
fireball [36, 106] results, cf. Ref. [141] (recall that the RR fireball model describes NA60
pion spectra over the entire pT range by thermal emission); part of this discrepancy is due
to the slightly larger expansion velocity and the square-root radial profile of the transverse
rapidity, cf. Tab. 1. Another significant difference concerns the magnitude of the QGP
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contribution, which is by a factor of ≥2 larger in Ref. [120] than in Refs. [36, 117]. Part
of this discrepancy is due to the quasiparticle QGP EoS employed in Ref. [120], which
entails larger temperatures (including T0) at given fireball volume. It is also related to the
prevailing role of QGP radiation for M≥1 GeV.

The sensitivity of the NA60 data to the critical and chemical freezeout temperatures
has been elaborated in Ref. [106], by varying Tc from 160-190 MeV and Tch from 160-
175 MeV (keeping the fireball expansion parameters fixed), representing current uncer-
tainties in lattice QCD [4, 5] and thermal model fits [8, 9]. With “quark-hadron” duality
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Figure 21: Comparison of acceptance-corrected excess dimuon mass spectra (for
0.2<qt/GeV<0.4 (left), qt>0.2 GeV (middle) and 1.8<qt/GeV<2.0 (right)) in minimum-
bias In(158 AGeV)-In collisions [145, 137, 138] to model predictions for semicentral In-In
of RH (EoS-A) [106], RR [120] and ZD [118], normalized to the average Nch of the data.

in the thermal dilepton rates [30] in this temperature regime (at all masses, cf. Fig. 14),
the invariant-mass spectra turn out to be remarkably insensitive to these variations [106]
(duality of the QGP and hadronic emission for M . 1.5 GeV close to Tc is not realized in
the rates underlying the calculations of Refs. [117, 120]). However, the partition of QGP
and hadronic (4π) emission at intermediate masses changes appreciably from hadron-gas
dominated spectra for Tc≥175 MeV to QGP dominated ones for Tc=160 MeV, cf. left panel
of Fig. 20. In the latter case, the smaller value for Tch=160 MeV implies smaller chemical
potentials in the hadronic phase. This is part of the reason for the reduction in hadronic
emission, but also leads to a larger freezeout temperature by about 15 MeV (recall the
discussion in Sec. 4.2.1 and right column in Tab. 1). This, in turn, helps in the descrip-
tion of the transverse-momentum spectra at qt>1 GeV. However, an additional increase
in the transverse fireball acceleration by 15% seems to be required to achieve quantitative
agreement with the effective slope parameters as displayed in the right panel of Fig. 20. It
remains to be checked whether this can be consistent with a more complete set of hadronic
spectra in In(158 AGeV)-In collisions.

A comparison the three model calculations discussed above to acceptance-corrected
mass spectra in minimum-bias In(158 AGeV)-In [145] in Fig. 21 reiterates the importance
of baryon-driven medium effects [106] at low M and low qt, as well as the lack of high-qt
yield in the ρ-mass region and below for Refs. [118] and [106] with EoS-A. The latter
improves when increasing the fireball expansion as in the right panel of Fig. 20. Also note
that comparing minimum-bias data to calculations at an average Nch underestimates the
theoretical contributions which scale with Ncoll (DY and primordial ρ’s).

4.2.3 CERN-SPS II: CERES/NA45 and WA98

The refinements in the analysis of the NA60 dimuon spectra (fireball evolution and addi-
tional sources) have been rechecked against existing and updated EM data at the SPS.

The updated calculations of Ref. [106] agree well with the combined ’95/’96 CERES
dielectron data (left panel of Fig. 22). For the 2000 data (right panel of Fig. 22), the
cocktail-subtracted excess spectra in central Pb-Au corroborate the main findings of the
NA60 data, i.e., a quantitative agreement with the in-medium ρ of Ref. [30] and the
predominance of baryon effects. The longer lifetime of the fireball in central Pb-Au (factor
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decays, as well as Drell-Yan and 4π annihilation [106] (as for the NA60 data, see Fig. 17).

∼2 relative to In-In) reduces the uncertainties due to ρ-meson cocktail contributions. In
addition, dielectrons enable access to very low masses, where the ’00 CERES data may
bear a first hint of a large enhancement as predicted by hadronic many-body theory.

As emphasized in Sec. 3.5, (very) low-mass dilepton rates are intimately related to
thermal photon spectra. In Ref. [108] the in-medium ρ spectral function of Ref. [30]
has been carried to the photon point and convoluted over the same fireball expansion
as before; when supplemented with t-channel exchange reactions, QGP emission and pri-
mordial (hard) photons constrained by p-A data, the resulting qt spectra are consistent
with WA98 photon spectra, see lower right panel of Fig. 23; the updated fireball evolution
barely affects the total spectra. The contributions from the lightlike ρ are prevalent up
to qt'1 GeV (cf. Fig. 15), after which t-channel processes takes over. Primordial pho-
tons outshine the combined thermal yield (hadronic+QGP) for qt&2 GeV. This is nicely
consistent with the calculations of Ref. [149], see lower left panel in Fig. 23. In earlier
calculations of Refs. [148, 126] the thermal yield is significantly larger, due to an increased
QGP contribution caused by a short formation time of τ0=0.2-0.33 fm/c with associated
peak temperatures of up to T0=335 MeV (for τ0=1 fm/c [108, 149] average initial temper-
atures are slightly above T̄0=200 MeV). Even for this upper estimate of QGP emission12,
the latter is smaller than the hadronic one for momenta qt≤1.5-2 GeV, and the pQCD
photons are at the ∼40% level of the combined thermal contribution at qt'2 GeV.

Similar conclusions arise from theoretical analyses [140, 150, 151] of intermediate-
mass dimuon spectra (1.5≥Mµµ/GeV<3) in Pb-Pb collisions at SPS [152]: unless the
initial temperature significantly exceeds T0=250 MeV, the thermal contribution falls below
primoridial sources (DY) at masses and transverse momenta beyond M, qt'1.5-2 GeV.
This is fully confirmed by the recent NA60 intermediate-mass dilepton spectra [137].

12At SPS energy, with a Lorentz contraction of γ'9 for the incoming nuclei, the time for full nuclear
overlap is ca. 0.8 fm/c.
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Figure 23: Direct photon spectra in central Pb(158 AGeV)-Pb collisions at the SPS as
measured by the WA98 collaboration [146, 147]. The upper panels contain theoretical
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state (τ0=0.2-0.33 fm/c; in the upper left panel the lower curves are without primordial
emission), while the calculations in the lower panels [149, 108] contain primordial emission
with Cronin effect and a larger thermalization time (τ0'1 fm/c).

4.2.4 Future Dilepton Measurements

Dilepton programs will be pursued with high priority over a wide range of collision energies.
The large enhancement observed in a low-energy (40 AGeV) run at SPS [38] is in line with
the prediction of hadronic-many body theory that medium effects caused by baryons play
a leading role [70]. This trend continues down to much lower bombarding energies of 1-
2 AGeV. However, at these energies recent transport calculations suggest that the low-mass
enhancement, which could not be explained by hadronic in-medium effects [27], is related
to primordial N -N Bremsstrahlung [153], as well as ∆→ Ne+e− and η Dalitz decays [154,
155]. A better sensitivity to medium effects appears to be in the ρ-ω mass region, where
the (lack of) yield indicates a strong broadening of the vector resonances [156, 154, 157].

At the high-energy frontier, first RHIC data [42] find a large e+e− signal especially in
the mass region around M'0.3 GeV. The excess is concentrated at low qt and in central
collisions, and cannot be explained by current in-medium spectral functions. It is tempting
to speculate that the excess is caused by the formation of a disoriented chiral condensate
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(DCC), as pion-DCC annihilation shares the above features [158]. However, the magnitude
of this dilepton source cannot easily compete with hadronic medium effects, unless the
DCC domains are rather large and abundant. In this case, footprints of the DCC should
be visible in other observables (e.g., π0 and pT fluctuations). Precision measurements
within the RHIC-II program will be of crucial importance here [43].

Finally, dilepton data will play a critical role in the CBM experiment at the future
GSI facility (FAIR). In the planned energy regime, Elab=10-40 AGeV, one envisages the
largest nuclear compression and thus maximal baryon density, ideally suited to scrutinize
the current understanding of medium effects. An extra benefit could be the occurence of
a critical point or a true mixed phase at a first-order transition, with extended fireball
lifetimes further enhancing the dilepton signal.

4.3 Critical Appraisal

In this section we evaluate the current status of determining the in-medium vector spectral
functions (focusing on the ρ meson) and the implications for chiral restoration.

Calculations of ρ-meson spectral functions based on effective chiral Lagrangians cou-
pled with many-body techniques agree on a strong broadening with small (positive) mass
shifts. At normal nuclear matter density, one finds an increase in width of ∆Γρ'250 MeV
with an estimated error of ∼30%, i.e., the vacuum width almost triples. The question
whether the parameters in the effective Lagrangian are subject to in-medium changes
requires further input. In the vector-manifestation scenario, reduced bare masses and
coupling constants are inferred from a matching of the correlators to an operator prod-
uct expansion (OPE) at spacelike momenta governed by the in-medium reduction of the
condensates. However, it turns out that, within current uncertainties, the softening of the
ρ spectral function as imposed by the OPE at nuclear matter density is fully accounted
for by the broadening due to hadronic many-body effects. More accurate tests of this
assertion, especially at higher densities/temperatures, will require a more precise determi-
nation of the in-medium condensates on the OPE side of the QCD sum rule. The predicted
broadening is supported by several recent experiments where dilepton spectra have been
measured with impressive precision: at JLAB, photoproduction data off mid-size nuclei
find a ρ broadening of ∆ΓNUC

ρ '70-100 MeV without significant mass shift, consistent with
many-body effects at about half nuclear density and 3-momenta of ∼1-2 GeV. The NA60
dilepton spectra in central In-In collisions exhibit an average ρ width of Γ̄HIC

ρ '400 MeV

i.e., an additional broadening of ∆Γ̄HIC
ρ '250 MeV. Typical kinetic freeze-out conditions

at SPS energies are (ρfo
B , Tfo)'(0.3ρ0,120MeV). With initial temperatures of T0'200 MeV

(as suggested by “effective” slope parameters in the qT spectra for M>1 GeV, as well as
direct photon spectra in Pb-Pb), the average ρ width thus reflects the medium at an aver-
age temperature of T̄'150 MeV (the growing fireball 3-volume “biases” low-mass dilepton
radiation to more dilute stages). This implies that the ρ width approaches its mass when
the system moves toward the (pseudo) critical temperature, Γρ(T→Tc)→ mρ, i.e., the
resonance “melts” (see also Ref. [159]). Inspection of the theoretical predictions for the
width of the ρ as extracted from the vector spectral function corroborates this conclusion,
cf. Fig. 24. The circumstantial “duality” of hadronic and partonic EM emission rates
close to Tc lends robustness to the pertinent predictions for dilepton spectra in heavy-ion
collisions as they become independent on details of the evolution model, in particular of
the treatment of the phase transition region. The excess radiation at intermediate mass,
with its rather soft emission characteristics in qt, as well as direct photon spectra, further
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consolidate the origin of thermal radiation from around Tc.
A no less challenging task is to connect the above findings to the chiral transition. It has

recently been argued that the statistical operator consisting of a (free) hadron resonance
gas (HRG) is capable of reproducing several features of lattice QCD computations of the
equation of state (EoS) until rather close to the (pseudo-) critical temperature [160, 161].
Beyond Tc the lattice EoS levels off, reflecting quark-gluon degrees of freedom, while the
HRG EoS diverges (Hagedorn catastrophe). The ρ melting offers a microscopic explana-
tion for this transition: under moderate conditions, the interacting HRG physics drives
the ρ broadening to an extent which justifies the use of well-defined quasi-particle states
in the statistical operator. With further increasing temperature and density, resonance
overlap in the ρ spectral function drives it to a continuum shape with a strength resem-
bling a weakly interacting qq̄ pair, i.e., the resonance strength in the statistical operator
converts into partonic strength. The phenomenon of overlapping resonances merging into
a perturbative qq̄ continuum is, of course, well known from the e+e− annihilation cross
section into hadrons above M'1.5 GeV. It is suggestive that the thermal medium provides
the necessary phase space for low-mass resonances which, via their mutual “mixing” in
different hadronic correlators, “restore” quark-hadron duality down to M→0, implying
chiral restoration. To quantify this picture the evaluation of chiral order parameters is
mandatory. It is tempting to speculate that the rather sharp increase of the ρ width
close to the expected critical temperature (especially in chemical equilibrium as realized
in lattice QCD, represented by the solid line in Fig. 24) is signaling the chiral transition.
QCD sum rules remain a valuable tool if the T (and µB) dependence of the quark and
gluon condensates can be made more precise. Ideally, the latter are determined from first-
principle lattice QCD calculations. Possibly the most promising approach, which has been
little exploited thus far, are chiral (or Weinberg) sum rules. Their use hinges on the in-
medium axialvector spectral function. The latter is much more difficult to constrain due to
a principal lack of experimental information, encoded in either 3-pion or π-γ final states.
This stipulates the importance of calculating the axialvector correlator in chiral models.
In connection with a realistic vector correlator and lattice-QCD input on the in-medium
condensates, the explicit realization of chiral restoration can be investigated. First efforts
in this direction have been undertaken [162, 163, 164, 165], but a full treatment including
quantitative V and A spectral functions, even in the vacuum, is currently lacking.
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5 Conclusions

Medium modifications of hadronic spectral functions play a key role in the diagnosis of
hot/dense strongly interacting matter and its condensate structure. Experimentally, the
most promising approach is dilepton spectroscopy which directly probes the vector spectral
function of the hadronic medium. For the ρ-meson, which dominates the low-mass vector
channel, effective hadronic theories largely agree on a strong broadening of the resonance,
with little mass shift. Baryon effects prevail over those induced by mesons, and the
predicted modifications in cold nuclear matter are compatible with QCD sum rules at
finite density. Intense experimental efforts over the last ∼15 years have culminated to
a new level of precision which broadly confirms the theoretical expectations: production
experiments off ground-state nuclei find an increase of the ρ width by ∼80 MeV, while the
effect in heavy-ion collisions at the SPS is by a factor of ∼3 larger. Part of this difference
is due to the access to the low-momentum regime in the heavy-ion measurements. It
is therefore highly desirable to push the sensitivity of the nuclear experiments to low 3-
momenta where significantly larger medium effects are predicted. The average ρ width
extracted in heavy-ion collisions suggests that the ρ resonance “melts” close to the expected
phase boundary, in agreement with extrapolations of hadronic models. This is a first
explicit evidence that melting resonances are involved in the transition from hadronic to
quark degrees of freedom. Modern quark-model calculations could provide complementary
insights when approaching Tc from above. Unquenched lattice QCD computations of the
vector correlator would undoubtedly set valuable benchmarks and possibly shed light
on the conjecture that the width is connected to order parameters of chiral symmetry
restoration. In addition, information on quark condensates and pion decay constant(s)
below Tc can be connected to hadronic vector and axialvector spectral functions utilizing
Weinberg sum rules. The synergy of hadronic and quark models with first-principle lattice
QCD computations, augmented by quantitative applications to experiment at current and
future facilities, opens exciting perspectives to improve our knowledge about the chiral
transition in hot/dense QCD matter and the generation of luminous mass in the Universe.
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