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Motivation

How to treat particles with finite mass width?”

e How to find a self-consistent approximation which
[1 respects conervation laws

[] is thermodynamically consistent
[] can be treated numerically

[1 povides non-equilibrium equations
beyond quasi-particle description?

The answer

e O-derivable schemes (Luttinger, Ward, Kadanoff, Baym)



The ®-Functional

e Introduce local and bilocal auxiliary sources

e Generating functional
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e Generating functional for connected diagrams
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e The mean field and the connected Green’s function
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Equations of Motion

e Physical solution defined by vanishing auxiliary sources

o d-functional (2PI closed diagrams)
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e FEquation of motion for the mean field ¢
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e For the “full” propagator G = G =G+ GgoX oG
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e C(losed set of equations of motion for ¢ and -



Properties of the Formalism

Provides natural scheme for truncation of the Schwinger-
Dyson hierarchy

Truncation of ® at a certain loop order

[] respects conservation laws for expectation values of
energy, momentum, angular momentum, ...
Noether charges from linearly realized global symmetries

Thermodynamically consistent

It is the only self-consistent scheme with these properties



Gauge Model for p and w

e p-mesons = Higgs-Kibble mechanism
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Interactions in Physical Gauge
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(Quantization

Gauge fixing

“Physical gauge”

Ll p-fields massive m2 = g*u?/(4X)

[1 Three ¢-degrees of freedom = absorbed to p-mesons
[1 One ¢-degree = massive Higgs-particle

[1 only phys. d.o.f. = manifestly unitary

Re¢-gauges ('t Hooft) = renormalizable
[1 Unphysical d.o.f. & Faddeev-Popov ghosts

Quantized theory

Defines physical states
Only physical states propagate < dynamical consistency

Physical quantities
eg. S-matrix, thermodynamical quantities
independent of the gauge fixing

Theory renormalizable (R¢-gauge) and
physically consistent (unitary gauge)



° (1 ] ] e

Symmetries and Gauge Theories

Global linear symmetries of the action (eq. of motion) = con-
served quantities (energy, momentum, angular momentum,
charges and currents)

Local gauge theories for vector particles (p-mesons)
defines couplings (QED, QCD, QFD, VMD, ...)
Only physical states are interacting in quantum theory

Ensures Lorentz invariance, unitarity and renormalizability of
the S-matrix
Quantized theory symmetric at any loop order

®-functional: need also approximations
Current correlators used in internal lines
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describe decay of states (and not where they are going!)
different from “external lines” defined by
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fulfilling the Ward identity = take into account exactly the
part of rescattering corresponding to processes in GG
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Self-consistent formalism is not gauge invariant



Gauge Invariant Formalism

e A way out: Treat gauge field only at mean field level
o &P-formalism works well for linearly realized global symmetries

e Couple external vector field to conserved current

e Derivative of (:
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Classical Transport Analogue

e Real processes in the classical limit <
cutting rules in real time diagram formalism
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quasi-free scattering

multiple scattering

e C(lassical picture: Maxwell equations
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Langevin process < FP—-equation < HTL approximation
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Summary and perspectives

[] Finite width of particles =
important feature compared to quasi-particle approach

[] ®-functional
self-consistent conserving approximations
thermodynamically consistent

] Numerical treatment possible (including renormalization)

! Problems with self-consistent treatment of vector particles

e &d-functional with internal vector lines =
violates gauge invariance

[] Strong m-in-medium width effects on p-properties

]

Gauge invariant description = requires multiple scattering

(] Numerical treatment of vertex summation is possible
(work in progress)

7771Is there a feasable self-consistent treatment including internal
vector-lines?

1 Applicable to transport processes



