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Motivation
#2

How to treat particles with finite mass width?

• How to find a self-consistent approximation which
☞ respects conervation laws

☞ is thermodynamically consistent

☞ can be treated numerically

☞ povides non-equilibrium equations
beyond quasi-particle description?

The answer

• Φ-derivable schemes (Luttinger, Ward, Kadanoff, Baym)



The Φ-Functional
#3

• Introduce local and bilocal auxiliary sources

• Generating functional

Z[J, K] = N

∫
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• Generating functional for connected diagrams

Z[J, K] = exp(iW [J, K])

• The mean field and the connected Green’s function
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Equations of Motion
#4

• Physical solution defined by vanishing auxiliary sources

• Φ-functional (2PI closed diagrams)
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• For the “full” propagator G ⇒ G = G0 + G0 ◦ Σ ◦ G
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• Closed set of equations of motion for ϕ and G



Properties of the Formalism
#5

• Provides natural scheme for truncation of the Schwinger-
Dyson hierarchy

• Truncation of Φ at a certain loop order

☞ respects conservation laws for expectation values of
energy, momentum, angular momentum, . . .
Noether charges from linearly realized global symmetries

• Thermodynamically consistent

• It is the only self-consistent scheme with these properties



Gauge Model for ρ and π
#6

• ρ-mesons ⇒ Higgs-Kibble mechanism

• Φ: SU(2)-duplett
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• Add pions to the model:
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Interactions in Physical Gauge
#7
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Quantization
#8

Gauge fixing

• “Physical gauge”

☞ ρ-fields massive m2
ρ = g2µ2/(4λ)

☞ Three φ-degrees of freedom ⇒ absorbed to ρ-mesons

☞ One φ-degree ⇒ massive Higgs-particle

☞ only phys. d.o.f. ⇒ manifestly unitary

• Rξ-gauges (’t Hooft) ⇒ renormalizable

☞ Unphysical d.o.f. ⇔ Faddeev-Popov ghosts

Quantized theory

☞ Defines physical states

☞ Only physical states propagate ⇔ dynamical consistency

☞ Physical quantities
eg. S-matrix, thermodynamical quantities
independent of the gauge fixing

☞ Theory renormalizable (Rξ-gauge) and
physically consistent (unitary gauge)



Symmetries and Gauge Theories
#9

• Global linear symmetries of the action (eq. of motion) ⇒ con-
served quantities (energy, momentum, angular momentum,
charges and currents)

• Local gauge theories for vector particles (ρ-mesons)

☞ defines couplings (QED, QCD, QFD, VMD, . . .)

☞ Only physical states are interacting in quantum theory

☞ Ensures Lorentz invariance, unitarity and renormalizability of
the S-matrix

• Quantized theory symmetric at any loop order

• Φ-functional: need also approximations

☞ Current correlators used in internal lines

Σint(1, 2) = 〈j(1)j(2)〉int = i
δΦ[ϕ, G]

δG(1, 2)

describe decay of states (and not where they are going!)
different from “external lines” defined by

Σext(1, 2) = 〈j(1)j(2)〉ext =
δ2Φ[ϕ, � [ϕ]]

δϕ(1)δϕ(2)

fulfilling the Ward identity ⇒ take into account exactly the
part of rescattering corresponding to processes in G

• Self-consistent formalism is not gauge invariant



Gauge Invariant Formalism
#10

• A way out: Treat gauge field only at mean field level

• Φ-formalism works well for linearly realized global symmetries

• Couple external vector field to conserved current

• Derivative of G:

G−1 ◦ G = � ⇒
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δρµ
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δρµ
◦ G
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+ · · ·+= +δG[ρ]
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Classical Transport Analogue
#11

• Real processes in the classical limit ⇔
cutting rules in real time diagram formalism
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multiple scatteringquasi-free scattering

Π+−
µν = 〈jµjν〉 =

• Classical picture: Maxwell equations

∂νγνµ = jµ = e

∫

d3~vvµn(t, ~x,~v)
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∑
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• Langevin process ⇔ FP–equation ⇔ HTL approximation
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Summary and perspectives
#12

✔ Finite width of particles ⇒
important feature compared to quasi-particle approach

✔ Φ-functional
self-consistent conserving approximations
thermodynamically consistent

✔ Numerical treatment possible (including renormalization)

!!! Problems with self-consistent treatment of vector particles

• Φ-functional with internal vector lines ⇒
violates gauge invariance

✔ Strong π-in-medium width effects on ρ-properties

✔ Gauge invariant description ⇒ requires multiple scattering

✔ Numerical treatment of vertex summation is possible
(work in progress)

???Is there a feasable self-consistent treatment including internal
vector-lines?

✔ Applicable to transport processes


