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Abstract

Within a field theoretical model where all damping width effects are treated self-consistently
we study the changes of the spectral properties of ρ-mesons due to the finite damping width
of the pions in dense hadronic matter at finite temperature. The corresponding effects in
the di-lepton yields are presented. Some problems concerning the self consistent treatment
of vector or gauge bosons are discussed.

1 Introduction

The properties of vector mesons in a dense hadronic medium have attracted much attention in
recent times. Measurements of di-leptons in nuclear collisions promise to access such proper-
ties experimentally. Recent experiments by the CERES and DLS collaborations [1, 2, 3] show
interesting features in the low lepton pair mass spectrum between 300 to 600MeV. Various
effects which change the mass and/or the width, or brief the spectral properties of the vector
mesons in dense matter have been explored to explain the observed enhancement seen in heavy
projectile-target collisions compared to proton-proton data. High resolution experiments with
the upgrade of CERES and the new di-lepton project HADES at GSI will sharpen the view on
the spectral information of vector mesons.

In most of the theoretical investigations the damping width attained by the asymptotically
stable particles in the dense matter environment has been ignored sofar. In this contribution
we study the in-medium properties of the ρ-meson due to the damping width of the pions in a
dense hadron gas within a self consistent scheme.

2 The model

In order to isolate the pion width effects we discard baryons and consider a purely mesonic
model system consisting of pions, ρ-mesons, and for curiosity also the chiral partner of the ρ-,
the a1-meson with the interaction Lagrangian

� int = gρππρµπ∗
↔

∂ µπ + gπρa1
πρµaµ

1 +
gπ4

8
(π∗π)2. (1)

The first two coupling constants are adjusted to provide the corresponding vacuum widths
of the ρ- and a1-meson at the nominal masses of 770 and 1200MeV of Γρ = 150MeV and
Γa1

= 400MeV, respectively. The four-pion interaction is used as a tool to furnish additional
collisions among the pions. The idea of this term is to provide pion damping widths of 50MeV
or more as they would occur due to the strong coupling to the NN−1 and ∆N−1 channels in
an environment at finite baryon density.

The Φ-functional method originally proposed by Baym[4] provides a self-consistent scheme
applicable even in the case of broad resonances. It bases on a re-summation for the partition
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sum [5, 6]. Its two particle irreducible part Φ[G] generates the irreducible self-energy Σ(x, y)
via a functional variation with respect to the propagator G(y, x), i.e.

−iΣ(x, y) =
δiΦ

δiG(y, x)
. (2)

Thereby Φ solely depends on fully re-summed, i.e. self-consistently generated propagators
G(x, y). In graphical terms, the variation (2) with respect to G is realized by opening a prop-
agator line in all diagrams of Φ. Further details and the extension to include classical fields or
condensates into the scheme are given in ref. [7].

Truncating Φ to a limited subset of diagrams, while preserving the variational relation (2)
between Φ(appr.) and Σ(appr.)(x, y) defines an approximation with built-in consistency. Baym[4]
showed that such a scheme is conserving at the expectation value level of conserved currents
related to global symmetries of the original theory, that its physical processes fulfill detailed
balance and unitarity and that at the same time the concept is thermodynamically consistent.
However symmetries and conservation laws may no longer be maintained on the correlator level,
a draw-back that will lead to problems for the self-consistent treatment of vector and gauge
particles on the propagator level, as discussed in sect. 3.

Interested in width effects, we drop changes in the real parts of the self energies. This entitles
to drop tadpole contributions for the self energies. For our model Lagrangian (1) one obtains
the following diagrams for Φ at the two-point level which generate the subsequently given three
self energies Πρ, Πa1

and Σπ

Φ =

π
ρ

π
+

π
ρ

a1
+

π
π

π
π

Πρ =
π
π +

π
a1

Πa1
= ρ

π

Σπ = ρ
π

+
a1
ρ +

π

π
π

(3)

They are the driving terms for the corresponding three Dyson equations, which have to be
solved self consistently. The above coupled scheme pictorially illustrates the concept of Newton’s
principle of actio = reactio and detailed balance provided by the Φ-functional. If the self energy
of one particle is modified due to the coupling to other species, these other species also obtain
a complementary term in their self energy. In vacuum the ρ- and a1-meson have the standard
thresholds at

√
s = 2mπ and at 3mπ respectively. For the pion as the only stable particle in

vacuum with a pole at mπ a decay channel opens at
√

s = 3mπ due to the first and last diagram
of Σπ. Correspondingly the vacuum spectral function of the pion shows already some spectral
strength for

√
s > 3mπ, c.f. fig. 1 (left).

Self consistent equilibrium calculations are performed keeping the full dependence of all two-
point functions on three momentum ~p and energy p0, and treating all propagators with their
dynamically determined widths. For simplicity the real parts of the self energies were dropped
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Figure 1: Spectral function (left) and decay width (right) of the pion as a function of the pion
energy at a pion momentum of 150 MeV/c in the vacuum and for two self consistent cases
discussed in the text.

and all time components of the polarization tensors Πρ and Πa1
were put to zero for reasons

discussed in sect. 3. The examples shown refer to a temperature of T = 110MeV appropriate
for the CERES data. We discuss three different settings. In case (a) the ρ-meson polarization
tensor is calculated simply by the perturbative pion loop, i.e. with vacuum pion propagators
and thermal Bose-Einstein weights (no self consistent treatment). The two other cases refer to
self consistent solutions of the coupled Dyson scheme, where the four-π interaction is tuned such
that the sun-set diagram provides a moderate pion damping width of about 50MeV (case (b))
and a strong one of 125MeV (case (c)) around the peak in the spectral function, c.f. fig. 1.
Since in the thermal case any excitation energy is available, though with corresponding thermal
weights, all thresholds disappear and the spectral functions show strength at all energies3! The
pion functions shown in Fig. 1 are plotted against energy in order to illustrate that there is
significant strength in the space-like region (below the light cone at 150MeV) resulting from
π-π scattering processes.

As an illustration we display a 3-d plot of the rho-meson spectral function as a function of p0

and |~p | in Fig. 2, top left. The right part shows the spectral function as a function of invariant
mass at fixed three momentum of 150MeV/c in vacuum and for the self consistent cases (a) to
(c). The minor changes at the low mass side of the ρ-meson spectral function become significant
in the di-lepton yields given in the left bottom panel. The reason lies in the statistical weights
together with additional kinematical factors ∝ m−3 from the di-lepton decay mechanism. For
the moderate damping case (Γπ = 50MeV) we have decomposed the di-lepton rate into partial
contributions associated with π-π bremsstrahlung, π-π annihilation and the contribution from
the a1-meson, which can be interpreted as the a1 Dalitz decay.

The low mass part is completely dominated by pion bremsstrahlung contributions (like-
charge states in the pion loop). This contribution, which vanishes in perturbation theory is finite
for pions with finite width. It has to be interpreted as bremsstrahlung, since the finite width
results from collisions with other particles present in the heat bath. Compared to the standard

3In mathematical terms: all cuts go from −∞ to +∞ in energy, and the physical sheet of the retarded functions

are completely separated from the physical sheet of the corresponding advanced function by these cuts.
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Figure 2: top: ρ-meson spectral function, bottom: thermal di-lepton rate.

treatment, where the bremsstrahlung is calculated independently of the π-π annihilation process,
this self-consistent treatment has a few advantages. The bremsstrahlung is calculated consis-
tently with the annihilation process, it appropriately accounts for the Landau-Pomeranchuk
suppression at low invariant masses [8] and at the same time includes the in-medium pion elec-
tromagnetic form-factor for the bremsstrahlung part. As a result the finite pion width adds
significant strength to the mass region below 500MeV compared to the trivial treatment with
the vacuum spectral function. Therefore the resulting di-lepton spectrum essentially shows no
dip any more in this low mass region already for a moderate pion width of 50MeV. The a1

Dalitz decay contribution given by the partial ρ-meson width due to the π-a1 loop in Πρ is seen
to be unimportant at all energies. The present calculations have not included any medium mod-
ification of the masses of the mesons. The latter can be included through subtracted dispersion
relations within such a consistent scheme.

3 Symmetries and gauge invariance

While scalar particles and couplings can be treated self-consistently with no principle problems
at any truncation level, considerable difficulties and undesired features arise in the case of vector
particles. The origin lies in the fact that, though in Φ-derivable Dyson re-summations symme-
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tries and conservation laws are fulfilled at the expectation value level, they are generally no
longer guaranteed at the correlator level. In the case of local gauge symmetries the situation
is even worse, because the symmetry of the quantized theory is not the original one but the
non-linear BRST symmetry [9, 10]. Contrary to perturbation theory, where the loop expansion
corresponds to a strict power expansion in ~ and symmetries are maintained order by order,
partial re-summations mix different orders thus violating the corresponding symmetries. It is ob-
vious that the scheme discussed above indeed violates the Ward identities on the correlator level
and thus the vector meson propagators are no longer 4-dimensionally transverse. This means
that unphysical states are propagated within the internal lines of the Φ-derivable approximation
scheme which lead to a number of difficulties in the numerical treatment of the problem. In the
above calculations we have worked around this problem by putting the temporal components of
the ρ-meson polarization tensor to zero, an approximation, which is exact for ~pρ = 0.

Is there a self-consistent truncation scheme, where gauge invariance is maintained also for the
internal dynamics, i.e. for the dynamical quantities like classical fields and propagators which
enter the self-consistent set of equations? The answer is definitely yes. However one has to
restrict the coupling of the gauge fields to the expectation values of the vector currents. This in
turn implies that gauge fields are treated on the classical field level only, a level that is presently
explored in all hard thermal loop (HTL) approaches [11, 12, 13, 14]. In the case of a π-ρ-meson
system the corresponding Φ-derivable scheme is then given by (again omitting the tadpole term)

Φ{Gπ, ρ} =
ρ

π

+
π
π

π
π (4)

Σπ =
ρ

+

π

π
π

(5)

(

∂ν∂ν −m2
)

ρµ = jµ =
ρ

π

(6)

Here full lines represent the self-consistent pion propagators and curly lines with a cross depict
the classical ρ-meson field, governed by the classical field equations (6). Since Φ is invariant
with respect to gauge transformations of the classical vector field ρµ, the resulting equations of
motion are gauge covariant. This also holds for fluctuations ρµ+δρµ around mean field solutions
of (5 - 6). In this background field method one can define a gauge covariant external polarization
tensor via variations with respect to the background field δρµ

Πext
µν (x1, x2) =

δ

δρµ(x2)

[

δΦ[Gπ, ρ]

δρν(x1)

]

Gπ=Gπ [ρ]

=
ρ ρ

(7)

as a response to fluctuations around the mean field. In order to access this tensor one has to
solve a corresponding three-point-vertex equation

δGπ

δρµ
=

ρ
=

ρ
+

ρ
(8)

In order to maintain all symmetries and invariances the Bethe-Salpeter Kernel in this equation
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has to be chosen consistently with the Φ-functional (4), i.e.

K1234 =
δ2Φ

δG12δG34
= (9)

Thereby the pion propagator entering the ladder resummation (9) is determined by the self-
consistent solution of the coupled Dyson and classical field equations (5 - 6). Thereby the
ladder re-summation also accounts for real physical scattering processes. This phenomenon was
already discussed in [8] for the description of Bremsstrahlung within a classical transport scheme
(Landau-Pomeranchuk-Migdal effect). From this point of view one clearly sees that the pure Φ-
functional formalism without the vertex corrections provided by (8) describes only the “decay of
states” due to collision broadening. Thus the internal polarization tensor given in the Φ-Dyson
scheme (3) has a time-decaying behavior, with the 00-component approximately behaving like

Π00
ρ (τ, ~p = 0) ∝ e−Γτ (10)

in a mixed time-momentum representation. This clearly violates charge conservation, since
∂0Π

00
ρ (τ, ~p)|~p=0 does not vanish! Accounting coherently for the multiple scattering of the particles

through the vertex re-summation (8) keeps track of the “charge flow” into other states and thus
restores charge conservation. Within classical considerations the ladder re-summation (7) indeed
yields

Π00
ρ (τ, ~p = 0) ∝

∑

n

(Γτ)n

n!
e−Γτ = 1 (11)

confirming charge conservation. For further details c.f. ref. [8].
Unless one solves the exact theory there seems to be no obvious self consistent alternative

to the above scheme where vector particles are treated dynamically and which at the same time
complies with gauge invariance also for the internal propagation. All this seems to defer a dy-
namical treatment of vector particles on the propagator level. The numerical implementation
of the above vertex corrections is in progress. The problem of renormalization omitted here
has been investigated using subtracted dispersion relations. Thus for vector particles a fully
self-consistent scheme with all the features of the Φ-functional, especially to ensure the consis-
tency of dynamical and thermodynamical properties of the calculated propagators together with
the conservation laws on both the expectation value and the correlator level remains an open
problem.

The equilibrium calculations presented also serve the goal to gain experience about particles
with broad damping width with the aim towards a transport scheme for particles beyond the
quasi-particle limit [15], see also [16, 17].
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