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Local and bilocal sources

Generating functional for (disconnected) Green’s functions

Z[J,B] = N

∫
Dφ exp

[
iS[φ] + i {J1φ1}1 +

i
2
{B12φ1φ2}12

]
Generating functional for connected Green’s functions

W [J,B] = −i lnZ[J,B],
δW

δJ1
= ϕ1,

δW

δB12
=

1
2

(G12 + ϕ1ϕ2)

Legendre transform: 2PI generating functional

Γ[ϕ,G] = W [J,B]− {J1ϕ1}1 −
1
2
{(ϕ1ϕ2 + iG12)B12}12

Saddle point expansion of the path integral

Γ[ϕ,G] = S[ϕ] +
i
2

Tr ln(β2G−1) +
i
2

{
D−1

12 (G12 −D12)
}

12
+ Φ[ϕ,G]

with D−1
12 =

δ2S[ϕ]
δϕ1δϕ2

Hendrik van Hees (JLU Gießen) Gapless HF approximations June 10, 2008 3 / 12



Equations of Motion

Want to find ϕ and G at vanishing external sources ⇒ Equations of
motion:

δΓ
δϕ1

= j1 + {B12ϕ2}2
!= 0,

δΓ
δG12

= − i
2
B12

!= 0

Second equation:

D−1
12 −G12

−1 = 2i
δΦ

δG12
= Σ12

Φ generates skeleton diagrams for self-energy

Φ must be two-particle irreducible (2PI)

Saddle-point expansion of the path integral: Φ diagrams ≥ 2 loops
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“Diagrammar”

Simple φ4 model

L =
1
2
(∂µφ)(∂µφ)− m

2
φ2 − λ

2
φ4, S[φ] = {L1}1

The functional:

iΦ

+iΓ[ϕ,G] = iS[ϕ]+ + + · · ·+ +

Field equation of motion:

+
x

+ · · ·+i(2 + m
2)ϕ =
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Simple φ4 model

L =
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(∂µφ)(∂µφ)− m

2
φ2 − λ

2
φ4, S[φ] = {L1}1

The functional:

iΦ

+iΓ[ϕ,G] = iS[ϕ]+ + + · · ·+ +

Self energy:

+ +
−iΣ12 = + · · ·
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Why should one use the Φ functional?

Provides a self-consistent set of equations of motion

Approximations yield equations, which

lead to conserved expectation values of Noether currents
iΓ = lnZ at the solution
(a non-perturbative approximation of the partition sum)
allows consistent determination of thermodynamical and dynamical
properties through analytic properties of Green’s functions

especially useful for description of particles and resonances with finite
mass width

only way to find self-consistent equation with these properties!
[Baym 1962]
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Breaking of symmetries: The O(N)-σ model

L =
1
2
(∂µ

~φ)(∂µ~φ)− m

2
~φ 2 − λ

4N

(
~φ 2

)2

Action symmetric under global O(N) rotations of ~φ

Symmetry linear ⇒ exact Quantum action also symmetric

perturbative loop expansion = power expansion in ~ ⇒ also
symmetric at any finite order of pert. theory

If symmetry spontaneously broken (m2 < 0), from this symmetry
alone follows Goldstone’s theorem: There are N − 1 massless
Goldstone bosons

Long known [Baym, Grinstein 1977]: Φ-derivable approximations
break the symmetry explicitly!

Goldstone’s theorem also violated
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Gapless Φ-derivable approximations

Φ-derivable approximation which fulfills Nambu-Goldstone theorem
[Yu. B. Ivanov, F. Riek, J. Knoll 2005]

⇒ Construct “correction” ∆Φ to Φ functional such that
Nambu-Goldstone theorem is fulfilled in spont. broken phase
in symmetric phase: same EoMs in symmetric phase as original
approximation
EoM for mean field unchanged

for Hartree-Fock approximation

∆Φ = − λ

2N

[
NQabQab − (Qaa)2

]
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Renormalization

mass-independent renormalization scheme

Σvac(φ = 0,m2 = µ2, p2 = 0) = 0,

∂m2Σvac(φ = 0,m2 = µ2, p2 = 0) = 0,

∂p2Σvac(φ = 0,m2 = µ2, p2 = 0) = 0

preserves O(N) symmetry

only vacuum counter terms needed in Φ-derivable scheme [HvH,J. Knoll 2002]

similar conditions used for effective potential
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Solutions for O(4) model in chiral limit

With µ = 600 MeV

fixed physical parameters in vacuum: mσ = 600 MeV, fπ = 93 MeV

stable and meta stable solutions

2nd-order phase transitions

mπ = 0 in spont. broken phase (φ = 0)
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Solutions for O(4) model in chiral limit

With µ = 600 MeV

fixed physical parameters in vacuum: mσ = 600 MeV, fπ = 93 MeV

another high-mass metastable branch

no solutions at T > Tend

effective renormalized coupling becomes high!

approximation unreliable
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Conclusions

For linear O(N)-σ model
Φ-derivable (2PI) gapless approximations
renormalizable with symmetry-preserving vacuum counter terms
renormalization-scale independent vacuum solutions
stability of vacuum model: µ > µ0

at finite temperature: 2nd-order phase transition(s)
various stable and meta-stable solutions
model breaks down at T > Tend

remaining problems
at finite T : renormalization-scale dependence
deviation of renormalization-group β from perturbation theory at the
same order [E. Braaten, E. Petitgirard 2005; C. Destri and A. Sartirana 2005]

reason: subtraction of “hidden divergence” of the coupling constant
resummed only in one channel
only partial resummation ⇒ breaking of crossing symmetry
at orders higher than expansion parameter like λ, ~

Feasibility of gapless Φ-derivable approximations at higher orders
including scattering (sunset diagrams)?
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