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Abstract. Based on the 2PI quantum effective action of the linear sigma model with
constituent quarks, we develop a transport approach to study systems out of equilibrium.
In particular, we focus on the chiral phase transition as well as the critical point, where
nonequilibrium effects near the phase transition give rise to critical behavior such as the
fluctuation of the baryon number density. Predictions for long-range correlations and
fluctuations of observables in our model could be used to study fundamental properties of
the QCD phase transition. In the previous version of our transport model the chiral fields are
implemented as mean fields, whereas quarks are treated as on-shell particles in the Vlasov
equation with a dynamical force term. The current update includes also the distribution
functions of sigma mesons and pions in a self-consistent way. On this basis a dissipation kernel
between the mean fields and particle modes can be implemented.

1. Introduction
We concentrate our study on nonequilibrium effects and the chiral phase transition within the
linear sigma model with constituent quarks, which is an effective theory of QCD in the low-
energy limit. Our motivation is to investigate critical phenomena at the phase transition and
the critical point, where time-dependent long-range correlations can arise. Such effects can be
studied in a (3+1)-dimensional numerical approach. We present our model in the following
section 2 and discuss an improved set of transport equations in section 3. Finally, we summarize
the progress in section 4 and give an outlook to further improvements.

2. Classical transport equations within a linear sigma framework
The linear sigma model with constituent quarks is a well known O (4)-model [1], which is suited
for studying the chiral phase transition. Because of the spontaneously and explicitly broken
chiral symmetry the mesonic part of this theory consists of a massive scalar sigma field and
three isoscalar pion fields, which form the chiral field Φ = (σ, ~π). The sigma field represents the
order parameter for the chiral phase transition and mimics the properties of the quark condensate
in QCD, since both transform equally under chiral transformation. Without explicit symmetry
breaking a SUL (2) × SUR (2) symmetry transformation would let the Lagrangian invariant. It
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has the following form:

L =
∑
i

ψ̄i

[
i∂/− g (σ + iγ5~π · ~τ)

]
ψi +

1

2
(∂µσ∂

µσ + ∂µ~π∂
µ~π)

− λ

4

(
σ2 + ~π2 − ν2

)2
+ fπm

2
πσ + U0 ,

(1)

where the field shift term and the zero potential constant are given by ν2 = f2
π − m2

π/λ,
U0 = m4

π/ (4λ) − f2
πm

2
π. The sum runs over included quark flavor ψi and the parameters of

the model are adjusted to match the vacuum values of the pion decay constant fπ = 93 MeV,
the pion mass mπ = 138 MeV as well as an estimated sigma mass mσ ≈ 604 MeV.

The inhomogeneous Klein-Gordon equations of motion for the mean fields follow directly
from the functional derivative of the classical action with respect to the chiral field components
and treating quarks at one-loop level

∂µ∂
µσ + λ

(
σ2 + ~π2 − ν2

)
σ − fπm2

π + g
〈
ψ̄ψ
〉

= 0 ,

∂µ∂
µ~π + λ

(
σ2 + ~π2 − ν2

)
~π + g

〈
ψ̄iγ5~τψ

〉
= 0 .

(2)

The scalar and pseudoscalar densities are given by

〈
ψ̄ψ
〉

(t, ~x) = gdqσ (t, ~x)

∫
d3~p

fq (t, ~x, ~p) + fq̄ (t, ~x, ~p)

E (t, ~x, ~p)
,

〈
ψ̄iγ5~τψ

〉
(t, ~x) = gdq~π (t, ~x)

∫
d3~p

fq (t, ~x, ~p) + fq̄ (t, ~x, ~p)

E (t, ~x, ~p)
,

(3)

where fq and fq̄ denote the phase-space distribution functions of quarks and antiquarks with
their degeneracy factor dq. Numerically the quarks are treated as test particles, which propagate
according to the Vlasov equation[

∂t +
p

E (t, ~x, ~p)
· ∇~x −∇~xE (t, ~x, ~p)∇~p

]
fq|q̄ (t, ~x, ~p) = 0 . (4)

Thereby the force term is dynamically generated through the effective mass of quarks, depending
on the mean-field values

E (t, ~x, ~p) =
√
~p2 (t) +M2 (t, ~x) ,

M2 (t, ~x) = g2
[
σ2 (t, ~x) + ~π2 (t, ~x)

]
.

(5)

The resulting equilibrium properties of such a classical system are shown in Fig. 1 for the order
parameter and in Fig. 2 for the effective sigma mass as a function of the temperature. Depending
on the Yukawa coupling constant g different order of a phase transition can be generated. More
results, also with a constant binary cross section for quarks, can be found in [2].

3. Transport equations from the 2PI effective action
Since we are interested in nonequilibrium dynamics at the phase transition, a consistent real-
time description of the interaction between the mean-field (soft) and the particle (hard) modes
of the chiral field as well as quarks is needed. The model should also include a dissipation term,
which would drive the system to thermal equilibrium. In the following we use the 2PI quantum
effective action to derive a set of coupled equations of motion. Thereby 2PI stands for two-
particle irreducible, which means that a 2PI diagram does not become disconnected by cutting
2 inner lines (propagators). This effective action for the mean fields and propagators preserves
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Figure 1. Order parameter sigma as a
function of the temperature T for 3 different
values of the Yukawa coupling g.
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Figure 2. Same as Fig. 1 but for the sigma
mass spectrum.

global symmetries of the original theory, guarantees thermodynamic consistency [3] and can
be renormalized with vacuum counter terms [4, 5]. At the same time such a self-consistent
approximation is suitable to derive off-shell transport equations, which also respect conservation
laws and the correct equilibrium limit. Furthermore, a systematic inclusion of collisional memory
effects is possible [6, 7, 8, 9].

A more phenomenological study, motivated by the Langevin equation, is discussed in [2],
where a new statistical approach for the scattering effects between quarks as quasi particles and
mean fields is introduced. Within the linear sigma model with constituent quarks (1) the 2PI
effective action reads

Γ[σ, ~π,G,D] =Scl[σ, ~π] +
i

2
· Tr logG−1 +

i

2
· TrG−1

0 G

− i · Tr logD−1 − i · TrD−1
0 D + Γ2[φ, ~π,G,D] ,

(6)

where G0, D0 denote the free and G, D the fully dressed propagators for bosons and fermions,
which fulfills the Schwinger-Dyson equation and are formally given by

G−1 (x, y) = G−1
0 (x, y)−Π (x, y) , Π (x, y) = 2i

δΓ2

δG (x, y)
,

D−1 (x, y) = D−1
0 (x, y)− Σ (x, y) , Σ (x, y) = −i δΓ2

δD (y, x)
.

(7)

Here, Π and Σ denote the bosonic and fermionic self-energies. These are derived from the
2PI part of the effective action, where we include only 1- and 2-point diagrams as shown in
Fig. 3, since a first order gradient expansion of Kadanoff-Baym and Schwinger-Dyson equations
in Wigner space then reduces to a Markov-like collisional dynamics without memory effects
[6, 7, 8, 9]. Unfortunately, finite truncations of the 2PI effective action violate Ward-Takahashi-
identities of global and local symmetries in the first neglected order of the expansion parameter,
that is a direct consequence of the resummation in the 2-point function. It follows, that also
the Goldstone theorem is violated [11, 12], and the pions acquire a non-vanishing (temperature
dependent) mass in the broken phase of the linear sigma model, even without explicitly broken
chiral symmetry. Possible modifications for a symmetry-improved 2PI effective action are
discussed in [13].
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Figure 3. Approximation for the 2PI part of the effective action: the upper line shows bosonic
diagrams (Hartree, sunset and basketball), where dashed lines stand for boson propagators and
external lines with a cross represent mean fields. The lower line shows interactions between
bosons and fermions, here a solid line stands for a fermion propagator.

In a first attempt we extend our classical set of equations (2), (4) by including also the
Vlasov equation for the phase-space distribution functions of σ and π mesons in a Hartree-
like approximation, where only the local part of Γ2 is considered. Such a procedure requires
the computation of self-consistently derived effective mass terms, which follow from the gap
equation of the propagator. Starting from the general expression for the bosonic propagator
(7) and inserting the self-energy expressions from the Hartree diagrams, leads to the following
self-consistent equations

M2
σ (x) = λ

(
3σ2 + 3π2 − ν2

)
+ 3λGσσ + 3λGππ ,

M2
π (x) = λ

(
σ2 + 5π2 − ν2

)
+ λGσσ + 5λGππ ,

(8)

where the bosonic loop integrals are given by

Gφφ (t, ~x) =
1

2

∫
d3p

(2π)2

1 + 2Nφ (t, ~x, ~p)√
~p2 +M2

φ (t, ~x)
with φ ∈ {σ, π} . (9)

The Vlasov equations for the phase-space distributions of σ and π mesons are then given by[
∂t +

p

Eφ (t, ~x, ~p)
· ∇~x −∇~xEφ (t, ~x, ~p)∇~p

]
fφ (t, ~x, ~p) = 0 , (10)

where the force term depends on the self-consistent mass expressions from (8) as gradient of

Eφ (t, ~x, ~p) =
√
~p2 +M2

φ (t, ~x) . (11)

The Vlasov equations of the chiral field components are solved as differential equations without
using a test particle ansatz. Including also the tadpole contribution of Γ, we end up with the
following mean-field equations

∂µ∂
µσ + λ

(
σ2 + ~π2 − ν2 + 3Gσσ + 3Gππ

)
σ − fπm2

π + g
〈
ψ̄ψ
〉

= 0 ,

∂µ∂
µ~π + λ

(
σ2 + ~π2 − ν2 +Gσσ + 5Gππ

)
~π + g

〈
ψ̄iγ5~τψ

〉
= 0 .

(12)
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The system of equations (4), (10) and (12) serves as a basis to study nonequilibrium effects.
Nevertheless, it does not account for dissipation as well as q, q̄ creation and annihilation
processes. In an upcoming work we will implement a dissipation kernel [14, 15], which arises
from the sunset diagram (see Fig. 3) by deriving Γ2 with respect to the mean fields.

4. Conclusion and outlook
In this proceeding we presented an improved set of equations of motion to study systems out of
equilibrium, which is included in a numerical simulation. In comparison to the phenomenological
work [2], here we use the 2PI effective action of the linear sigma model with constituent quarks.
In the current version the set consists of mean-field equations for the components of the chiral
field, the Vlasov equation for the phase-space distribution functions of σ and π mesons as well
as the Vlasov equation for the quarks, which are treated as test particles.

In a further study we plan to implement a dissipation kernel for the mean-field equations,
which results from the sunset diagram. For a consistent treatment it requires also the inclusion
of a collision term between soft and hard modes for the Vlasov equation of chiral partners.
Furthermore, an interaction between σ, π and quarks on the particle level has to be implemented
to account for chemical equilibration in a dynamical and consistent way. Because of numerical
challenges such a direct Boltzmann-like transport approach will be primarily suited for the
study of time-dependent fluctuations in homogeneous systems. High order cumulants of
conserved quantities like baryon number density offer a possibility to observe such fluctuations.
Nevertheless, it is an open question whether fluctuations can also arise on the time scale of a
heavy ion collision and survive the hadronization, that needs further investigation.
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