Triumph of the Symmetry

The (electro-weak) standard model and the discovery of the $W^{ \pm}$and Z-Bosons

Hendrik van Hees

Content

- Relativistic quantum theory and gauge symmetry
- Phenomenology of weak interactions
- The (unified) theory of electromagnetic and weak interactions
- The discovery of $W^{ \pm}$and Z
- Status quo of experimental standard-model tests

Relativistic quantum theory

- Problems in "first quantization":
- No single particle wave function for free particles with
- energy bounded from below: $E= \pm \sqrt{\vec{p}^{2}+m^{2}}$
- and "conserved current" with positive definite "charge"
\Rightarrow No probability interpretation for single particle wave functions
- Reason: Uncertainty relation $\Delta x \Delta p \geq 1 / 2$

In principle particle can be sharply localized (small Δx) but then $\Delta p>m$

- Particles can be produced and annihilated \Rightarrow need many particle theory!
- The way out: "second quantization" = "quantum field theory"
- Reinterpret "negative energy solutions" of relativ. wave equations as anti-particles
- micro-causality

$$
\left[\hat{O}_{1}\left(t_{1}, \vec{x}_{1}\right), \hat{O}_{2}\left(t_{2}, \vec{x}_{2}\right)\right]_{-}=0 \text { for }\left|t_{1}-t_{2}\right|<\left|\vec{x}_{1}-\vec{x}_{2}\right|
$$

Measurements of observables cannot influence each other if this would need faster than light travel of signals!

- existence of a lowest energy state (vacuum)

Hamiltonian bounded from below

- Pauli 1940 Spin-statistics theorem: Particles with integer (half integer) spin must be bosons (fermions)

Field-Quantization

- Starting point: Hamilton's principle

$$
S=\int \mathrm{d}^{4} x \mathscr{L}\left(\phi, \partial_{\mu} \phi\right)
$$

- Lagrangian \mathscr{L} : Polynomial of fields $\phi(x)$ and its four-dim. gradient $\partial_{\mu} \phi(x)$
- Lorentz invariance $\Leftrightarrow \mathscr{L}$ scalar field
- Locality $\Leftrightarrow \mathscr{L}$ depends only on one space-time point x
- Classical Equations of motion

$$
\delta S=0 \Rightarrow \frac{\partial \mathscr{L}}{\partial \phi}-\partial_{\mu} \frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi\right)}
$$

Quantization

- Hamilton formalism: Canonical field momenta

$$
\Pi=\frac{\partial \mathscr{L}}{\partial\left(\partial_{t} \phi\right)}
$$

- Quantization: Classical Fields $\phi \rightarrow$ Field operators $\hat{\phi}$
- Equal time commutators (bosons) or anti-comutators (fermions):

$$
\begin{cases}{[\hat{\phi}(t, \vec{x}), \hat{\Pi}(t, \vec{y})]_{-}=\mathrm{i} \delta^{(3)}(\vec{x}-\vec{y})} & \text { for bosons } \\ {[\hat{\phi}(t, \vec{x}), \hat{\Pi}(t, \vec{y})]_{+}=\mathrm{i} \delta^{(3)}(\vec{x}-\vec{y})} & \text { for fermions }\end{cases}
$$

- Example: Free scalar field: $\mathscr{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi$
- Equations of motion: $\left(\partial_{t}^{2}-\Delta\right) \phi^{(*)}=0$ (Klein-Gordon equation)
- Quantization: Field operators in momentum basis:

$$
\hat{\phi}(x)=\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3}} \frac{1}{2 \omega}\left[\hat{a}(\vec{p}) \exp (-\mathrm{i} \omega t+\mathrm{i} \vec{p} \vec{x})+\hat{b}^{\dagger}(\vec{p}) \exp (\mathrm{i} \omega t-\mathrm{i} \vec{p} \vec{x})\right]
$$

- $\hat{a}(\vec{p})$ annihilates particle with momentum \vec{p}
$\hat{b}^{\dagger}(\vec{p})$ creates anti-particle with momentum \vec{p}

Symmetries

- Noether's theorem: If the action is invariant under an infinitesimal transformation: $\phi^{\prime}\left(x^{\prime}\right)=\phi(x)+\delta \phi(x), x^{\prime}=x+\delta x$ then there exists a current j^{μ} which is conserved: $\partial_{t} j^{0}+\vec{\nabla} \vec{j}=\partial_{\mu} j^{\mu}=0$
- Space-time symmetries:

Symmetry	Conserved quantity
Translations in time	Energy
Translations in space	Momentum
Rotations	Angular Momentum

- Quantization: Need to chose ordering of field operators
- Physical input: Vacuum should be state of 0 energy and momentum

$$
\binom{E}{\vec{p}}=\left(\begin{array}{l}
\int \mathrm{d}^{3} \vec{p} \omega(\vec{p})\left[\begin{array}{cc}
\underbrace{\hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p})}_{\text {density of particles }} & +\underbrace{\hat{b}^{\dagger}(\vec{p} \hat{b}(\vec{p})}_{\text {density of anti-particles }} \\
\int \mathrm{d}^{3} \vec{p} \vec{p}\left[\begin{array}{cc}
\underbrace{\hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p})}_{\text {density of particles }} & + \\
\text { density of anti-particles }
\end{array}\right]
\end{array}\right)=\underbrace{\hat{b}^{\dagger}(\vec{p}) \hat{b}(\vec{p})}
\end{array}\right)
$$

Interacting particles: Scattering

- Scattering cross section: $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\frac{\text { number of scattered particles per solid angle per time }}{\text { incomming particle flux }}$
- To calculate: Transition amplitude $T_{f i}=\langle f| \hat{T}|i\rangle$
- S(cattering)-Matrix $S_{f i}=\delta_{f i}+\mathrm{i}(2 \pi)^{4} \delta\left(P_{f}-P_{i}\right)\langle f| \hat{T}|i\rangle$
- $S_{f i}=\langle f, t \rightarrow \infty \mid i, t \rightarrow \infty\rangle$
$|i, t \rightarrow \infty\rangle=\hat{S}|i, t \rightarrow-\infty\rangle$
- $S_{f i}$ can be calculated only in perturbation theory
- \hat{S} is unitary \Rightarrow Overall normalization of probability time-independent!

Feynman-diagrams

- Logics of Model Building:
(1) Find out symmetries \Leftrightarrow conservation of quantities in scattering experiments
(2) Write down Lagrangian obeying the symmetries
(3) Calculate cross sections, life times and check with experiment
- Invention by R.P. Feynman (1948) diagram rules
- From given \mathscr{L} one derives diagram rules for perturbation series of scattering processes
- Example: QED

Internal lines: Propagators

External lines: Initial and final states

e^{+}in final state or
e^{+}in initial state or
e^{-}in final state

Compton-scattering

Compton-scattering: Lowest order perturbation theory (Klein-Nishina cross section)
Experimental values: Hofstadter, R. and McIntyre, J.A., Phys. Rev. 76, 1269 (1949);
Evans, R.D., Handbuch der Physik 34, Ed. S. Flügge, Springer, Berlin (1958)
Curves: Klein-Nishina cross section

QED-Lagrangian

- Four-vector potential A_{μ} : massless vector field
- couples to conserved electromagnetic current

$$
\mathscr{L}=-\frac{1}{4}(\underbrace{\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}}_{F_{\mu \nu}})\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)-j_{\mu} A^{\mu}
$$

- Equations of motion \Rightarrow Maxwell equations

$$
\left(j^{\mu}\right)=\binom{\rho}{\vec{j}}, \quad\left(A^{\mu}\right)=\binom{\Phi}{\vec{A}}, \quad \vec{E}=-\partial_{t} \vec{A}-\nabla \Phi, \vec{B}=\nabla \times \vec{A}
$$

- invariant under gauge transformations

$$
A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \chi \Leftrightarrow \Phi^{\prime}=\Phi+\partial_{t} \chi, \quad \overrightarrow{A^{\prime}}=\vec{A}-\nabla \chi
$$

- Electrons and positrons: Dirac particles \Rightarrow current $j^{\mu}=-e \bar{\psi} \gamma^{\mu} \psi$

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(\mathrm{i} \partial_{\mu}+e A_{\mu}\right) \gamma^{\mu} \psi
$$

Gauge invariance

- Lagrangian invariant under local transformations

$$
\psi^{\prime}(x)=\exp [-\mathrm{i} e \chi(x)] \psi(x), \quad \bar{\psi}^{\prime}(x)=\exp [+\mathrm{i} e \chi(x)] \bar{\psi}(x), \quad A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \chi(x)
$$

- Vector field makes global phase-invariance of ψ local!
- Yang and Mills 1956 Physics invariant under local changes conventions (gauges) for "charge spaces"
- For each local gauge invariance \Rightarrow one vector field $=$ "gauge field"
- Veltmann and 't Hooft 1971 (Nobelpreis 1999): Gauge theories renormalizable, i.e., have unitary S-matrix and a finite number of coupling-constants
- Now: Standardmodel of elementary particle physics is a gauge theory of the gauge group $S U(3)_{\text {strong }} \times S U(2)_{\text {weak }} \times U(1)_{\text {electro }}$

Geometry of gauge invariance

- Physicist at $x+\delta x_{1}$ defines "iso-spin" different from physicist at x
- Infinitesimal gauge transformation dependent on x necessary to compare wave functions at different space-time points

$$
\psi_{1}\left(x+\delta x_{1}\right)=\psi(x)+\delta x_{1}^{\mu}\left[\partial_{\mu} \psi(x)+\mathrm{i} A_{\mu}^{a}(x) T^{a}\right] \psi(x):=\psi(x)+\delta x_{1}^{\mu} \mathscr{D}_{\mu} \psi(x)
$$

- Definition of wave function depends on path of the "transport" from one space-time point to another:

$$
\psi_{12}(x)-\psi_{21}(x)=\mathrm{i} g \delta x_{1}^{\mu} \delta x_{2}^{\nu}\left[\partial_{\nu} A_{\mu}^{c}-\partial_{\mu} A_{\nu}^{c}-g f^{c b a} A_{\nu}^{a} A_{\mu}^{c}\right] T^{c} \psi(x):=\mathrm{i} g \delta x_{1}^{\mu} \delta x_{2}^{\nu} \mathcal{F}^{\mu \nu}(x) \psi(x)
$$

- $\left[T^{b}, T^{c}\right]_{-}=\mathrm{i} f^{c b a} T^{c}$
- For non-commutative groups: $\mathscr{F}{ }^{\mu \nu}$ depends on coupling g !

A Brief History of weak interactions

1927	Ellis and Wooster	${ }_{83}^{210} \mathrm{Bi} \xrightarrow{\beta}{ }_{84}^{210} \mathrm{Po:} \mathrm{Violation} \mathrm{of} \mathrm{energy} \mathrm{con-}$ servation?
1930	Wolfgang Pauli	Postulate of existence of Neutrinos (what we call $\bar{\nu}_{e}$ nowadays)
1933	Enrico Fermi	Four-fermion coupling theory for weak interactions
1953	Reines et al.	First direct experimental proof for exis- tence of neutrinos
1956	Yang, Lee	Solution of the " $\vartheta-\tau$ "-puzzle: " ϑ " and " τ " are one and the same particle, namely what we call $K+$ nowadays; Weak interaction violates parity conservation
1957	Wu et al.	Direct experimental proof of parity non- conservation with polarized 60 Co
1957	Salam, Feynman	
et al.	Maximal violation of parity conservation, $V-A-$ structure	
1962	Ledermann et al	Two different sorts of neutrinos, discov- ery of ν_{μ}
1963	Cabibbo	Explanation for strangeness changing weak decays, "saving" universality of weak coupling constant \rightarrow quark mixing
1973	Hasert et al	Discovery of neutral currents in reactions like $\bar{\nu}_{\mu}+e^{-} \rightarrow \bar{\nu}_{\mu}+e^{-}$, Neutral currents never change quark flavour

Fermi's theory of weak interactions

- Idea: Weak interaction involves always 4 fermions
- Analogy: Successful QED \Rightarrow Photon couples to current, is created and absorbed in reactions
- Instead of elementary photon \Rightarrow direct coupling of fermion currents

$$
\mathscr{L}_{\mathrm{int}}=-G\left(\bar{p} \gamma^{\mu} n\right)\left(\bar{e} \gamma_{\mu} \nu\right)
$$

- Successful description of β-decay data, but not complete (Gamow-Teller transitions) \Rightarrow More Fermion currents needed, if one likes to stay with four-fermion couplings
- Bilinear forms of fermions: Systematics under parity transformations: scalar, pseudoscalar, vector, axial vector, tensor
- " τ^{+}" $\rightarrow \pi^{+} \pi^{+} \pi^{-}$, " $\vartheta^{+"} \rightarrow \pi^{+} \pi^{0}$; life time and mass identical, but cannot be identical if parity is conserved
- Lee and Yang: Parity conservation is violated by weak interactions

The Wu experiment: Proof of P-violation

$$
\mathrm{I}=5^{+}
$$

- Anti-neutrino: only right-handed
- helicity $=\overrightarrow{s p} /(|\vec{s}||\vec{p}|)=1$
- angular momentum conservation:
$s_{z}^{(e)}=s_{z}^{(\bar{\nu})}$
- momentum conservation $\Rightarrow \vec{p}_{e}=-\vec{p}_{\bar{\nu}}$
- $\hat{p}_{e}=-\hat{s}_{\mathrm{Co}}$

The electro-weak standard model

- Extension of Fermi-theory: Only left-handed particles (right-handed anti-particles) interact weakly:

$$
\mathscr{L}=-\frac{G}{2}\left[\bar{\nu} \gamma^{\mu}\left(1-\gamma_{5}\right) e\right]\left[\bar{n} \gamma_{\mu}\left(1-\gamma_{5}\right) p\right]
$$

- Big theoretical flaws: non-renormalizable and non-unitary S-matrix
- Idea: Massive gauge bosons give at low energies four-fermion interactions like in Fermimodel \Rightarrow masses for vector bosons $\approx 80-90 \mathrm{GeV}$
- Two charged heavy vector bosons: $W^{ \pm}$ One neutral heavy vector boson W^{0}
- but: Massterms for vector-mesons destroy gauge invariance
- Neutral current coupling depends on electric charge
- Gauge theory: $S U(2)$ gauge group: weak isospin (left-handed particles only!)
- Explanation: Neutral W^{0} mixes with another gauge field B which couples to "weak hyper charge" \Rightarrow Mass eigenstates are the massive Z^{0} and the photon A
- Correct gauge group: $S U_{W}(2) \times U_{Y}(1)$: four gauge bosons spontaneously broken to $U_{\mathrm{em}}(1)$
- Three massive vector bosons (charged W - and neutral Z-boson), one massless (photon)

The Higgs-mechanism and masses

- Remaining problems: Howto preserve gauge invariance and make W-bosons massive?
- Solution: Higgs (1961), Glashow, Salam, and Weinberg (≈ 1967)

Spontaneous breakdown of gauge-symmetry

- Potential symmetric under rotations in $\phi_{1}-\phi_{2}{ }^{-}$ plane
- Stable ground state not symmetric \Rightarrow degeneration of ground state
- $\left.\phi=\exp [\mathrm{i} \vec{\chi}(x) \vec{T}] \phi_{0}(x)\right)$
- Gauge-transformations local \Rightarrow Can gauge the "polar" degrees of freedom away $\chi(x)=0$
- Three $S U_{W}(2)$-bosons become massive \boldsymbol{V}
- Photon stays massless
- 1979 Nobel prize for Glashow, Salam, and Weinberg

The discovery of the W - and Z-bosons

- 1983: Discovery of the W - and Z-bosons by C. Rubbia and S. van der Meer (Nobel prize 1984)
- Need energy to produce W and $Z: m \approx 80--90 \mathrm{GeV}=\sqrt{s_{\text {min }}}$
- In 1983: Not available for e^{+}and e^{-}; another reason $W^{ \pm}$can only be produced pairwise \Rightarrow even more energy necessary
- $p-\bar{p}$ collisions in following reactions

$$
u+\bar{u} \rightarrow Z^{0}, d+\bar{d} \rightarrow Z^{0}, d+\bar{u} \rightarrow W^{-}, u+\bar{d} \rightarrow W^{+}
$$

- (anti-) protons are bound states of quarks, each quark carries only fraction of full momentum
- From deep inelastic lepton-proton scattering: $\left\langle x_{v}\right\rangle \approx 0.12,\left\langle x_{s}\right\rangle \approx 0.04$ Quark fraction of momentum, half is carried by virtual gluons!

Experimental setup

- Important invention bei van der Meer: Stochastic cooling

- Liouville's theorem: flow in phase space incompressible
- but: point-like objects with free space in between
- local density in phase space conserved but macroscopic density enhanced!

Detector

- Processes to be observed: $p+\bar{p} \rightarrow W^{ \pm}+X$ and $W^{ \pm} \rightarrow e^{ \pm}+\nu_{e}$

- UA(1)-detector
- No chance to detect neutrino: measure missing momentum to track neutrinos
- Measure energy of charged particles with calorimeters

Discovery of Z^{0}

"Lego-diagram": polar angle θ and azimuthal angle ϕ for the decay $Z^{0} \rightarrow$ $e^{+}+e^{-}$. The height is the energy of the particles which add to arround 90 GeV which is the Z^{0}-mass: $m_{Z}=(91.1992 \pm 0.0026) \mathrm{GeV}$

Discovery of $W^{ \pm}$

- From $\frac{\mathrm{d} \sigma}{\mathrm{d} p_{t}}=\frac{\mathrm{d} \sigma}{\mathrm{d}(\cos \theta)} \frac{2 p_{t}}{m_{W} c} \frac{1}{\sqrt{m_{W}^{2} c^{2} / 4-p_{t}^{2}}}$
- Jacobi-maximum at $m_{T} c^{2}=m_{W} c^{2}=(80.419 \pm 0.056) \mathrm{GeV}$

Universality and "electro-weak mixing"

- Branching ratios from universality of charged current:
$W^{-} \rightarrow\left(l^{-}, \bar{\nu}_{l}\right),\left(\bar{u}, d^{\prime}\right),\left(\bar{c}, s^{\prime}\right)$
$\Rightarrow: 1 / 9$ of decays for each lepton, $6 / 9$ in $(\bar{q} q)$
- Prediction for neutral current from $Z^{0} \gamma$-mixing:
$g_{L}(f)=I_{3 L}^{\text {weak }}-Q \sin ^{2} \theta_{W}, g_{L}(f)=I_{3 R}^{\text {weak }}-Q \sin ^{2} \theta_{W}$
Weak mixing angle: $\sin ^{2} \theta_{W}=0.23117(16)$

Decay mode	Fraction (in \%)
$W^{-} \rightarrow\left(e^{-}, \bar{\nu}_{e}\right)$	10.66 ± 0.14
$W^{-} \rightarrow\left(\mu^{-}, \bar{\nu}_{\mu}\right)$	10.49 ± 0.20
$W^{-} \rightarrow\left(\tau^{-}, \bar{\nu}_{\tau}\right)$	10.4 ± 0.4
$W^{-} \rightarrow$ hadrons	68.5 ± 0.6

Decay mode	Ex. Fraction (in \%)	Th. Fraction (in \%)
$Z^{0} \rightarrow\left(e^{+}, e^{-}\right)$	3.367 ± 0.005	3.445 ± 0.05
$Z^{0} \rightarrow\left(\mu^{+}, \mu^{-}\right)$	3.367 ± 0.008	3.445 ± 0.05
$Z^{0} \rightarrow\left(\tau^{+}, \tau^{-}\right)$	3.371 ± 0.009	3.445 ± 0.05
$Z^{0} \rightarrow(\nu, \bar{\nu})^{*}$	20.02 ± 0.06	20.572 ± 0.2
$Z^{0} \rightarrow$ hadrons	69.89 ± 0.07	69.092 ± 0.01

Total Z^{0}-width and number of families

- Cross section for $e^{+} e^{-} \rightarrow$ hadrons around the Z^{0} resonance
- lines: Prediction according to standard model with N_{ν} families of massless neutrinos
- Experiment: OPAL@CERN

The non-abelian gauge structure

- Nowadays at LEP@CERN: $e^{+} e^{-} \rightarrow W^{+} W^{-}$available

- From S. Bethge, Standard Model Physics at LEP, hep-ex0001023

Standard model and the Universe

- From S. Bethge, Standard Model Physics at LEP, hep-ex0001023

Conclusions and Outlook

- Great success: All observations described by standard model
- All particles observed except the Higgs \rightarrow Tevatron@Fermilab, or LHC?
- but: 21 parameters for minimal model, with neutrino-oscillations (observed!) even more
- Why symmetry breaking as observed?
- CP-non-conservation understood?
- Enough to explain particle vs. anti-particle ratio in universe?
- How to include gravity?

