Triumph of the Symmetry

The (electro–weak) standard model and the discovery of the W^{\pm} – and Z–Bosons

Hendrik van Hees

Content

- Relativistic quantum theory and gauge symmetry
- Phenomenology of weak interactions
- The (unified) theory of electromagnetic and weak interactions
- The discovery of W^{\pm} and Z
- Status quo of experimental standard–model tests

Relativistic quantum theory

- Problems in "first quantization":
- No single particle wave function for free particles with
 - energy bounded from below: $E = \pm \sqrt{\vec{p}^2 + m^2}$
 - and "conserved current" with positive definite "charge"
 ⇒ No probability interpretation for single particle wave functions
- Reason: Uncertainty relation $\Delta x \Delta p \ge 1/2$ In principle particle can be sharply localized (small Δx) but then $\Delta p > m$
- Particles can be produced and annihilated \Rightarrow need many particle theory!
- The way out: "second quantization" = "quantum field theory"
- Reinterpret "negative energy solutions" of relativ. wave equations as anti–particles
- micro-causality

$$[\hat{O}_1(t_1, \vec{x}_1), \hat{O}_2(t_2, \vec{x}_2)]_- = 0$$
 for $|t_1 - t_2| < |\vec{x}_1 - \vec{x}_2|$

Measurements of observables cannot influence each other if this would need faster than light travel of signals!

- existence of a lowest energy state (vacuum) Hamiltonian bounded from below
- Pauli 1940 Spin-statistics theorem: Particles with integer (half integer) spin must be bosons (fermions)

• Starting point: Hamilton's principle

$$S = \int \mathrm{d}^4 x \mathscr{L}(\phi, \partial_\mu \phi)$$

- Lagrangian \mathscr{L} : Polynomial of fields $\phi(x)$ and its four-dim. gradient $\partial_{\mu}\phi(x)$
- Lorentz invariance $\Leftrightarrow \mathscr{L}$ scalar field
- Locality $\Leftrightarrow \mathscr{L}$ depends only on one space-time point x
- Classical Equations of motion

$$\delta S = 0 \Rightarrow \frac{\partial \mathscr{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathscr{L}}{\partial (\partial_{\mu} \phi)}$$

• Hamilton formalism: Canonical field momenta

$$\Pi = \frac{\partial \mathscr{L}}{\partial (\partial_t \phi)}$$

- Quantization: Classical Fields $\phi \rightarrow$ Field operators $\hat{\phi}$
- Equal time commutators (bosons) or anti–comutators (fermions):

$$\begin{cases} \left[\hat{\phi}(t, \vec{x}), \hat{\Pi}(t, \vec{y}) \right]_{-} = \mathrm{i}\delta^{(3)}(\vec{x} - \vec{y}) & \text{for bosons} \\ \left[\hat{\phi}(t, \vec{x}), \hat{\Pi}(t, \vec{y}) \right]_{+} = \mathrm{i}\delta^{(3)}(\vec{x} - \vec{y}) & \text{for fermions} \end{cases}$$

- Example: Free scalar field: $\mathscr{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi m^2\phi^*\phi$
- Equations of motion: $(\partial_t^2 \Delta)\phi^{(*)} = 0$ (Klein–Gordon equation)
- Quantization: Field operators in momentum basis:

$$\hat{\phi}(x) = \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} \frac{1}{2\omega} [\hat{a}(\vec{p}) \exp(-\mathrm{i}\omega t + \mathrm{i}\vec{p}\vec{x}) + \hat{b}^{\dagger}(\vec{p}) \exp(\mathrm{i}\omega t - \mathrm{i}\vec{p}\vec{x})]$$

• $\hat{a}(\vec{p})$ annihilates particle with momentum \vec{p} $\hat{b}^{\dagger}(\vec{p})$ creates anti–particle with momentum \vec{p}

Symmetries

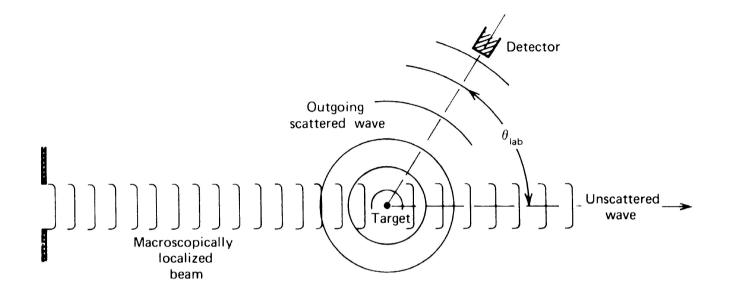
- Noether's theorem: If the action is invariant under an infinitesimal transformation: $\phi'(x') = \phi(x) + \delta\phi(x), \ x' = x + \delta x$ then there exists a current j^{μ} which is conserved: $\partial_t j^0 + \vec{\nabla} \vec{j} = \partial_{\mu} j^{\mu} = 0$
- Space–time symmetries:

Symmetry	Conserved quantity
Translations in time	Energy
Translations in space	Momentum
Rotations	Angular Momentum

- Quantization: Need to chose ordering of field operators
- Physical input: Vacuum should be state of 0 energy and momentum

$$\begin{pmatrix} E \\ \vec{p} \end{pmatrix} = \begin{pmatrix} \int d^3 \vec{p} \,\omega(\vec{p}) \begin{bmatrix} \hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p}) + \hat{b}^{\dagger}(\vec{p}) \hat{b}(\vec{p}) \\ density \text{ of particles } density \text{ of anti-particles} \end{bmatrix} \\ \int d^3 \vec{p} \, \vec{p} \begin{bmatrix} \hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p}) + \hat{b}^{\dagger}(\vec{p}) \hat{b}(\vec{p}) \\ density \text{ of particles } density \text{ of anti-particles} \end{bmatrix} \end{pmatrix}$$

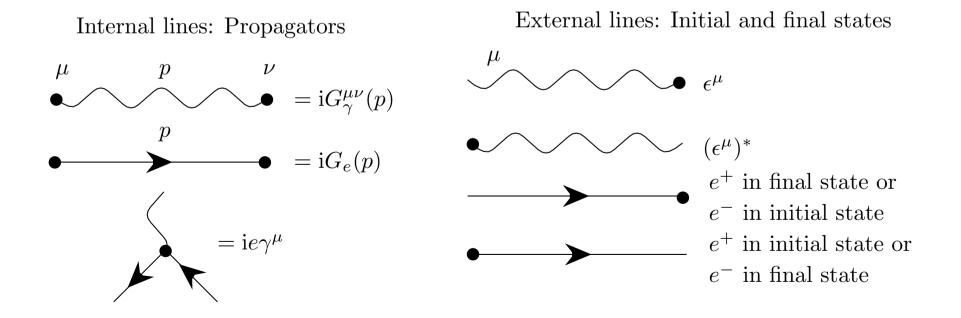
Interacting particles: Scattering

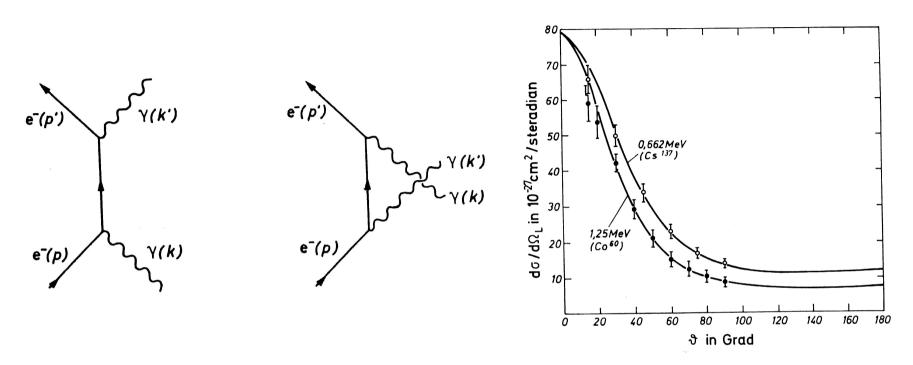


- Scattering cross section: $\frac{d\sigma}{d\Omega} = \frac{\text{number of scattered particles per solid angle per time}}{\text{incomming particle flux}}$
- To calculate: Transition amplitude $T_{fi} = \left\langle f \left| \hat{T} \right| i \right\rangle$
- S(cattering)-Matrix $S_{fi} = \delta_{fi} + i(2\pi)^4 \delta(P_f P_i) \left\langle f \left| \hat{T} \right| i \right\rangle$
- $S_{fi} = \langle f, t \to \infty | i, t \to \infty \rangle$ $|i, t \to \infty \rangle = \hat{S} | i, t \to -\infty \rangle$
- S_{fi} can be calculated only in perturbation theory
- \hat{S} is unitary \Rightarrow Overall normalization of probability time-independent!

Feynman-diagrams

- Logics of Model Building:
 - (1) Find out symmetries \Leftrightarrow conservation of quantities in scattering experiments
 - (2) Write down Lagrangian obeying the symmetries
 - (3) Calculate cross sections, life times and check with experiment
- Invention by R.P. Feynman (1948) diagram rules
- From given ${\mathscr L}$ one derives diagram rules for perturbation series of scattering processes
- Example: QED





Compton-scattering: Lowest order perturbation theory (Klein-Nishina cross section) Experimental values: Hofstadter, R. and McIntyre, J.A., Phys. Rev. **76**, 1269 (1949); Evans, R.D., Handbuch der Physik **34**, Ed. S. Flügge, Springer, Berlin (1958) Curves: Klein-Nishina cross section

QED-Lagrangian

- Four-vector potential A_{μ} : massless vector field
- couples to conserved electromagnetic current

$$\mathscr{L} = -\frac{1}{4} \underbrace{(\underbrace{\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}}_{F_{\mu\nu}})}_{F_{\mu\nu}} (\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) - j_{\mu}A^{\mu}$$

• Equations of motion \Rightarrow Maxwell equations

$$(j^{\mu}) = \begin{pmatrix} \rho \\ \vec{j} \end{pmatrix}, \quad (A^{\mu}) = \begin{pmatrix} \Phi \\ \vec{A} \end{pmatrix}, \quad \vec{E} = -\partial_t \vec{A} - \nabla \Phi, \ \vec{B} = \nabla \times \vec{A}$$

• invariant under gauge transformations

$$A'_{\mu} = A_{\mu} + \partial_{\mu}\chi \Leftrightarrow \Phi' = \Phi + \partial_{t}\chi, \quad \vec{A'} = \vec{A} - \nabla\chi$$

• Electrons and positrons: Dirac particles \Rightarrow current $j^{\mu} = -e\bar{\psi}\gamma^{\mu}\psi$

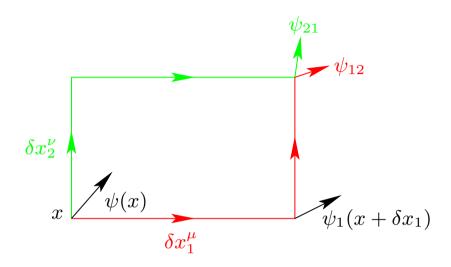
$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}(\mathrm{i}\partial_{\mu} + eA_{\mu})\gamma^{\mu}\psi$$

• Lagrangian invariant under local transformations

$$\psi'(x) = \exp[-\mathrm{i}e\chi(\mathbf{x})]\psi(x), \quad \bar{\psi}'(x) = \exp[+\mathrm{i}e\chi(\mathbf{x})]\bar{\psi}(x), \quad A'_{\mu} = A_{\mu} + \partial_{\mu}\chi(\mathbf{x})$$

- Vector field makes global phase–invariance of ψ local!
- Yang and Mills 1956 Physics invariant under local changes conventions (gauges) for "charge spaces"
- For each local gauge invariance \Rightarrow one vector field = "gauge field"
- Veltmann and 't Hooft 1971 (Nobel preis 1999): Gauge theories renormalizable, i.e., have unitary S-matrix and a finite number of coupling–constants
- Now: Standard model of elementary particle physics is a gauge theory of the gauge group $SU(3)_{\text{strong}} \times SU(2)_{\text{weak}} \times U(1)_{\text{electro}}$

Geometry of gauge invariance



- Physicist at $x + \delta x_1$ defines "iso–spin" different from physicist at x
- Infinitesimal gauge transformation dependent on x necessary to compare wave functions at different space-time points

 $\psi_1(x+\delta x_1) = \psi(x) + \delta x_1^{\mu} [\partial_{\mu} \psi(x) + iA_{\mu}^a(x)T^a] \psi(x) := \psi(x) + \delta x_1^{\mu} \mathscr{D}_{\mu} \psi(x)$

• Definition of wave function depends on path of the "transport" from one space-time point to another:

$$\psi_{12}(x) - \psi_{21}(x) = ig\delta x_1^{\mu}\delta x_2^{\nu} [\partial_{\nu}A_{\mu}^c - \partial_{\mu}A_{\nu}^c - gf^{cba}A_{\nu}^a A_{\mu}^c] T^c \psi(x) := ig\delta x_1^{\mu}\delta x_2^{\nu}\mathcal{F}^{\mu\nu}(x)\psi(x)$$

- $\left[T^b, T^c\right]_- = \mathrm{i} f^{cba} T^c$
- For non–commutative groups: $\mathscr{F}^{\mu\nu}$ depends on coupling g!

#11

A Brief History of weak interactions $_{_{\#12}}$

1927	Ellis and Wooster	${}^{210}_{83}\text{Bi} \xrightarrow{\beta} {}^{210}_{84}\text{Po:}$ Violation of energy conservation?	
1930	Wolfgang Pauli	Postulate of existence of Neutrinos (what we call $\bar{\nu}_e$ nowadays)	
1933	Enrico Fermi	Four–fermion coupling theory for weak interactions	
1953	Reines et al.	First direct experimental proof for exis- tence of neutrinos	
1956	Yang, Lee	Solution of the " $\vartheta - \tau$ "-puzzle: " ϑ " and " τ " are one and the same particle, namely what we call K^+ nowadays; Weak interaction violates parity conservation	
1957	Wu et al.	Direct experimental proof of parity non- conservation with polarized ⁶⁰ Co	
1957	Salam, Feynman et al.	Maximal violation of parity conservation, V - A-structure	
1962	Ledermann et al	Two different sorts of neutrinos, discovery of ν_{μ}	
1963	Cabibbo	Explanation for strangeness changing weak decays, "saving" universality of weak coupling constant \rightarrow quark mixing	
1973	Hasert et al	Discovery of neutral currents in reactions like $\bar{\nu}_{\mu} + e^- \rightarrow \bar{\nu}_{\mu} + e^-$, Neutral currents never change quark flavour	

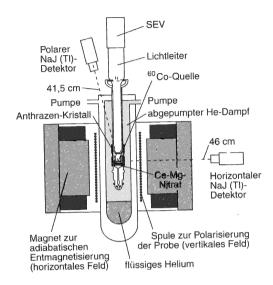
Fermi's theory of weak interactions

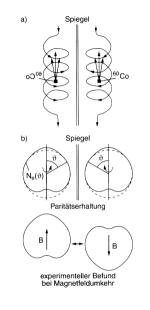
- Idea: Weak interaction involves always 4 fermions
- Analogy: Successful QED \Rightarrow Photon couples to current, is created and absorbed in reactions
- Instead of elementary photon \Rightarrow direct coupling of fermion currents

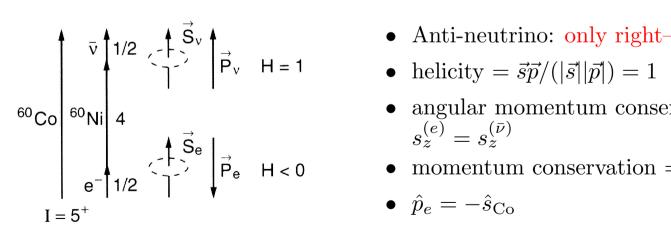
$$\mathscr{L}_{\rm int} = -G(\bar{p}\gamma^{\mu}n)(\bar{e}\gamma_{\mu}\nu)$$

- Successful description of β -decay data, but not complete (Gamow–Teller transitions) \Rightarrow More Fermion currents needed, if one likes to stay with four–fermion couplings
- Bilinear forms of fermions: Systematics under parity transformations: scalar, pseudoscalar, vector, axial vector, tensor
- " τ^+ " $\to \pi^+\pi^+\pi^-$, " ϑ^+ " $\to \pi^+\pi^0$; life time and mass identical, but cannot be identical if parity is conserved
- Lee and Yang: Parity conservation is violated by weak interactions

The Wu experiment: Proof of P-violation







- Anti-neutrino: only right-handed
- angular momentum conservation:
- momentum conservation $\Rightarrow \vec{p_e} = -\vec{p_{\bar{\nu}}}$

•
$$\hat{p}_e = -\hat{s}_{\rm Co}$$

The electro–weak standard model

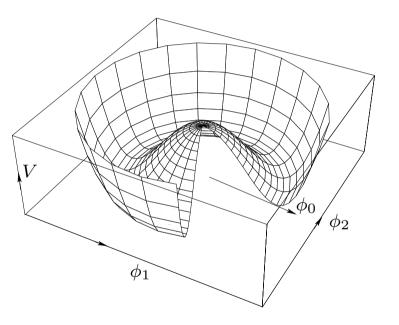
• Extension of Fermi–theory: Only left–handed particles (right–handed anti–particles) interact weakly:

$$\mathscr{L} = -\frac{G}{2} [\bar{\nu}\gamma^{\mu}(1-\gamma_5)e] [\bar{n}\gamma_{\mu}(1-\gamma_5)p]$$

- Big theoretical flaws: non–renormalizable and non–unitary S–matrix
- Idea: Massive gauge bosons give at low energies four-fermion interactions like in Fermimodel \Rightarrow masses for vector bosons $\approx 80 - 90 \,\text{GeV}$
- Two charged heavy vector bosons: W^{\pm} One neutral heavy vector boson W^0
- but: Massterms for vector-mesons destroy gauge invariance
- Neutral current coupling depends on electric charge
- Gauge theory: SU(2) gauge group: weak isospin (left-handed particles only!)
- Explanation: Neutral W^0 mixes with another gauge field B which couples to "weak hyper charge" \Rightarrow Mass eigenstates are the massive Z^0 and the photon A
- Correct gauge group: $SU_W(2) \times U_Y(1)$: four gauge bosons spontaneously broken to $U_{em}(1)$
- Three massive vector bosons (charged W- and neutral Z-boson), one massless (photon)

The Higgs-mechanism and masses

- Remaining problems: How preserve gauge invariance and make W-bosons massive?
- Solution: Higgs (1961), Glashow, Salam, and Weinberg (≈ 1967)
 Spontaneous breakdown of gauge–symmetry



- Potential symmetric under rotations in $\phi_1 \phi_2 \phi_2$ plane
- Stable ground state not symmetric ⇒ degeneration of ground state

•
$$\phi = \exp[i\vec{\chi}(x)\vec{T}]\phi_0(x))$$

- Gauge-transformations local \Rightarrow Can gauge the "polar" degrees of freedom away $\chi(x) = 0$
- Three $SU_W(2)$ -bosons become massive \checkmark
- Photon stays massless \checkmark
- 1979 Nobel prize for Glashow, Salam, and Weinberg

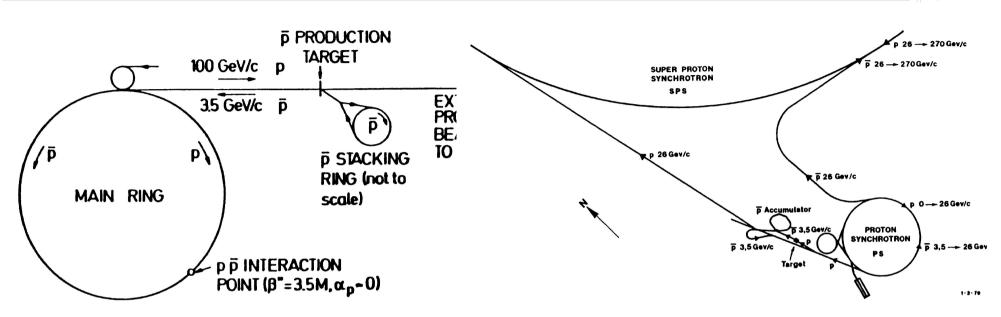
The discovery of the W- and Z-bosons

- 1983: Discovery of the W- and Z-bosons by C. Rubbia and S. van der Meer (Nobel prize 1984)
- Need energy to produce W and Z: $m \approx 80 -90 \text{GeV} = \sqrt{s_{\min}}$
- In 1983: Not available for e⁺ and e⁻; another reason W[±] can only be produced pairwise ⇒ even more energy necessary
- $p-\bar{p}$ collisions in following reactions

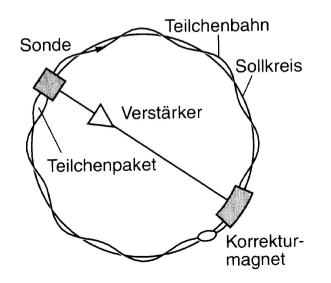
$$u + \bar{u} \to Z^0, \ d + \bar{d} \to Z^0, \ d + \bar{u} \to W^-, \ u + \bar{d} \to W^+$$

- (anti–) protons are bound states of quarks, each quark carries only fraction of full momentum
- From deep inelastic lepton-proton scattering: $\langle x_v \rangle \approx 0.12$, $\langle x_s \rangle \approx 0.04$ Quark fraction of momentum, half is carried by virtual gluons!

Experimental setup



• Important invention bei van der Meer: Stochastic cooling

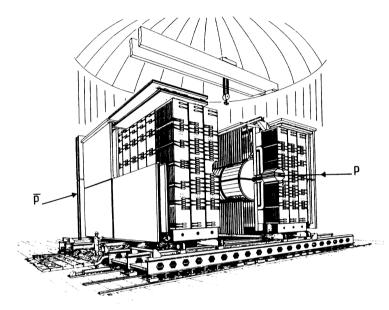


• Liouville's theorem: flow in phase space incompressible

 $= \pm 18$

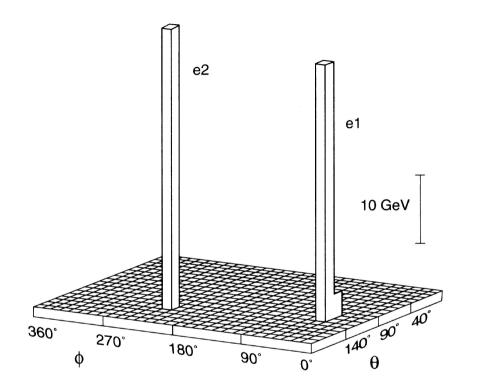
- but: point–like objects with free space in between
- local density in phase space conserved but macroscopic density enhanced!

• Processes to be observed: $p + \bar{p} \to W^{\pm} + X$ and $W^{\pm} \to e^{\pm} + \nu_e$

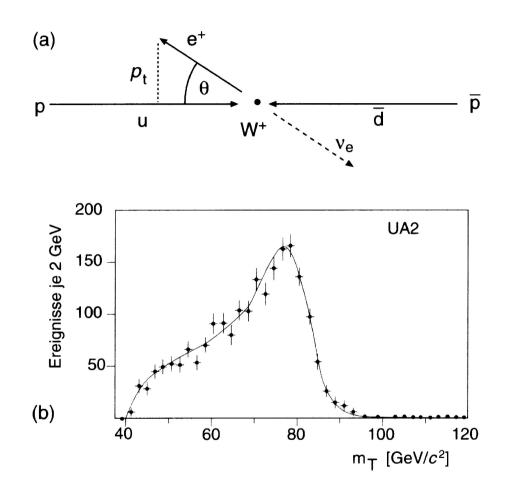


- UA(1)-detector
- No chance to detect neutrino: measure missing momentum to track neutrinos
- Measure energy of charged particles with calorimeters

Discovery of Z^0



"Lego-diagram": polar angle θ and azimuthal angle ϕ for the decay $Z^0 \rightarrow e^+ + e^-$. The height is the energy of the particles which add to arround 90 GeV which is the Z^0 -mass: $m_Z = (91.1992 \pm 0.0026) \text{GeV}$



• From
$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_t} = \frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} \frac{2p_t}{m_W c} \frac{1}{\sqrt{m_W^2 c^2/4 - p_t^2}}$$

• Jacobi–maximum at $m_T c^2 = m_W c^2 = (80.419 \pm 0.056) \text{ GeV}$

Universality and "electro-weak mixing"

- Branching ratios from universality of charged current: *W⁻* → (*l⁻*, *v
 _l*), (*ū*, *d'*), (*c̄*, *s'*)

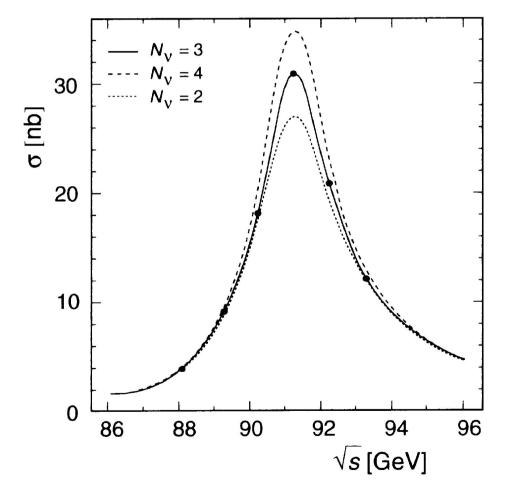
 ⇒: 1/9 of decays for each lepton, 6/9 in (*q̄q*)
- Prediction for neutral current from $Z^0\gamma$ -mixing: $g_L(f) = I_{3L}^{\text{weak}} - Q \sin^2 \theta_W, \ g_L(f) = I_{3R}^{\text{weak}} - Q \sin^2 \theta_W$ Weak mixing angle: $\sin^2 \theta_W = 0.23117(16)$

Decay mode	Fraction (in %)
$W^- \to (e^-, \bar{\nu}_e)$	10.66 ± 0.14
$W^- ightarrow (\mu^-, \bar{\nu}_\mu)$	10.49 ± 0.20
$W^- \to (\tau^-, \bar{\nu}_\tau)$	10.4 ± 0.4
$W^- \to \text{hadrons}$	68.5 ± 0.6

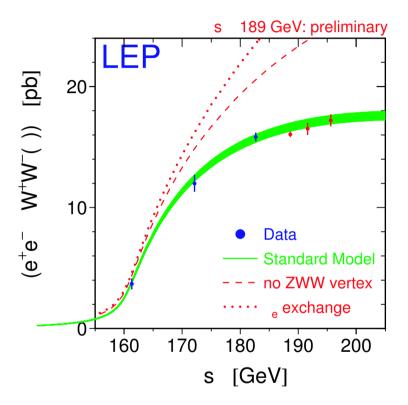
Decay mode	Ex. Fraction (in %)	Th. Fraction (in %)
$Z^0 \to (e^+, e^-)$	3.367 ± 0.005	3.445 ± 0.05
$Z^0 \to (\mu^+, \mu^-)$	3.367 ± 0.008	3.445 ± 0.05
$Z^0 \to (\tau^+, \tau^-)$	3.371 ± 0.009	3.445 ± 0.05
$Z^0 \to (\nu, \bar{\nu})^*$	20.02 ± 0.06	20.572 ± 0.2
$Z^0 \to \text{hadrons}$	69.89 ± 0.07	69.092 ± 0.01

Total Z^0 -width and number of families

- Cross section for $e^+e^- \rightarrow$ hadrons around the Z^0 resonance
- lines: Prediction according to standard model with N_{ν} families of massless neutrinos
- Experiment: OPAL@CERN



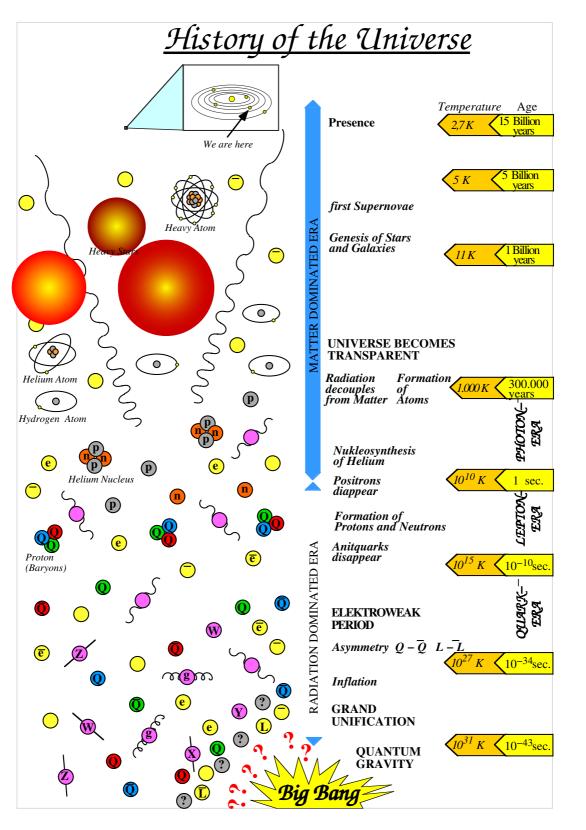
• Now adays at LEP@CERN: $e^+e^- \to W^+W^-$ available



• From S. Bethge, Standard Model Physics at LEP, hep-ex0001023

Standard model and the Universe

#25



• From S. Bethge, Standard Model Physics at LEP, hep-ex0001023

Conclusions and Outlook

- Great success: All observations described by standard model
- All particles observed except the Higgs \rightarrow Tevatron@Fermilab, or LHC?
- but: 21 parameters for minimal model, with neutrino–oscillations (observed!) even more
- Why symmetry breaking as observed?
- CP–non–conservation understood?
- Enough to explain particle vs. anti-particle ratio in universe?
- How to include gravity?