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Within finite temperature field theory, we show that truncated non-perturbative
self-consistent Dyson resummation schemes can be renormalized with local vac-
uum counterterms. For this the theory has to be renormalizable in the usual
sense and the self-consistent scheme must follow Baym’s Φ-derivable concept. Our
BPHZ-renormalization scheme leads to renormalized self-consistent equations of
motion. At the same time the corresponding 2PI-generating functional and the
thermodynamic potential can be renormalized with the same counterterms used
for the equations of motion. This guarantees the standard Φ-derivable properties
like thermodynamic consistency and exact conservation laws also for the renor-
malized approximation schemes. We give also a short overview over symmetry
properties of the various functions defined within the 2PI scheme for the case that
the underlying classical field theory has a global linearly realized symmetry.

1. Introduction

Describing hot and dense systems of strongly interacting particles, one

is led to the use of dressed propagators within non-perturbative Dyson-

resummation schemes. Especially this becomes unavoidable if damping

width effects are significant for the physical situation in question.

∗based on a talk presented at the conference “progress in nonequilibrium greens func-
tions, dresden, germany, 19.-22. august 2002”
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Based on functional formulations by Luttinger and Ward1 and Lee and

Yang2 Baym and Kadanoff3 studied a special class of self-consistent Dyson

approximations, which later was reformulated in terms of a variational prin-

ciple, defining the so-called Φ-derivable approximations4. The variational

principle, applied to approximations of the Φ-functional, leads to closed

coupled equations of motion for the mean field and the propagator, which

guarantee the exact conservation of the expectation values of conserved

currents and thermodynamical consistency, since at the same time the ap-

proximated Φ-functional is an approximation of the thermodynamic poten-

tial.

Later this concept was generalized to the relativistic case and rederived

within the path integral formalism by Cornwall, Jackiw, and Tomboulis5. It

is no formal problem to extend this formulation to the general Schwinger-

Keldysh real-time contour6,7 and thus to generalize the concept to non-

equilibrium problems.

Here we discuss the problem, how to renormalize the equations of mo-

tion, derived from Φ-derivable approximations for relativistic quantum field

theories. Generalizing the work of Bielajew and Serot8,9 we show that any

Φ-derivable approximation of a perturbatively renormalizable theory is also

renormalizable in the usual sense. Further we prove that at finite tempera-

ture only temperature-independent counterterms are necessary to give finite

equations of motion10. The counterterms can be interpreted as renormal-

ization of the wave function and the vacuum parameters of the quantum

field theory, like the particle masses and the coupling constants.

Further we demonstrate the possibility to treat numerically Φ-derivable

approximations with generic two-point contributions to the self-energy be-

yond pure gap-equation approximations with “tadpole self-energies”) giving

rise to a finite in-medium damping width of the involved particles11.

Another important question is whether the approximations respect un-

derlying symmetries of the classical action functional. Contrary to pertur-

bation theory in general the solution of the Φ-derivable equations of motion

violates the Ward-Takahashi identities of symmetries. This was discussed

first by Baym and Grinstein12 on the example of the O(N)-symmetric linear

σ-model. The reason can be traced back to a violation of crossing symme-

try for approximations of the Φ-functional: The solution of the Φ-derivable

equations of motion is equivalent to a resummation of the self-energy in any

order of the expansion parameter of the Φ-functional approximation. This

involves intrinsically the resummation of higher vertex functions, which is

incomplete, because certain channels are missing, being taken into account

only by approximations of the Φ functional at higher orders.
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We show that this can partially be cured by defining a non-perturbative

approximation to the usual effective quantum action. This admits one

to define vertex-functions which fulfill the Ward-Takahashi identities of

the symmetry. These crossing symmetric vertex-functions are defined by

equations of motion which solution is equivalent to a further resumma-

tion of the channels, missing intrinsically in the Φ-derivable self-energy

resummation13.

2. The 2PI generating functional

We start with the defining path integral for the two-particle (2PI) irre-

ducible quantum action for the state of thermal equilibrium. For this case

we use the Schwinger-Keldysh closed real-time path extended by an imag-

inary part making use of the fact that the unnormalized thermal density

operator exp(−βH), with β denoting the inverse temperature of the system

and H its Hamilton operator, can be included within the path integral as a

time evolution parallel to the imaginary axis (see Fig. 1). We consider the

t fti
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Figure 1. The Schwinger-Keldysh closed time path modified for the application to ther-
mal equilibrium quantum field theory.

local relativistic renormalizable quantum field theory for one scalar field φ

with the dynamics defined by the classical action

S[φ] =

∫

C

d(1)

[

1

2
(∂µφ1)(∂

µφ1) −
m2

2
φ2

1 −
λ

4!
φ4

1

]

. (1)

Here and in the following
∫

C
d(123 . . .)f123... denotes an integral over a func-

tion f of space-time arguments x1, x2, . . .. The time variable is assumed to

be defined along the contour depicted in Fig. 1.

The generating functional is given by

Γ[ϕ, G] = S[ϕ] +
i

2
Tr(M2G−1) +

i

2

∫

C

d(12)D−1
12 (G12 − D12) + Φ[ϕ, G] (2)
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with

D−1
12 =

δ2S[ϕ]

δϕ1δϕ2
. (3)

In terms of diagrams the functional Φ consists of closed two-loop dia-

grams, which are built with lines representing exact propagators G and

point-vertices with respect to the field φ derived from the action S[ϕ + φ].

The equations of motion are determined by the stationary point of the

functional (2):

δΓ

δϕ1

!
= 0,

δΓ

δG12

!
= 0. (4)

Using (2) these equations of motion read

δS

δϕ1
= − i

2

∫

C

d(1′2′)
δD−1

1′2′

δϕ1
G1′2′ − δΦ

δϕ1
, (5)

Σ12 := D−1
12 − G−1

12 = 2i
δΦ

δG12
. (6)

From the latter equation we see that the derivative of Φ with respect to G

gives the exact self-energy of the theory at presence of a mean field ϕ, which

in turn is determined from (5) self-consistently. Since lines in diagrams

contributing to an expansion of Φ stand for exact Green’s functions G all

these lines must not contain any self-energy insertions, i.e., the self-energy

is represented as the sum of all skeleton diagrams . Since the derivative of a

diagram with respect to G means to open any line contained in it and then

adding all the so obtained diagrams, the functional Φ consists of all closed

two-particle irreducible diagrams with at least two loops.

A Φ-derivable approximation is defined as the truncation of the func-

tional Φ to a finite (e.g., coupling-constant or ~-expansion) or an explicitly

resummable infinite subset of 2PI diagrams. The mean field ϕ and Green’s

function G are then determined by the self-consistent closed equations of

motion (5-6).

3. Renormalization of φ4-theory

For the renormalization of self-consistent approximation schemes we use

the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization de-

scription. As an example we treat φ4-theory in the phase of unbroken�
2-symmetry, i.e., we set m2 > 0. Then as well at zero as at finite tem-

perature we have ϕ = 0 as the unique solution of the equations of motion.

Only the self-consistent propagator has to be determined.
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3.1. Renormalization at T = 0

At T = 0 the only difference to the perturbative treatment of the renormal-

ization problem is that we have to apply it to diagrams with lines standing

for self-consistent propagators instead for free ones. It is also clear that

we can restrict ourselves to the {−−}-part (i.e., the time ordered part) of

the real-time contour since in the vacuum case the time-ordered Green’s

function is identical to the retarded (advanced) one for positive (negative)

p0-components.

The BPHZ renormalization description rests solely on Weinberg’s

power-counting theorem which is independent of the the special form of

propagators. Thus we only have to show that the self-consistent propaga-

tors of Φ-derivable approximations belong to the class of functions with the

asymptotic behavior O[(l2)−1(ln l2)β ] for large momenta l2, where β is a

constant. Assuming that this is the case Weinberg’s theorem tells us that

a connected truncated diagram γ with E external lines has a superficial

degree of divergence δ(γ) = 4 − E. So due to the Φ-derivable equations

of motion the self-consistent self-energy shows an asymptotic behavior like

O[p2(ln p2)β′

]. So starting an iteration for the self-consistent propagator

with the perturbative propagator (and provided this iteration converges)

we can conclude that indeed the propagator is of the usual asymptotic

behavior.

The BPHZ renormalization technique aims at the construction of the

integrand of the renormalized integral without using an intermediate step

of regularization. If a diagram is divergent without proper divergent sub-

diagrams it is sufficient to subtract the Taylor expansion of the integrand

with respect to the external momenta up to the order given by the super-

ficial degree of divergence which is in our case 4 − E, with E denoting the

number of external legs.

For renormalization theory it is crucial that the same holds true for dia-

grams which contain divergences from proper subdiagrams, if the according

subdivergences are subtracted first, even if it contains overlapping diver-

gences and thus that one needs only local counterterms to the quantum

action which have the same form as that of the classical action but with

the infinities lumped into the “bare parameters” rather than the physical

ones14,15.

The described BPHZ-scheme chooses the renormalization point for di-

vergent diagrams at external momenta set to 0. It is clear that by another

finite renormalization of the same diagrams we can switch to any renor-

malization scheme appropriate for the application under consideration. In
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our case of φ4-theory we choose the on-shell renormalization scheme, which

defines the mass parameter m to denote the physical mass of the particles.

We use the following on-shell renormalization conditions:

Σ(vac)(p2 = m2) = 0, ∂p2Σ(vac)(p2 = m2) = 0, (7)

Γ(4,vac)(s, t, u = 0) =
λ

2
. (8)

Here s, t, u are the usual Mandelstam variables for two-particle scattering,

p is the external momentum of the self-energy and m2 is the (renormalized)

mass of the particles due to the renormalization conditions (7). The second

condition defines the wave-function normalization such that the residuum

of the propagator at p2 = m2 is equal to unity.

3.2. Numerical calculation

To illustrate the abstract considerations of the previous section we show how

to solve the self-consistent Φ-derivable Dyson equation for the φ4 model in

the case of unbroken
�

2-symmetry, i.e., for ϕ = 0. We take into account

the Φ-functional up to three-loop order:

Φ = +
1

2
(9)

For the self-energy we find from Eq. (6)

−iΣ = + (10)

The main numerical problem is that it is of course not possible to integrate

directly the renormalized integrands of the self-energy diagrams depicted

in Eq. (10) because of the on-shell poles of the propagator. Instead we use

its Lehmann spectral representation

G(vac)(p2) =

∫ ∞

0

d(m2)

π

Im G(vac)(m2)

m2 − p2 − iη
, (11)

where η denotes a small positive number to be taken to 0+ in the sense of

a weak limit after performing the loop integrals.

First we calculate the one-loop function

L(reg)(q2) = i = i

∫

ddl

(2π)d
G(vac)[(l + q)2]G(vac)(l2) (12)
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which appears as a subdiagram contained in the “sunset diagram” in Eq.

(10). Here and in the following we use dimensional regularization to give

the un-renormalized integrals a definite meaning. At the end of the BPHZ

subtraction procedure we can let d = 4. The loop function (12) is logarith-

mically divergent and has to be subtracted such that L(ren)(q2 = 0) = 0

due to the renormalization conditions (7).

Using the spectral representation (11) the renormalized loop function

can be expressed with help of a kernel K
(ren)
1 :

Lren(q2) =

∫ ∞

0

dm2
1

π

∫ ∞

0

dm2
2

π
K

(ren)
1 (q2, m2

1, m
2
2)

× ImG(vac)(m2
1) Im G(vac)(m2

2).
(13)

The renormalized kernel can be calculated analytically with help of stan-

dard formulae of perturbation theory (for details see11).

Due to the renormalization conditions the tadpole contribution to the

self-energy is canceled. For the remaining sunset-diagram we can use the

dispersion relation for L(ren) and G(vac) to define a kernel K2 such that the

renormalized self-energy reads

Σ(vac)(p2) =

∫ ∞

4m2

dm2
3

π

∫ ∞

0

dm2
4

π
K

(ren)
2 (p2, m2

3, m
2
4)

× Im L(ren)(m2
3) Im G(vac)(m2

4).

(14)

For the numerical calculation one has to take into account that Im G(vac)

contains the pole contribution ∝ δ(p2 − m2) which has to be treated ex-

plicitely in both formulae (13) and (14). The remaining integrals over the

m2
k are relatively smooth finite integrals which can be done with help of

a simple adaptive integration algorithm. We used an adaptive Simpson

algorithm to solve the equations (13) and (14) iteratively.

As turns out for the vacuum case the main contribution comes from

the pole terms such that even for high coupling constants the perturbative

and self-consistent result lie on top of each other (see Fig. 2). The reason

is that in our on-shell scheme the threshold for the imaginary part of the

self-energy is at 9m2.

3.3. Renormalization at T > 0

Now we show that the renormalization at T > 0 can be done with the same

temperature independent vacuum counterterms as were necessary to render

the vacuum proper vertex functions finite. Thus in complete analogy to

the well-known result of perturbative finite-temperature renormalization

theory the renormalized theory is completely defined at T = 0. There
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Figure 2. Real (left) and imaginary part (right) of the sunset self- energy. The pertur-
bative and the self-consistent result lie on top of each other due to the large threshold
at s = 9m2.

is no ambiguity for “in-medium modifications” of coupling constants from

renormalization.

We expand the finite-temperature self-energy around the self-consistent

solution of the same Φ-derivable approximation at T = 0:

Σ12 = Σ
(vac)
12 + Σ

(0)
12 + Σ

(r)
12 . (15)

Here Σ
(vac)
12 is the renormalized vacuum self-energy calculated in the previ-

ous section. The second and third terms in Eq. (15) contain the in-matter

parts of the self-energy. Thereby Σ(0) is the part of the self-energy which

arises as the linear part from a functional power expansion with respect to

the Green’s function around the vacuum Green’s function:

−iΣ
(0)
12 = −i

∫

C

d(1′2′)

(

δΣ12

δG1′2′

∣

∣

∣

∣

T=0

G
(mat)
1′2′

)

=

� �
�����	��
� (16)

The wavy line stands for the “matter part” of the Green’s function G(mat) =

G − G(vac). As we shall see below herein we have to understand only the

diagonal part of the vacuum propagator within the momentum-space matrix

formalism. The four-point kernel Γ(4) is a four-point function represented

by a particular set of self-energy subdiagrams consisting of pure vacuum

lines, defined by

−iΓ
(4)
12,1′2′ = − δΣ12

δG1′2′

∣

∣

∣

∣

T=0

= −2i
δ2Φ

δG12δG1′2′

∣

∣

∣

∣

T=0

. (17)

Its “diagonal part”, i.e., with all time arguments placed on one side of the

real-time contour, defines a vacuum renormalization part which is of super-

ficial degree of divergence 0. Thus we can conclude that the diagonal part of
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G(mat) is of momentum power −4, so that closing Γ(4) with a wavy G(mat)-

line yields another logarithmic divergence, even when the pure vacuum part

Γ(4) is renormalized. On the other hand the off-diagonal parts of G(mat)

contain θ-functions and Bose-Einstein-distribution factors which lead to

convergent temperature dependent integrals which we are not allowed to

subtract. Thus from Weinberg’s power-counting theorem we can conclude

that the divergent part of Σ(0), in the following called Σ(0,div), accounts

for all terms of momentum power 0 and consequently Σ(r) is of divergence

degree −2 and thus finite after subtracting vacuum subdivergences.

So we are left with the task to renormalize the last loop integral from

closing the Γ(4)-diagram with a G(mat)-line. For this purpose due to our

discussion above we have to split the full propagator as follows

iG12 = iG
(vac)
12 + i

∫

C

d(1′2′)G
(vac)
11′ Σ

(0,div)
1′2′ G

(vac)
2′2 + iG

(r)
12

= + �
��������� �������

+

(18)

Using Eq. (18) shows that Σ(0,div), represented by the second diagram in

(18), fulfills the equation of motion

Σ
(0,div)
12 =

∫

C

d(1′2′)Γ
(4,vac)
12,1′2′

(
∫

C

d(1′′2′′)G
(vac)
1′1′′ Σ

(0,div)
1′′2′′ G

(vac)
2′′2′ + G

(r)
1′2′

)

(19)

which is linear in G(r). Thus Eq. (19) is solved by the ansatz

−iΣ
(0,div)
12 =

∫

C

d(1′2′)Λ12,1′2′G
(r)
1′2′ =

� �
 "!�#%$�&�'�(*) , (20)

where the vacuum four-point function Λ(vac) fulfills the Bethe-Salpeter equa-

tion

Λ
(vac)
12,1′2′ = Γ

(4,vac)
12,1′2′ + i

∫

C

d(3456)Γ
(4,vac)
12,34 G

(vac)
35 G

(vac)
46 Λ56,1′2′ . (21)

Once this logarithmically divergent vacuum subdivergence is renormalized

also Σ(0,div) is finite since G(r) is falling off with momentum power −6.

For the renormalization of the four-point function we note that the

momentum-space version of (21) reads

Λ(vac)(p, q) = Γ(4,vac)(p, q) + i
∫

ddl
(2π)d Γ(4,vac)(p, l)[G(vac)(l)]2Λ(vac)(l, q)

= Γ(4,vac)(p, q) + i
∫

ddl
(2π)d Λ(vac)(p, l)[G(vac)(l)]2Γ(4,vac)(l, q)

(22)
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To renormalize this equation, a detailed BPHZ-analysis uses the fact that

due to the 2PI-feature of the Φ functional Γ
(4,vac)
12,34 is 2PI relative to any cut

which separates the space-time point pairs (12) and (34). Thus there is no

“BPHZ-box” cutting through this Bethe-Salpeter kernel. Thus we can do

the subtractions at the upper and the lower end of any subdivergence with

the renormalized BS-kernel leading to the renormalized BS-equation

Λ(ren)(p, q) = Γ(4,ren)(p, q)

+i
∫

d4l
(2π)4 [Γ(4,ren)(p, l) − Γ(4,vac)(0, l)][G(vac)(l)]2Λ(ren)

+i
∫

d4l
(2π)4 Λ(ren)(0, l)[G(vac)(l)]2[Γ(4,ren)(l, q) − Γ(4,ren)(l, 0)].

(23)

The renormalization of Γ(4,vac) itself is straight forward, since it is given

by a finite set of vacuum diagrams which can be renormalized by the same

BPHZ-scheme as the perturbative ones.

For the practical calculation of the self-energy part Σ(0) we need only

the Λ(ren)(0, q). Indeed using Eqs. (18) and (20) we find

Σ(0)(p) = Σ(0)(p) − Σ(0)(p) + Σ(0)(p)

=
∫

d4l
(2π)4 [Γ(4,ren)(p, l) − Γ(4,ren)(0, l)]G(matter)(l)

+
∫

d4l
(2π)4 Λ(ren)(0, l)G(r)(l)

(24)

An example solution for the equations and the comparison with the per-

turbative approximation is shown in Fig. 3.

While at T = 0 both, the perturbative and the self-consistent solution,

show the three-particle threshold at
√

s = 3m at finite temperature the

spectral width smoothes out all threshold structures in the self-consistent

solution. The growing high-energy tail is related to the decay of a virtual

particle to three particles. At finite temperature as an additional effect a

low-energy plateau in Im ΣR emerges from in-medium scattering processes

of real particles.

The comparison of the self-consistent solutions with the perturbative

approximation shows counterbalancing effects of self-consistency: The fi-

nite spectral width, contained in the self-consistent propagator leads to a

further broadening of the width and a smoothing of the structure as a func-

tion of energy. This is counterbalanced by the behavior of the real part of

the self-energy which essentially shifts the in-medium mass upwards. This

reduces the available phase space for real processes. With increasing cou-

pling strength λ a nearly linear behavior of Im ΣR with p0 results, implying

a nearly constant damping width, given by − Im ΣR/p0.

While the tadpole contribution always shifts the mass upwards, at

higher couplings and temperature also the real part of the sunset diagram
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Figure 3. Real (left) and imaginary part (right) of the perturbative (top) and the self-
consistent self-energy for λ = 30, m = 140MeV and T = 250MeV. Note that the
self-energies are multiplied with an factor 100 in these plots!

becomes significant which can lead to a net down-shift of the mass again.

This can be seen for the parameter set used for the Fig. 3.

4. Global symmetries

If the classical action underlying a quantum field theory is invariant under

the linear operation of a Lie group G, where the group elements are inde-

pendent of the space-time argument one speaks of a global symmetry of the

classical action. Then it can be shown that for each linearly independent

generator ta ∈ LG there exists a conserved charge Qa which in turn builds a

basis of the Lie algebra LG as a subalgebra of the canonical Poisson algebra

of the fields.

It is a well-known theorem in perturbative quantum field theory that

the same holds true for the quantized theory, i.e., the effective action is

symmetric under the same symmetry group as the classical action provided

that no quantum anomaly destroys the symmetry or a part of it. The n-
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point Green’s functions fulfill certain constraints due to the symmetry which

we shall call the Ward-Takahashi identities (WTIs) of the symmetry.

For Φ-derivable approximations in general the WTIs of the symmetry

are violated for the two-point and higher vertex functions although the

expectation values of the corresponding Noether currents are exactly con-

served. This can be traced back to a violation of crossing symmetry within

the self-consistent propagator due to partial resummation of the self-energy

insertions by means of the Dyson equation of motion. We shall further show

that the WTIs are fulfilled for vertex functions, which we shall call external.

These functions are defined from a non-perturbative effective action which

is uniquely determined by the underlying Φ-derivable approximation.

We study the symmetry properties of the generating functional (2) of

a scalar O(N)-symmetric quantum field theory. An infinitesimal O(N)-

transformation reads δφj
1 = iδχa

1(τ
a)j

j′φ
j′

1 . Making use of the assumed

invariance of the classical action under O(N)-transformations one finds by

standard path-integral analysis13 that Γ[ϕ, G] is an O(N)-scalar functional

when φ is transformed as a vector and G as a second-rank tensor:
∫

C

d(1)
δΓ

δφj
1

(τa)j
kφk

1 +

∫

C

d(12)
δΓ

δGjk
12

[(τa)j
j′G

j′k
12 + (τa)k

k′G
jk′

12 ] = 0. (25)

Now only for the exact functional the self-consistent Green’s function G

is identical with the exact one. Thus in general only for the exact case

the self-energy and higher vertex functions fulfill all WTIs of the usual 1PI

action.

Generally for a Φ-derivable approximation this equality of vertex func-

tions does not hold true any longer. For such approximations in general the

WTIs are violated in loop orders higher than that taken into account for

the approximation of the functional. The reason is that the solution of the

equations of motion are equivalent to a certain partial resummation of the

perturbation series which is not crossing symmetric in the inner structure

of the diagrams.

To recover the crossing symmetry we define an effective action functional

from our approximated 2PI-action as

Γ̃[ϕ] = Γ[ϕ, G̃[ϕ]] with
δΓ[ϕ, G]

δG

∣

∣

∣

∣

G=G̃[ϕ]

= 0, (26)

i.e., for an arbitrarily given mean field ϕ we define the propagator G̃[ϕ]

as the solution of the Dyson equation of motion as it is defined by the

2PI-functional. The approximation to the 1PI functional Γ̃[ϕ] is given by

insertion of this propagator in the 2PI functional. If one would not ap-
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ply any approximations Γ̃ is identical with the usual 1PI quantum action

functional generating 1PI truncated proper vertex functions.

The stationary point of this action functional defines the mean field and

propagator of the Φ-derivable approximation since

δΓ̃

δϕ
=

(

δΓ[ϕ, G]

δϕ
+

∫

C

d(12)
δΓ[ϕ, G]

δGjk
12

δG̃jk
12[ϕ]

δϕ

)

G=G̃[ϕ]

. (27)

From (26) this yields

δΓ̃

δϕ
=

(

δΓ[ϕ, G]

δϕ

)

G=G̃[ϕ]

. (28)

Thus the stationary point ϕ̃ of Γ̃ is identical to the mean field of the Φ-

derivable approximation and together with (26) this means that G̃[ϕ̃] is the

solution of the Dyson equation from the same Φ-functional.

For a Φ-derivable approximation Γ̃ defines a non-perturbative approxi-

mation to this functional and can be used to derive approximations for the

proper vertex functions:

(Γ̃(n))jk...
12... =

δnΓ̃[ϕ]

δϕj
1δϕ

k
2 · · ·

. (29)

Especially Γ̃(2) is an approximation for the inverse propagator, which we

call the external propagator to be distinguished from the self-consistent

propagator. This external propagator fulfills the usual WTI but is not

identical with the self-consistent or internal propagator.

The vertex functions (29) are by definition crossing symmetric. Now the

symmetry property (25) by construction holds also true for the approxi-

mated Φ-functional and thus from (26) we see that Γ̃ is an O(N)-scalar

functional:
∫

C

d(1)
δΓ̃[ϕ]

δϕj
1

(τa)j
j′ϕ

j′

1 = 0. (30)

This symmetry property contains all WTIs for the external vertex functions.

Especially for the external propagator, defined by

(G−1
ext)1j,2k =

δ2Γ̃[ϕ]

δϕj
1δϕ

k
2

∣

∣

∣

∣

∣

ϕ=ϕ̃

. (31)

By taking the functional derivative of (30) we obtain
∫

C

d(1)(G−1
ext)1j,2k(τa)j

j′ ϕ̃
j′

1 = 0. (32)
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For a translationally invariant state the Fourier transform of (32) with

respect to (x1 − x2) reads

(G−1
ext)jk(p = 0)(τa)j

j′ϕ
j′

= −(M2)jk(τa)j
j′ ϕ̃

j′

= 0. (33)

It is clear that in this situation ϕ̃ is a constant due to translation invariance.

If it is not 0 the symmetry is spontaneously broken. Since (M 2)jk is the

mass matrix of the particles described as the excitations of the field around

the mean field ϕ̃ Eq. (33) tells us that the N − 1 fields perpendicular to

the direction given by the solution ϕ̃ are massless, the Nambu-Goldstone

bosons of the symmetry.

To calculate the external propagator explicitly we apply (26) in (31) to

obtain

(G−1
ext)1j,2k =

[

δ2Γ[ϕ, G]

δϕj
1δϕ

k
2

+

∫

C

d(3′4′)
δ2Γ[ϕ, G]

ϕj
1δG

j′k′

3′4′

δG̃j′k′

3′4′

δϕk
2

]

ϕ=ϕ̃, G=G̃[ϕ̃]

. (34)

Taking the derivative of the identity
∫

C

d(2′)(G̃−1)1j,2′k′ G̃k′k
2′2 = δ

(d)
12 δk

j (35)

with respect to the field we get
∫

C

d(1′2′)

[

δG̃−1

δϕl
3

G̃k′k
2′2 + (G̃−1)1j,2′k′

δGk′k
2′2

δϕl
3

]

= 0. (36)

With help of (6) the three-point function

Λ
(3)
1j,2k;3l =

δG̃−1
1j,2k

δϕl
3

(37)

can be expressed as the solution of the BS-equation

Λ
(3)
1j,2k;3l = Γ

(3)
1j,2k;3l−i

∫

C

d(3′4′3′′4′′)Γ
(4)
1j,2k;3′l′4′m′G̃

l′l′′

3′3′′G̃m′m′′

4′4′′ Λ
(3)
3′′l′′,4′′m′′;3l,(38)

which in terms of diagrams can be depicted as

iΛ(3) = +�,.- /10 2 +�3�- /10 4 +�3�- 510 +�,.- /10 , (39)

while its kernels are determined by the Φ-functional:

Γ
(3)
1j,2k;3l =

[

δ3S[ϕ]

δϕj
1δϕ

k
2δϕl

3

− 2i
δ2Φ[ϕ, G]

δGjk
12δϕ

l
3

]

G=G̃[ϕ̃], ϕ=ϕ̃

Γ
(4)
1j,2k;3l,4m = −2

[

δ2Φ[ϕ, G]

δGjk
12δG

lm
34

]

G=G̃[ϕ̃], ϕ=ϕ̃

(40)
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With these definitions using (36 and (37) the external propagator (34) can

be written as

(Σext)1j,2k = −
[

i

2

∫

C

d(1′2′)
δ4S[ϕ]

δϕj
1δϕ

k
2δϕj′

1 δϕk′

2′

Gj′k′

1′2′ +
δΦ[ϕ, G]

δϕj
1δϕ

k
2

− i

2

∫

C

d(3′4′3′′4′′)Γ
(3)
3′j′4′k′;1jG

j′j′′

3′3′′G
k′k′′

4′4′′ Λ3′′j′′,4′′k′′;2k

]

.

(41)

In graphical terms this equation looks as follows

6.798;:=<1> ? @ 79ACBB @ 7�D.E F1G7�HIE F1G

J KML NOQP�R

(42)

It is clear that both, the BS-equation (38) and Eq. (41), have to be renor-

malized. This is done again with help of the above explained BPHZ tech-

niques. Again all counterterms turn out to be independent of the tem-

perature and consistent with those needed to renormalize the underlying

self-consistent equations of motion (for more details of this renormalization

see13).

Looking at the diagrams (39) and (42) it turns out that the BS-equation

(38) provides exactly the resummation of the channels missing inside the

self-consistent approximation to the self-energy. This restores both the

intrinsic crossing symmetry and the underlying O(N)-WTI for the external

self-energy.

As an example we show results for the lowest order approximation which

is the Hartree approximation for the self-consistent self-energy, leading to

a constant effective mass shown in Fig. 4. Clearly Goldstone’s theorem

is violated, since the pion mass is different from 0 in both broken phases.

In this case the external self-energy is obtained by a bubble resummation,

corresponding to a Random phase approximation (RPA). Since at the same

time it is the second functional derivative of the effective 1PI-action func-

tional it provides a stability criterion for the Hartree solution, which is of

course only a stable solution, i.e., a minimum of the effective potential, if

the mass matrix is positive semidefinite. It turns out that the solution,

denoted as “broken phase 2” in Fig. 4 is unstable. In Fig. 5 the effective

mass obtained from the external propagator, is shown. Indeed Goldstone’s

theorem is fulfilled, as to be expected from our analysis. From another

point of view this result was also obtained by Aouissat and Belacem16.
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Figure 4. The solutions for the Hartree approximation
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Figure 5. The effective external masses at a temperature of 150MeV. The effective ex-
ternal π-mass indeed vanishes at p0 = ~p = 0 as predicted from Goldstone’s theorem. The
spectral function of the σ-meson shows that at high temperatures its strength becomes
more peaked and the maximum shifted to lower momenta than at T = 0.

5. Conclusions and outlook

We have shown that any self-consistent Dyson resummation can be renor-

malized with counter terms that are independent of temperature provided

it is realized as a Φ-derivable approximation. The proof is based on the

applicability of Weinberg’s power counting theorem and the BPHZ sub-

traction scheme. These techniques provide the possibility to extract both,

the explicite and hidden divergent vacuum subdiagrams, and to subtract
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the divergences leading to a coupled set of finite equations of motion for

the mean fields and the Green’s functions.

In the second part a detailed analysis of symmetry properties has been

given. In general the Φ-derivable approximation schemes violate Ward-

Takahashi identities for two-point and higher Green’s functions since in-

trinsically crossing symmetry is violated at orders of the expansion param-

eter higher than that taken into account for the 2PI functional. Also the

recently observed deviation from the correct renormalization group flow of

the coupling constant can be traced back to this incomplete resummation

provided by the self-consistent equations of motion17.

It was further shown that the symmetries are recovered by defining

a non-perturbative approximation to the effective quantum action by the

stationary point of the 2PI action functional with respect to the Green’s

function at given mean fields. The calculation of the self-energy defined

with help of this 1PI functional needs the solution of a Bethe-Salpeter

equation keeping track of the channels that are missing intrinsically in the

Φ-derivable self-consistent resummation for the self-consistent propagator.

In this way not only crossing symmetry but also the Ward-Takahashi iden-

tities for the proper vertex functions related to linearly realized global sym-

metries are recovered.

The problems related with the missing crossing symmetry and symmetry

violations become more serious in the case of local gauge symmetries. In

general then the Φ-derivable approximations violate important features like

unitarity, causality and positive definiteness of the probability measure.

Here only partial solutions of these problems are known, for instance making

use of hard thermal loop expansion schemes18,19. A systematic analysis of

the violation of gauge invariance has been given recently by Arrizabalaga

and Smit20. It was shown by Denner and Dittmaier21 that there exist non-

symmetry breaking Dyson resummation schemes within the background

field gauge formulation. At the time an investigation whether or not this

scheme is applicable also in the context of the Φ-derivable formalism is

under way. Nevertheless the definition of the self-consistent propagator is

in this case questionable because of the artificial excitation of unphysical

gauge field degrees of freedom by the violation of crossing symmetry inside

the self-consistent diagrams. A first way out of this problem by a projection

formalism is given by us in22.

For the study of non-equilibrium situation the Φ-functional becomes

the only systematic approximation scheme which obeys conservation laws.

Recently numerical studies of the equations of motion for out of equilibrium

were undertaken (see 23,24,25,26 and citations therein).
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The Φ-derivable approximations are also a starting point for the deriva-

tion of transport equations from quantum field theory, ensuring consistency

conditions like detailed ballance, Boltzmann’s H-theorem and conservation

laws. Especially it becomes important for finding consistent transport equa-

tions for particles or resonances with a finite mass width27,28,29,30.
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