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Real time formalism

Initial statistical operator ρi at t = ti

Time evolution

〈O(t)〉 = Tr

[

ρ(ti)Ta

{

exp

[

+i
∫ t

ti

dt′HI(t′)

]}

︸ ︷︷ ︸

anti time–orderd

OI(t)

Tc

{

exp

[

−i
∫ t

ti

dt′HI (t′)

]}

︸ ︷︷ ︸

time–ordered

]

.

Contour ordered Green’s functions

K+

C = K
−

+ K+

K
−

ti

t
t
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Real-time formalism: Equilibrium

In equilibrium

ρ = exp(−βH)/Z with Z = Tr exp(−βH), β = 1/T

Can be implemented by adding an imaginary part to the contour
Im t

Re t

K
−

K+

−iβ

C = K
−

+ K+ + M

tfti

M

t−1

t+2

Correlation functions with real times: iGC (x−

1 , x+
2 )

Fields periodic (bosons) or anti-periodic (fermions) in imaginary time

Feynman rules ⇒ time integrals → contour integrals
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2PI-formalism: The Φ-functional

Introduce local and bilocal sources

Z[J, K] = N

∫

Dφ exp

[

iS[φ] + i {J1φ1}1 +

{
i
2

K12φ1φ2

}

12

]

Generating functional for connected diagrams

Z[J, K] = exp(iW [J, K])

The mean field and the connected Green’s function

ϕ1 =
δW

δJ1
, G12 = − δ2W

δJ1δJ2
︸ ︷︷ ︸

standard quantum field theory

⇒ δW

δK12
=

1

2
[ϕ1ϕ2 + iG12]

Legendre transformation for ϕ and G:

IΓ[ϕ, G] = W [J, K] − {ϕ1J1}1 − 1

2
{(ϕ1ϕ2 + iG12)K12}12
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2PI-formalism: The Φ-functional

Saddle point expansion of path integral:

IΓ[ϕ, G] =S0[ϕ] +
i
2

Tr ln(−iG−1) +
i
2

{

D−1
12 (G12 − D12)

}

12

+ Φ[ϕ, G] ⇐ all closed 2PI interaction diagrams, D12 =
(
−� − m2

)
−1

Equations of motion

δIΓ

δϕ1
= −J1 − {K12ϕ2}2

!
= 0,

δIΓ

δG12
= − i

2
K12

!
= 0,

Equation of motion for the mean field ϕ and the “full” propagator G

−�ϕ − m2ϕ := j = − δΦ

δϕ
, −i(D−1

12 − G12
−1) := −iΣ = 2

δΦ

δG21

Integral form of Dyson’s equation:

G12 = D12 + {D11′Σ1′2′G2′2}1′2′

Closed set of equations of for ϕ and G
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Diagrammar

Lagrangian

L =
1

2
(∂µ

~φ)(∂µ~φ) − m2

2
~φ2 − λ

4!
(~φ2)2

2PI generating functional

++ + + · · ·+iΦ =

mean field part Correlations
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Diagrammar

Lagrangian

L =
1

2
(∂µ

~φ)(∂µ~φ) − m2

2
~φ2 − λ

4!
(~φ2)2

2PI generating functional

++ + + · · ·+iΦ =

mean field part Correlations

Dyson equation for the Self-energy

+ + +−iΣ12 = + · · ·

damping widthmass terms
(momentum dependent)
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2PI-formalism: Features

Truncation of the Series of diagrams for Φ

Expectation values for currents are conserved ⇒ “Conserving Approximations”

In equilibrium iIΓ[ϕ, G] = ln Z(β) (thermodynamical potential)

consistent treatment of Dynamical quantities (real time formalism) and
thermodynamical bulk properties (imaginary time formalism) like energy, pressure,
entropy

Real- and Imaginary-Time quantities “glued” together by Analytic properties from
(anti-)periodicity conditions of the fields (KMS-condition)

Self-consistent set of equations for self-energies and mean fields
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How to renormalize and solve the equations of motion?

Why renormalization?

Diagrams UV-divergent

Control the physical parameters in vacuum: Masses, couplings

“In-medium modifications” controlled from theory alone

Difficulties compared to perturbation theory

Self-consistency ⇒ Resummation of infinitely many perturbative diagrams

Diagrams do not show all divergences explicitely ⇒ “hidden divergences”

Both, explicit and hidden divergences, can be nested and overlapping

What about the numerics?

Cannot use intermediate regularization which can be removed after renormalization

BPHZ-Renormalization ⇒ Get directly finite equations of motion

But integrands have singularities

Renormalization and selfconsistency – p.9
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An example: Hartree approximation
Φ = −iΣ =⇒

Temperature dependent effective mass: M2 = m2 + Σ

“On-shell renormalization scheme”: m is mass of particles in vacuo

From perturbative point of view: Resummation of “daisy and super-daisy diagrams”

+ + + · · ·

Renormalized self-energy
l

− −
λ
2
G2

v(l)Σren
λ
2
G(l) λ

2
Gv(l)

−iΣren = =

Result: Renormalized equation of motion, “gap equation”:

M2 = m2 + Σren = m2 +
λ

32π2

(

M2 ln
M2

m2
− Σren

)

+
λ

2

∫
d4p

(2π)4
2πδ(p2 − M2)n(p0)

︸ ︷︷ ︸

→0 for T→0n(p0) : Bose–Einstein distribution
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Renormalization: General proof

Renormalization at T = 0

Power-counting for self-consistent propagators as in perturbation theory:
δ = 4 − E

Usual BPHZ-renormalization for wave function, mass and coupling constant
In practice: Use Lehmann-representation and dimensional regularization
Closed self-consistent finite Dyson-equations of motion
Numerically treatable
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Renormalization: General proof

Renormalization at finite temperature with vacuum counterterms
Split propagator in vacuum and T-dependent part

= +

iG iG(T)iG(vac)

Expand self-energy around vacuum part

+ +

−iΣ(0)
−iΣ(r)

−iΣ(vac)

Γ(4)

Need further splitting of propagator

Γ(4)

iG(T) iG(r)
= +
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Renormalization: General proof
Renormalization of the four-point vertex

Σ0 linear in G(r) ⇒ =Γ(4) Λ

Equation of motion ⇒ Λ Γ(4)

Γ(4)

Λ

= +

s-channel Bethe-Salpeter equation: Γ(4) cuts more than
three lines!

“BPHZ Boxes” in ladder-diagrams do not cut inside Γ(4).

Asymptotics + BPHZ-formalism: Γ(4)(l, p) − Γ(4)(l, 0)∼= O(l−α) with α>0

Renormalized eq. of motion for Λ:

Λ(p, q) =Λ(0, 0) + Γ(4)(p, q) − Γ(4)(0, 0) + i
∫

d4l

(2π)4
[Γ(4)(p, l) − Γ(4)(0, l)][Gvac]2(l)Λ(l, q)

+ i
∫

d4l

(2π)4
Λ(0, l)[Gvac]2(l)[Γ(4)(l, q) − Γ(4)(l, 0)]

Self-energy finite with vacuum counter terms Renormalization and selfconsistency – p.13



Example: tadpole and sunset

The Φ-functional

iΦ =

−iΣ =

+

+

+−iΓ(4) =

The renormalized vacuum self-energy

+ +
−iΣ = + +overall+

Numerics: Used dispersion (Lehmann) representation for propgators
⇒ renormalized kernels to be calculated by perturbative Feynman integrals
Renormalized equations of motion solved iteratively
Calculate Λ(0, q) with the same techniques
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Example: tadpole and sunset

Renormalization at finite temperature

+

0 0

Λ

+ +

−iΣ(T)(p) = −

p p 0 0

Only finite integrals
Numerics for three-dim integrals on a lattice in p0 and |~p|
Equations of motion solved iteratively
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Results: the vacuum sunset self-energy

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
e 

Σ[
G

eV
2 ]

p0[GeV]

Re Σ for λ=20

p=100 MeV
p=200 MeV
p=300 MeV
p=400 MeV

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Im
 Σ

[G
eV

2 ]

p0[GeV]

Im Σ for λ=20

p=100 MeV
p=200 MeV
p=300 MeV
p=400 MeV

Difference between perturbative and self-consistent calculation unvisible!

Tadpole contribution “renormalized away” ⇒ on-shell renormalization scheme

Main contribution from the pole term of the propagator

Threshold for continues part of the spectral function
√

s = 3m!
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Results: sunset+tadpole diagrams at finite temperature
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Results: sunset+tadpole diagrams at finite temperature
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Results: sunset+tadpole diagrams at finite temperature
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Effects of self-consistency

Low-energy plateau in ImΣ

finite spectral width leads to a smoothing of “threshold” structures and a further
increase in width

counterbalanced by real part: tadpole term adds mass, which in the self-consistent
treatment lowers the effective mass again

for not too high couplings/temperature: sunset part adds spectral width which
increases the self-consistent mass compared to the perturbative one

for higher couplings/temperature: sunset contribution lowers the real part again
compared to the perturbative result
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Symmetry properties of Φ-derivable approximations

Problem with Φ–Functional: Most approximations break symmetry!

Reason: Only conserving for Expectation values for currents

incomplete resummation leads to breaking of crossing symmetry

Define Green’s function at given mean field ϕ:

δIΓ[ϕ, G]

δG

∣
∣
∣
∣
G=Geff[ϕ]

≡ 0

Define new effective 1PI action functional

Γeff[ϕ] = IΓ[ϕ, Geff[ϕ]]
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Symmetry properties of Φ-derivable approximations

Symmetry analysis ⇒ Γeff[ϕ] symmetric functional in ϕ

Stationary point
δΓeff

δϕ

∣
∣
∣
∣
ϕ=ϕ0

= 0

ϕ0 and G = Geff[ϕ0]: self–consistent Φ–Functional solutions!

Γeff generates external vertex functions fulfilling Ward–Takahashi identities

External Propagator

(G−1
ext )12 =

δ2Γeff[ϕ]

δϕ1δϕ2

∣
∣
∣
∣
ϕ=ϕ0

Gext generally not identical with Dyson resummed propagator
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Example: Hartree approximation

Hatree approximation:

iΦ = + +

External self–energy defined on top of Hartree approximation

−iΣext = +

︸ ︷︷ ︸

Σint

+ + + · · ·

Well-known result: RPA–Resummation restores symmetry

Renormalization by the same counterterms as the self-consistent diagrams

resums the crossing-symmetric channels missing in the self-consistent
approximation

in principle can be generalized to all Φ-derivable approximations
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Numerical study of Hartree

Self-consistent masses for σ-meson (mode parallel to mean field) and the
π-mesons (modes perpendicular to mean field)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
σ[

G
eV

]

T[GeV]

Self-consistent σ-mass at finite temperature

broken phase 1
broken phase 2

symmetric phase
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
M

π[
G

eV
]

T[GeV]

Self-consistent π-mass at finite temperature
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symmetric phase

Ward-Takahashi-identity for self-energy ⇒ Pions massless (Goldstone’s theorem)

Self-consistent approximation violates symmetries!
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Numerical study of RPA-resummation
External σ-mass at T=150 MeV (stable solution)
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Ward-Takahashi identity restored by RPA-resummation

Internal lines of RPA-diagrams are the symmetry violating self-consistent
propagators

Remnants of symmetry violation: Wrong thresholds from non-zero masses of
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Conclusions and outlook

Self-consistent Φ-derivable approximations: Renormalizable with
temperature-independent counterterms

Symmetry analysis and (partial) recovery of symmetries

“Toolbox” for application to more realistic models

Outstanding problem: Local gauge symmetries!

First ideas: Projection to physical degrees of freedom

For more details see http://theory.gsi.de/˜vanhees/index.html

Renormalization and selfconsistency – p.26


	Content
	Real time formalism
	Real-time formalism: Equilibrium
	2PI-formalism: The $Phi $-functional
	2PI-formalism: The $Phi $-functional
	Diagrammar
	2PI-formalism: Features
	How to renormalize and solve the equations of motion?
	An example: Hartree approximation
	Renormalization: General proof
	Renormalization: General proof
	Renormalization: General proof
	Example: tadpole and sunset
	Example: tadpole and sunset
	Results: the vacuum sunset self-energy
	Results: sunset+tadpole diagrams at finite temperature
	Results: sunset+tadpole diagrams at finite temperature
	Results: sunset+tadpole diagrams at finite temperature
	Effects of self-consistency
	Symmetry properties of $Phi $-derivable approximations
	Symmetry properties of $Phi $-derivable approximations
	Example: Hartree approximation
	Numerical study of Hartree
	Numerical study of RPA-resummation
	Conclusions and outlook

