Contents

A quantum field theoretical renormalizable model for the $\pi \rho$ -system

Hendrik van Hees, Jörn Knoll March 13th 1998

- ▶ The investigated model for the ρ and π mesons
- ► Fit to data
- ➤ Selfconsistent approximations and renormalization
- ► Numerical Results in the vacuum
- ► Outlook

The model

- ▶ $U(1) \times SU(2)$ gauge model
- ▶ spontaneously broken with Higgs mechanism to $U(1) \Rightarrow 3 \rho$ -mesons and 1 photon
- ▶ Price for renormalizability: 1 Higgs boson
- ► Couple the pions as a SO(3)-Triplett minimally to the gauge fields \Rightarrow vector meson dominance

Unitary Gauge - Physical Vertices

▶ No problem to add π -Higgs-interactions \Rightarrow Theory can be seen as a gauged linear σ -model

Fit of the parameters

Form factor and Phase Shift

► Using dimensional regularization and renormalization of the one-loop-self-energy diagrams

Data: Amendolia et al. Phys. Lett. **138B** (1984) 454 Barkov et al. Nucl. Phys. **B256** (1985) 365

Data: Frogatt, Petersen, Nucl. Phys. B129 (1977) 89

Selfconsistent approximations

Generating functional

 $lackbox{}{}\Phi[G,D]$: sum over all 2PI closed diagrams with at least two loops

► Variation with respect to Green's functions ⇒ self energies fulfilling Dyson's equations

- ► Sum up to a certain loop order ⇒ Selfconsistent effective approximation
- ► Respects any conservation law basing on global symmetries
- ► In thermal field theory: Thermodynamically consistent approximation

Renormalization

Renormalizing the selfconsistent approximation

- ► Can be seen as resummation of all self energy insertions ⇒ Infinities to all orders
- ► Renormalizable theory ⇒ finite by renormalizing parameters already present in Lagrangian
- ▶ Physical renormalization conditions

$$\Sigma_{\pi}(m_{\pi}^2) = \partial_s \Sigma_{\pi}(m_{\pi}^2) = 0, \ \Pi_{\rho}(0) = \partial_s \Pi_{\rho}(0) = 0$$

► Analytical properties of Green's functions

$$G(s) = \frac{1}{\pi} \int_0^\infty dm^2 \Delta(m^2, s) A(m^2) \text{ with } A(s) = -\operatorname{Im} G(s)$$

- ▶ $\Delta(m^2, s)$: Feynman-propagator ⇒ integral kernels ⇒ can be renormalized using standard techniques
- ► self consistent finite set of coupled integral equations solvable numerically by iteration
- ► Tadpole in vacuum absorbed into mass renormalization

Results in vacuum

Result in vacuum

The ρ -Self-Energy

Perturbative 1-loop and selfconsistent calculation

Outlook

Work to do

- \triangleright Exploit non-abelian part of the ρ -interaction
- Selfconsistent approximation for $T, \mu > 0 \Rightarrow$ Need to include tadpole contributions \Rightarrow Renormalization of the vertex
- ► Gauge invariance?

The 1-loop transverse spectral function of the ρ -meson in vacuum and at finite temperature.