Renormalization of Conserving Dyson resummation schemes Hendrik van Hees Universität Bielefeld Jörn Knoll GSI Darmstadt

Content

- 2PI-Functionals of quantum field theory
- Renormalization with temperature independent counter terms
- Symmetry properties
- Numerical Results
- Conclusions and Outlook

• Diagrams defined for real time path (for equilibrium) $\operatorname{Im} t$

• O(N)-theory

$$\mathscr{L} = \frac{1}{2} (\partial_\mu \vec{\phi}) (\partial^\mu \vec{\phi}) - \frac{m^2}{2} \vec{\phi}^2 - \frac{\lambda}{4!} (\vec{\phi}^2)^2$$

• 2PI Generating Functional

$$i\Phi[\varphi,G] = \bigoplus_{\Theta} \bigoplus_{\Theta} + \bigoplus_{\Theta} + \bigoplus_{\Theta} + \bigoplus_{\Theta} + \cdots$$

• Mean field equation of motion

• Self-energy

• Dyson-equation:

$$G^{-1} = D^{-1} - \Sigma[\varphi, G]$$

• Closed set of equations of motion for φ and G

Self-consistent Renormalization

First step: Vacuum

- Power-counting for self-consistent propagators as in perturbation theory: $\delta = 4 E$
- Usual BPHZ-renormalization for wave function, mass and coupling constant renormalization
- In practice: Use Lehmann-representation and dimensional regularization
- \checkmark Closed self-consistent finite Dyson-equations of motion
- ✓ Numerically treatable

Second step: Finite Temperature

• Split propagator in vacuum and T-dependent part

$$iG = iG^{(vac)} + iG^{(T)}$$

• Expand self-energy around vacuum part

• Need further splitting of propagator

$$\overline{\mathbf{i}G^{(\mathrm{T})}} = - \overline{\mathbf{\Gamma}^{(4)}} + \overline{\mathbf{i}G^{(\mathrm{r})}}$$

Third step: 4-point vertex renormalization

 \Im s-channel Bethe-Salpeter equation

 \Rightarrow "BPHZ Boxes" in ladder-diagrams do not cut inside $\Gamma^{(4)}$.

 \Rightarrow Asymptotics + BPHZ-formalism:

$$\Gamma^{(4)}(l,p) - \Gamma^{(4)}(l,0) \cong O(l^{-\alpha})$$
 with $\alpha > 0$

 \Rightarrow Renormalized eq. of motion for Λ :

$$\begin{split} \Lambda(p,q) &= \Lambda(0,0) + \Gamma^{(4)}(p,q) - \Gamma^{(4)}(0,0) \\ &+ \mathrm{i} \int \frac{\mathrm{d}^4 l}{(2\pi)^4} [\Gamma^{(4)}(p,l) - \Gamma^{(4)}(0,l)] [G^{\mathrm{vac}}]^2(l) \Lambda(l,q) \\ &+ \mathrm{i} \int \frac{\mathrm{d}^4 l}{(2\pi)^4} \Lambda(0,l) [G^{\mathrm{vac}}]^2(l) [\Gamma^{(4)}(l,q) - \Gamma^{(4)}(l,0)] \end{split}$$

 \checkmark Self-energy finite with vacuum counter terms

Results for "Sunset + Tadpole" at T > 0

Results for "Sunset + Tadpole" at T > 0

Symmetry properties

- Symmetry: Expectation values of Noether currents exactly conserved
- Approximations are only partial resummations of perturbation series
- rightarrow Crossing symmetry violated
- Non-perturbative approximation for effective action:

$$\begin{split} \tilde{\Gamma}[\varphi] &= \Gamma[\varphi, \tilde{G}[\varphi]] \\ \frac{\delta \Gamma[\varphi, G]}{\delta G} \bigg|_{G = \tilde{G}[\varphi]} \stackrel{!}{=} 0 \end{split}$$

• Crossing symmetric proper vertex functions

$$\tilde{\Gamma}^{(n)}(x_1, x_2, \dots, x_n) := \mathrm{i} \frac{\delta \tilde{\Gamma}[\varphi]}{\delta \varphi_1 \delta \varphi_2 \cdots \delta \varphi_n}$$

fulfill Ward-Takahashi identities

- Calculation of $\tilde{\Gamma}^{(n)}$: Bethe-Salpeter equation like resummations in terms of self-consistent propagator
- Renormalization in the same way as self-consistent scheme ⇒ Recovers symmetry also for counter terms!

• Hartree approximation:

• 1PI self–energy defined on top of Hartree approximation

rightarrow Random phase approximation (RPA):

RPA-resummation

External σ-mass at T=150 MeV (stable solution)

External σ-mass at T=150 MeV (stable solution)

Conclusions and Outlook

- \checkmark Self–consistent Φ –derivable schemes
- \checkmark Renormalization: Phys. Rev. **D65**, 025010 (2002), hep-ph/0107200
- \checkmark Numerical treatment: hep-ph/0111193 (Phys. Rev. D, in press)
- ✓ Symmetry properties: hep-ph/0203008
- \checkmark "Toolbox" for application to realistic models
- \checkmark Perspectives for self–consistent treatment of vector particles: Nucl. Phys. A683 369, hep-ph/0002087
- **✗** General gauge theories? **★**
- \bigstar QCD e.g. beyond HTL?
- \checkmark Transport equations for particles with finite width

http://theory.gsi.de/~vanhees/index.html
http://theory.gsi.de/~knoll/index.html