Heavy-Quark Energy Loss in the QGP and non-photonic Single-Electron Observables

Hendrik van Hees

Texas A&M University

October 25, 2006

Outline

Heavy quarks in the QGP

Radiative energy loss Collisional energy loss

Dissipation and fluctuation: Fokker-Planck approach

Non-perturbative Effects

Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of c quarks flowing with the bulk medium [Greco, Ko, Rapp 04]

Motivation

- Measured p_T spectra and v_2 of non-photonic single electrons
- coalescence model describes data under assumption of c quarks flowing with the bulk medium [Greco, Ko, Rapp 04]
- ▶ What is the underlying microscopic mechanism for thermalization?
 - Radiative energy loss
 - +pQCD collisional energy loss
 - elastic three-body pQCD processes
- Additional problem: consistency between R_{AA} and v_2
 - importance of thermal fluctations
 - ► Fokker-Planck approach to HQ rescattering ⇔ thermalization
 - Langevin simulation to include (anisotropic) flow of sQGP
- ▶ non-perturbative processes ⇔ resonances in sQGP

Radiative energy loss Collisional energy loss

Heavy quarks in the QGP

HQ rescattering in QGP radiative/collisional energy loss non-perturbative effects (sQGP)

Hadronization to D, B mesons Fragmentation Coalescence

Semileptonic decay \Rightarrow "non-photonic" electron observables

Radiative energy loss Collisional energy loss

Radiative energy loss

- medium modelled by static scattering centers [GW 94]
 radiative energy loss only!
- $\Delta E \simeq \hat{q}L^2$ [BDMPS 96]
- generalized to "thin plasmas" in [GLV 00] and heavy-quark jets

Heavy quarks in the QGP

Dissipation and fluctuation: Fokker-Planck approach Non-perturbative Effects Radiative energy loss Collisional energy loss

Radiative energy loss

- Calculation: [Armesto et al 06] (static medium + geometry + BDMPS rad energy loss)
- ▶ need to tune up $\hat{q} \rightarrow 14 \text{ GeV}^2/\text{fm}$ (pQCD prediction: $\sim 1...3 \text{ GeV}^2/\text{fm}$)
- ▶ *R*_{AA} near to data but *v*₂ not described!

Radiative energy loss Collisional energy loss

Collisional vs. radiative energy loss

 for heavy quarks: elastic pQCD scattering as important as radiative [Mustafa 05]

► calculation [Djordjevic '06]: t-channel gluon exchange dressed gluon propagator $\mu_D^2 = g^2 T^2 (1 + N_f/6), \ \alpha_s = 0.3, \ N_f = 2.5$ $dN_g/dy = 1000$

collisional energy loss important for light and heavy quarks!

Radiative energy loss Collisional energy loss

Collisional vs. radiative energy loss

Radiative energy loss Collisional energy loss

Three-body effects

- high densities (initially $\gtrsim 10/{\rm fm}^3$)
- \Rightarrow three-body elastic scattering possibly relevant [Liu, Ko 06]

Thermalization: Dissipation \leftrightarrow Fluctuation

- theoretical models discussed so far take into account only dissipation
- thermalization processes need also fluctuations

Thermalization: Dissipation \leftrightarrow Fluctuation

- theoretical models discussed so far take into account only dissipation
- thermalization processes need also fluctuations
- principle of detailed balance
- ⇒ Use Fokker-Planck equation [Svetitsky 87; Mustafa, Thoma 98; HvH, Rapp 04; Moore, Teaney 04,...] ⇔ Langevin simulations

Thermalization: Dissipation \leftrightarrow Fluctuation

- theoretical models discussed so far take into account only dissipation
- thermalization processes need also fluctuations
- principle of detailed balance
- ⇒ Use Fokker-Planck equation [Svetitsky 87; Mustafa, Thoma 98; HvH, Rapp 04; Moore, Teaney 04,...] ⇔ Langevin simulations
 - can we understand heavy-quark flow properties better?
 - consistency of e^{\pm} - R_{AA} with e^{\pm} - v_2 ?

The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

Assumption: Relevant scattering processes are soft

The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

Assumption: Relevant scattering processes are soft

- A and $B_{ij} \Leftrightarrow$ heavy-quark scattering processes
- ► $A(t, \vec{p})$ friction (drag) coefficient = $1/\tau_{eq}$ $\langle p_i - p'_i \rangle = p_i A(t, \vec{p})$

The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

Assumption: Relevant scattering processes are soft

- A and $B_{ij} \Leftrightarrow$ heavy-quark scattering processes
- $A(t, \vec{p})$ friction (drag) coefficient $= 1/\tau_{eq}$ $\langle p_i - p'_i \rangle = p_i A(t, \vec{p})$
- ► *B_{ij}*: time scale for momentum fluctuations

$$B_{ij}(t,\vec{p}) = \frac{1}{2} \left\langle (p_i - p'_i)(p_j - p'_j) \right\rangle$$

The Fokker-Planck Equation

heavy particle (c,b quarks) in a heat bath of light particles (QGP)

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

Assumption: Relevant scattering processes are soft

- A and $B_{ij} \Leftrightarrow$ heavy-quark scattering processes
- $A(t, \vec{p})$ friction (drag) coefficient $= 1/\tau_{eq}$ $\langle p_i - p'_i \rangle = p_i A(t, \vec{p})$
- B_{ij} : time scale for momentum fluctuations

$$B_{ij}(t,\vec{p}) = \frac{1}{2} \left\langle (p_i - p'_i)(p_j - p'_j) \right\rangle$$

► to ensure correct equilibrium limit: B_{||}(t, p) = T(t)E_pA(t, p) (Einstein dissipation-fluctuation relation)

Langevin Study with pQCD elastic scattering

 pQCD elastic cross sections for charm-quark scattering in QGP [Moore, Teaney 04]

- hydro dynamics for bulk medium
- Langevin simulation for charm quarks
- ▶ have to increase α_s in cross sections (but set $\mu_D = 1.5 T = \text{const!}$)

Non-perturbative Effects

- ▶ pQCD interactions of heavy quarks within QGP \Rightarrow need to artificially scale up cross sections to understand e^{\pm} data
- possible non-perturbative effects?

Non-perturbative Effects

- ▶ pQCD interactions of heavy quarks within QGP \Rightarrow need to artificially scale up cross sections to understand e^{\pm} data
- possible non-perturbative effects?
- ▶ from Lattice QCD: survival of mesonic bound states/resonances above T_c [Karsch, Laermann 03], [Asakawa, Hatsuda 03]
- also from IQCD based potential models [Shuryak, Zahed 04], [Wong 05], [Mannarelli, Rapp 05]

Non-perturbative Effects

- ▶ pQCD interactions of heavy quarks within QGP \Rightarrow need to artificially scale up cross sections to understand e^{\pm} data
- possible non-perturbative effects?
- ▶ from Lattice QCD: survival of mesonic bound states/resonances above T_c [Karsch, Laermann 03], [Asakawa, Hatsuda 03]
- also from IQCD based potential models [Shuryak, Zahed 04], [Wong 05], [Mannarelli, Rapp 05]
- \Rightarrow assumption:

survival of D- and B-like resonance states up to $T\lesssim 2T_c$

- here: use "quasi-particle" model based on chiral symmetry and heavy-quark effective theory
- ▶ states included: D, D*+chiral partners, D_s (analogous for B) [HvH, Ralf Rapp, Phys. Rev. C **71**, 034907 (2005)]

Resonance Scattering

elastic heavy-light-(anti-)quark scattering

▶ *D*- and *B*-meson like resonances in sQGP

parameters

- $m_c = 1.5 \text{ GeV}, m_D = 2 \text{ GeV}, \Gamma_D = 0.4 \dots 0.75 \text{ GeV}$
- $m_b = 4.5 \text{ GeV}, m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$
- Bethe-Salpeter calculations in NJL model [Blaschke et al 03]

Contributions from pQCD

Lowest-order matrix elements [Combridge 79]

► In-medium Debye-screening mass for *t*-channel gluon exchange: $\mu_g = gT$, $\alpha_s = 0.4$

Cross sections

- total pQCD and resonance cross sections: comparable in size
- ► BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion

The Coefficients: pQCD vs. resonance scattering

 Temperature dependence of thermalization rate

- charm-quark diffusion coefficient
- microscopic properties of sQGP $\Leftrightarrow e^{\pm}$ observables

Initial conditions

Langevin simulation:

need initial p_T -spectra of charm and bottom quarks

- fit D-meson spectra from pp and dAu@RHIC
- exp. non-photonic single- e^{\pm} spectra: Fix bottom/charm ratio

Spectra and elliptic flow for heavy quarks

- use Langevin simulation to solve Fokker-Planck equation
- expanding-fireball model to describe the sQGP medium

•
$$\mu_D = gT$$
, $\alpha_s = g^2/(4\pi) = 0.4$

- ▶ resonances ⇒ HQ thermalization without upscaling of cross sections
- Fireball parametrization consistent with hydro

Observables: p_T -spectra (R_{AA}), v_2

- Hadronization: Coalescence with light quarks + fragmentation $\Leftrightarrow c\bar{c}, b\bar{b}$ conserved
- ▶ single electrons from decay of *D* and *B*-mesons

 Without further adjustments: data quite well described [HvH, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)]

Observables: p_T -spectra (R_{AA}), v_2

- Hadronization: Fragmentation only
- ▶ single electrons from decay of *D* and *B*-mesons

Observables: p_T -spectra (R_{AA}), v_2

- Central Collisions
- ▶ single electrons from decay of *D* and *B*-mesons

${\sf Coalescence}{+}{\sf Fragmentation}$

Fragmentation only

How to check resonance assumption?

- scattering mechanism via resonances at $T > T_c$?
- dominant channel: quark-anti-c-quark s channel

energy scan@RHIC: quark dominated ⇒ c̄ quarks most affected
 thermalization effects more pronounced for D̄ (D⁻) than for D (D⁺) mesons!

Implementation of radiative energy loss

including gluon radiation work in progress [Vitev, HvH, Rapp 06]

Conclusions and Outlook

- ▶ non-photonic e^{\pm} observables \Leftrightarrow HQ interactions in sQGP
- HQ energy loss from pQCD
 - ▶ radiative energy loss \Leftrightarrow upscaling of energy loss $\hat{q} \rightarrow 14$ or gluon density to explain strong effects in e^{\pm} - R_{AA}
 - collisional (elastic) energy loss
 - ▶ high density of plasma ⇔ elastic 3-body collisions
- proper implementation of thermalization (Fokker-Planck Eq.)
 - need thermal fluctuations to describe thermalization
 - explains consistency between small R_{AA} and large v_2
- non-perturbative interactions
 - survival of D- and B-meson like resonances above T_c
 - ► isotropic elastic-scattering cross sections ⇒ efficient for thermalization

Conclusions and Outlook

- ▶ non-photonic e^{\pm} observables \Leftrightarrow HQ interactions in sQGP
- HQ energy loss from pQCD
 - ▶ radiative energy loss \Leftrightarrow upscaling of energy loss $\hat{q} \rightarrow 14$ or gluon density to explain strong effects in e^{\pm} - R_{AA}
 - collisional (elastic) energy loss
 - ▶ high density of plasma ⇔ elastic 3-body collisions
- proper implementation of thermalization (Fokker-Planck Eq.)
 - need thermal fluctuations to describe thermalization
 - explains consistency between small R_{AA} and large v_2
- non-perturbative interactions
 - survival of D- and B-meson like resonances above T_c
 - ► isotropic elastic-scattering cross sections ⇒ efficient for thermalization
- Further investigations (work in progress)
 - microscopic models for HQ scattering [Mannarelli, HvH, Rapp 06]
 - implementation of gluon-radiation processes [Vitev, HvH, Rapp 06]
 - consequences for heavy quarkonia

Thermalization rate (p dependence)

Spectra and elliptic flow for heavy quarks

With form-factor vertices instead of point vertices ($\Lambda = 1 \text{ GeV}$)

