Kinetics of the chiral phase transition

Hendrik van Hees, Christian Wesp, Alex Meistrenko, Carsten Greiner

Goethe-Universität Frankfurt

June 03, 2016

1) Linear σ model

2 Semiclassical particle-field dynamics

- Thermal quench (box calculation)
- Expanding hot-matter droplet

Motivation

- exploring the QCD phase diagram in heavy-ion collisions
- identify observables for different phase transitions (cross-over at low vs. 1st order at high $\mu_{\rm B}$)
- critical endpoint of 1st-order phase-transition line?!?
- problem: rapidly expanding and cooling "fireballs" ⇒ observables?
- "grand canonical fluctuations" of conserved "charges"?!?
- model fluctuations from dynamics rather than imposed by hand (Langevin/Fokker-Planck)
- here: novel kinetic model based on particle-field dualism
- Phys. Rev. E 91, 043302 (2015) (arXiv: 1411.7979 [hep-ph])
 J. Phys. Conf. Ser. 636, 012007 (2015) (arXiv: 1505.04738 [hep-ph])
 C. Wesp, PhD Thesis, Goethe University Frankfurt (2015)

Quark-meson linear σ model

- quark-meson linear σ model
- chiral $SU_L(2) \times SU_R(2) \sim SO(4)$ symmetry
- spontaneously broken to $SU_V(2) \sim SO(3)$
- mesons SO(4): σ (scalar) $\vec{\pi}$ (pseudoscalar)
- constituent quarks: $SU_L(2) \times SU_R(2)$

$$\mathscr{L} = \overline{\psi} [i\partial - g(\sigma + i\vec{\pi} \cdot \vec{\tau}\gamma_5)]\psi - \frac{1}{2}(\partial_\mu \sigma \partial^\mu \sigma + \partial_\mu \vec{\pi} \cdot \partial^\mu \vec{\pi}) - U(\sigma, \vec{\pi})$$

meson potential

.

$$U(\sigma, \vec{\pi}) = \frac{\lambda^2}{4} (\sigma^2 + \vec{\pi}^2 - v^2)^2 + f_{\pi} m_{\pi}^2 \sigma.$$

• explicit breaking of chiral symmetry

Semiclassical particle-field dynamics

• treat σ bosons on the mean-field level + $\sigma \leftrightarrow \overline{q}q$

$$\Box \sigma + \lambda (\sigma^2 - \nu^2) \sigma - f_\pi m_\pi^2 + g \left\langle \overline{\psi} \psi \right\rangle = "I(\sigma \longleftrightarrow \overline{q} q)"$$

• (anti-)quarks via Boltzmann equation

$$\begin{bmatrix} \partial_t + \frac{p}{E_q} \cdot \vec{\nabla}_{\vec{x}} - \vec{\nabla}_{\vec{x}} E_{\psi}(t, \vec{x}, \vec{p}) \cdot \vec{\nabla}_{\vec{p}}) \end{bmatrix} f_q(t, \vec{x}, \vec{p}) = C(\overline{q}q \to \overline{q}q, \sigma \longleftrightarrow \overline{q}q)$$

with $E(t, \vec{x}, \vec{p}) = \sqrt{\vec{p}^2 + g^2 \sigma^2(t, \vec{x})}$

- test-particle ansatz for (anti-)quarks on a spatial grid
- "particle-field dualism" of σ field \leftrightarrow particle for "collision terms"

• $\sigma \rightarrow \overline{q} + q$

- calculate energy and momentum of σ field in cell
- determine local temperature and chemical potential
- Boltzmann distribution $\Rightarrow \sigma$ -particle momentum distribution
- use σ -decay width/rate (matrix element) from QFT in collision terms
- take out energy and momentum of *σ* particle as a corresponding Gaussian wave packet from the *σ* field

• $\overline{q} + q \rightarrow \sigma$

- "Monte-Carlo" event according to matrix element from σ model
- add energy and momentum of σ particle as a corresponding Gaussian wave packet to σ field
- energy-momentum and baryon-number conservation
- principle of detailed balance fulfilled!

Test: energy conservation (box calculation)

- uncorrelated thermal fluctuations $\Delta E_q/E_q \sim 10^{-3}$ and $\Delta E_\sigma/E_\sigma \sim 10^{-2}$
- $\Delta E_{\rm tot}/E_{\rm tot} \lesssim 5 \cdot 10^{-5}$

Test: quark-number fluctuations (box calculation)

• total number of (anti-)quarks ($N_q = N_{\overline{q}}$) fluctuates due to $\sigma \leftrightarrow \overline{q} + q$

Test: Equilibration limit (box calculation)

- run algorithm in box until $q \cdot \overline{q}$ distribution and σ field stationary
- excellent agreement with relativistic Boltzmann distribution

Test: Equilibration limit (box calculation)

- run algorithm in box until $q \cdot \overline{q}$ distribution and σ field stationary
- Fourier spectrum of σ -field energy
- "UV catastrophy" avoided due to finite width σ_{eff} of Gaussian wave packets \leftrightarrow energy-momentum transfer between particles and fields

Fourier modes k

- start system with $T_{\sigma} = 180$ MeV, $T_{\overline{q}q} = 140$ MeV
- system always in chirally restored phase

- start system with $T_{\sigma} = 180$ MeV, $T_{\overline{q}q} = 140$ MeV
- system always in chirally restored phase

- start system with $T_{\sigma} = 180$ MeV, $T_{\overline{q}q} = 140$ MeV
- system always in chirally restored phase

- start system with $T_{\sigma} = 180$ MeV, $T_{\overline{q}q} = 140$ MeV
- system always in chirally restored phase

- start system with $T_{\sigma} = 180$ MeV, $T_{\overline{q}q} = 140$ MeV
- system always in chirally restored phase
- system comes to thermal equilibrium ($\sigma \leftrightarrow \overline{q}q$ always "active")

Thermal quench (χ restored \rightarrow broken phase)

- start system with $T_{\sigma} = 180$ MeV, $T_{\overline{q}q} = 80$ MeV
- system undergoes transition from chirally restored to broken phase
- system does not come to thermal equilibrium ($\sigma \leftrightarrow \overline{q}q$ becomes impossible because $m_{\sigma} < 2m_{q}$)

Thermal quench (χ restored \rightarrow broken phase)

- start system with $T_{\sigma} = 180$ MeV, $T_{\overline{q}q} = 80$ MeV
- system undergoes transition from chirally restored to broken phase
- $(\sigma \leftrightarrow \overline{q}q)$ becomes impossible because $m_{\sigma} < 2m_q$) after "decoupling" oscillations in σ field $\Leftrightarrow E_{q\overline{q}}$

Expanding hot-matter droplet (cross-over at g = 3.3)

without "chemical processes"

with "chemical processes" ($\sigma \leftrightarrow \overline{q} + q$)

Expanding hot-matter droplet (1st-order PT at g = 5.5)

without "chemical processes"

with "chemical processes" ($\sigma \leftrightarrow \overline{q} + q$)

Volumetric view on expanding fireball at g = 5.5

- in time steps of 1 fm/c
- $q\overline{q}$ bubbles formed \Rightarrow tend to merge into large bubble
- "cold" particles trapped in local potential wells of σ field
- slowly evaporating

Quark-number distribution in expanding fireball

- left: time evolution of total quark number
 - simulations without (dashed) and with (solid) chemical processes $\sigma \leftrightarrow q \overline{q}$
 - number of quarks decreasing (leaving the fireball)
 - at *g* = 5.5: metastable droplets form ⇒ plateaus (washed out by chemical processes)
- right: energy distribution of quark number vs. time
 - quarks can get trapped in local σ -field potential wells
 - with g = 5.5 big metastable quark droplet forms
 - slowly evaporates \Rightarrow cooling

Angular distribution of quarks

- first attempt at an observable sensitive to nature of phase transition
- angular distribution of quarks
- first attempt at C_{ℓ} power spectra of angular correlations
- no qualitative difference for different phase transitions
- only overall size of fluctations differs related to g

Conclusions and outlook

- novel scheme to model off-equilibrium kinetics of phase transitions
- based on particle-field duality
- application to linear quark-meson σ model
- obeys conservation laws and detailed balance
- dynamically generated fluctuations (no assumptions as in Langevin!)
- passes box-calculation tests
- thermal quench + expanding fireballs
- qualitative difference between cross-over and 1st/2nd-order scenario?
- to do: how quantifiable?
 - first attempt: angular correlations of quarks
 - no clear signal to distinguish different phase transitions
 - possible observables in heavy-ion collisions (e.g., "grand-canonical fluctuations" of baryon number)?