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Space-time geometry

As I was going up the stair,
I met a man who wasn’t there.
He wasn’t there again today,
I wish, I wish he’d stay away

Hughes Mearns (Cited from [7]).

In a sense it was always there. Principle of general relativity (invariance under local
GL(4,R4)) and equivalence principle (gravity locally equal to accelerated frame of
reference)

⇒ Gravity = curvature of space time, which is a pseudo-Riemannian manifold

Look for GL(4,R4)-invariant Lagrangian of as a function of gµν and gµν,ρ.

Such a Lagrangian doesn’t exist, but from the curvature tensor

Γµνρ = (gµν,ρ + gµρ,ν − gνρ,µ), Γρ
µν = gραΓαµν ,

Rρ
µνσ = Γρ

µσ,ν − Γρ
µν,σ + Γρ

ανΓα
µσ − Γρ

ασΓα
µν

we get the Ricci tensor and the curvature scalar

Rµν = Rρ
µνρ, R = Rµνg

µν .
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Einstein-Hilbert action

R contains derivatives of gµν to second order, but only linear with coefficients
independent of derivatives

The curvature scalar R is the only scalar of the pseudometric with these properties
except a constant! ⇒ Most general action

S[g,matter fields] =
1

2κ

Z

d4x
√
−g(R+Λ)+Smatter with κ =

8πG

c2
= 1.865·10−27 cm

g

Variation leads to Einstein’s Equations (Einstein, Hilbert 1915)

Rµν − 1

2
gµνR+ Λgµν = −κTµν

Tµν Belinfante energy-momentum tensor of the matter contribution to the action:

Tµν =
2√−g

δSmatter

δgµν

Symmetric and gauge invariant for gauge fields!
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Cosmology

Cosmological principle: There exists a fundamental frame of reference where the
time slice (“3-space” of an observer defining this frame) which is homogeneous and
isotropic. Determines the metric uniquely (up to coordinate transformations):

ds2 = dt2 − a2(t)

»

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

–

k ∈ {−1, 0, 1}, corresponding to a hyperbolical (open, infinite), a flat (open, infinite),
or a spherical (closed, without boundary) 3-space

Einstein’s equations ⇒ specialize to Friedmann’s equation

3ä

a
= Λ − κ

2
(ρM + 3pM ),

„

ȧ

a

«2

+
k

a2
− Λ

3
=
κ

3
ρM

where ρM and pM are the density and pressure of matter (modelled as an ideal
fluid and/or radiation)

radiation: pr = ρr/3, “dust” pm = 0

Cosmological constant can be positive: Then it leads to a “repulsion”, otherwise to
“attraction” like ordinary matter (ρ, p > 0).
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Problems with matter models

Fundamentals of local quantum field theory: “Quantization” of the free fields yields
infinite “vacuum energy”

Each bosonic field has positive vacuum energy density

each fermionic field has negative vacuum energy density

Regularized with a cut-off kmax:

〈0 |ρ| 0〉 = ±
Z kmax

0

4πk2dk

(2π)3
1

2

p

k2 +m2 =
1

16π2
[k4

max +m2k2
max +O(m4)]

No problem for elementary particle theory (without gravitation): Adjust the vacuum
energy to 0 due to the assumption of Poincaré invariance

only differences of total energy observable

General relativity: contribution to the Cosmological constant

Setting kmax = MPlanck = (8πG)−1/2:

〈0 |ρ| 0〉 ≈ 2 · 1071GeV4
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Fine-tuning problem

Observations: Measurements of density parameter together with flatness of the
universe from inflation

Ωtot = ΩM + ΩΛ ≈ 1, Ω :=
ρ

ρcrit
, ρcrit = (3.0 · 10−3eV)4h2

Magnitude-redshift relation for distant type Ia supernovae (⇒ standard candles)

Measurements from WMAP + HST:

Ωtot = 1.02±0.02, ΩΛ = 0.73±0.04, h = 0.71+0.03−0.04 ⇒ Λ = 4·10−47GeV4

Vacuum energy of field degree of freedom by a factor of 10118 (!!!) too large

fine-tuning with 118 digits precision needed

in standard model of electroweak interactions: Higgs fields

V = V0 − µ2φ†φ+ g(φ†φ)2,
D

0
˛

˛

˛ρHiggs

˛

˛

˛ 0
E

= Vmin = V0 − µ4/(4g)

What’s the “right” value for V0? Again fine-tuning for the observed value of Λ!
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The problem from a general perspective

Looking for field equations satisfying translational covariance ⇒ all fields must be
constant and satisfy

∂L /∂ψi = 0 (i ∈ {1, . . . , N}), ∂L /∂gµν = 0

in GRT L is GL(4)-symmetric ⇒ for constant fields this means the theory must be
invariant under

gµν → Aρ
µA

σ
νgρσ; ψi → Dij(A)ψj , L → L · detA with Aρ

µ,Dij = const.

If ∂L /∂ψi is fulfilled for constant ψi then L is invariant under the global
GL(4)-transformation of g

L = c
√
−g with c = const.

∂L /∂gµν = 0 only if by fine-tuning c = 0

Ways out: symmetry principles that prevent the appearence of a cosmological
constant or “cosmo-dynamical” solutions that drive the cosmological constant
necessarily to 0 due to the dynamical evolution of the universe.
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Supersymmetry

Supersymmetry generators Qα

h

Qα, Q
†
β

i

+
= P

µ[σµ]αβ with σ0 = 0, σj = Pauli matrices

Unbroken SUSY:
Qα |0〉 = Q†

α |0〉 = 0 ⇒ 〈0 |Pµ| 0〉 = 0.

Unbroken SUSY implies vanishing energy and momentum of the vacuum ⇒
cosmological constant vanishes without fine-tuning!

Field theoretical reason: For each boson there must be a fermionic partner and vice
versa ⇒ Vacuum energies cancel exactly

Quantum corrections: boson and fermion loops exactly cancel each other’s
contribution to the vacuum energy

But SUSY is broken ⇒ positive definite vacuum energy

Also extension to a supersymmetric supergravity theory does not really help
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Dynamical solutions?

There seems to be no symmetry principle which prevents the necessity of
fine-tuning

Need to explain only why the cosmological constant is small now

Idea: Scalar field with
�φ ∝ Tµ

µ,

where Tµν is the total energy momentum tensor including Λgµν/(8πG)

Further assumption Tµ
µ vanishes for φ = φ0

Then φ evolves to its equilibrium value φ0 and Einstein’s equations have the
flat-space solution

make φ weakly coupled, so that it is unobservable; then φ0 very large

Suppose φ has a small mass mφ. For small momenta of range |p| � mφ we get an
effective theory for the massless fields (e.g., gravitational and electromagnetical)

To cancel the vacuum energies of these fields, such that ρvac < 10−48GeV4, we
must have mφ < 10−12GeV

Does such a model exist?
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Weinberg’s no-go theorem I

Look again for constant field solutions of Einstein’s + matter field equations

∂L

∂gµν
= 0,

∂L

∂ψn
= 0

To make Λ vanishing we must satisfy gµν∂L /∂gµν = 0

The natural way to do so for constant fields is to demand

gµν
∂L

∂gµν
= −

X

n

∂L

∂ψn
fn(ψ)

For fulfilled equations for ψn the Lagrangian must be of the form L = c(ψ)
√−g.

Symmetry of the Lagrangian:

δgµν = −2δεgµν , δψn = δεfn(ψ)
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Weinberg’s no-go theorem II

can always redefine the fields ψn such that one has N − 1 fields σa and one scalar
φ such that the symmetry transformation reads

δgµν = −2δεgµν , δσa = 0, δφ = ε

For constant fields L = L [exp(2φ)gµν , σ]:

L = exp(4φ)
√
−gL0(σ) ⇒ ∂L

∂φ
= −Tµ

µ
√
−g, Tµν = −gµν exp(4φ)L0(σ).

All would be nice, if there was a stationary point of L for some φ, but exp(φ) has no
stationary points!
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Quintessence

Try to solve cosmological constant problem with non-constant gµν

Uniform scalar field φ(t) (see lectures about inflation)

φ̈+ 3Hφ̇+ V ′(φ) = 0, H =

r

3

8πG
(ρφ + ρM )

energy densities of scalar field and matter+radiation:

ρφ =
1

2
φ̇2 + V (φ), ρ̇M = −3H(ρM + pM )

Potential V : φ approaches the value with V ′(φ0) = 0, near this value φ changes
slowly with time

ρM decreasing with time (H > 0). Then slowly varying Hubble parameter
H ≈

p

8πGV (φ)/3 (exponential expansion)

Problem: Why should V (φ) be small (zero) where V ′(φ) = 0?

Coincidence problem: Need very carefully set initial conditions
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Tracker solutions

Special choice of V (tracker solutions):

V (φ) = M4+αφ−α, α > 0, M = const.

φ starts with value �MPlanck and φ̇2 � ρm then φ(t) ∼ t2/(2−α), ρφ ∼ t−2α/(2+α),
ρM ∼ t−2 decreasing faster ⇒ good for cosmological nucleosynthesis, because
ρM dominates at temperatures of 109K - 1010K

Later ρφ dominates over ρM , ρφ ∼ t−2/(4+α), H ∼
p

V (φ) ∼ t−α/(4+α)

ρφ-dominance today! ρM and ρφ both contribute to cosmic expansion rate

Good thing: no fine-tuning for cross-over from ρM -domination to ρφ-domination

Doesn’t solve the Λ-problem, because why shouldn’t there be an additional
constant ∼ m4

Planck to V (φ), i.e., no naturalness of above choice ⇒ fine-tuning
necessary again

Even if V (φ) chosen as above, need fine-tuning for M such that ρφ ≈ ρM close to
the present critical density ρc0:

M4+α ≈ ρc0

(8πG)α/2
≈ H2

0

(8πG)−1−α
(1)
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K-Essence

Idea: Modify the kinetic energy of the scalar field

L = −1

6
R+ p(φ,X), X =

1

2
(∂µφ)(∂µφ), p = K(φ)p̃(X)

p = pressure, energy density

ρφ = K(φ)[2X∂X p̃(X) − p̃(X)]

Depending on K(φ) and p̃(X) we can have trackers, i.e., k-essence mimics the
e.o.s. of the matter and/or radiaton content of the universe

or attractors: k-essence is driven to a e.o.s. different from matter or radiation

Insensitive to initial conditions

Provides negative pressure after some time of matter domination (w = p/ρ ∼ −1)
and today, acts like an effective positive cosmological constant

Only a tracking solution if radiation dominated epoch

Further behavior after overtaking matter energy density depends on the details of
the model: It can be w < −1/3 (forever accelerating universe) or −1/3 < w ≤ 0

(decelerating or dust-like)
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Summary

Existence of cosmological constant from geomtry of space time

Fields, describing matter+radiation: Contribute to (effective) Λ

Quantization of fields ⇒ vacuum energy ⇒ “1st fine-tuning problem”

Data: Flat universe Ωtot ≈ 1 ⇒ Inflation

Weinberg’s no-go theorem: No “natural” model with gµν = ηµν

Quintessence, tracker solutions ⇒ Always “dynamical universe”

2nd fine-tuning problem: make ΩM and ΩΛ and Ωtot = 1 as observed and
accelerating expansion

K-essence: Looks like the only so far found solution to both problems

Is that true? What about quantization?
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