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Space-time geometry

As | was going up the stair,
| met a man who wasn'’t there.
He wasn'’t there again today,
| wish, | wish hed stay away
Hughes Mearns (Cited from [7]).

® |n asense it was always there. Principle of general relativity (invariance under local
GL(4,RR%*)) and equivalence principle (gravity locally equal to accelerated frame of
reference)

= Gravity = curvature of space time, which is a pseudo-Riemannian manifold
® ook for GL(4, R*)-invariant Lagrangian of as a function of g,,, and g,.. ,.

® Such a Lagrangian doesn’t exist, but from the curvature tensor

Lpvp = (Guv,p + Gup,w — gvpu)s TP pv = 97 Tapw,

Rp,uz/a — Fp,ua,z/ - Fpul/,a + FpaVFauJ - Fpaara;u/
we get the Ricci tensor and the curvature scalar

R’u,y — Rp'u,yp, R — Ru/yg'ujy.
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Einstein-Hilbert action

R contains derivatives of g,,,, to second order, but only linear with coefficients
independent of derivatives

The curvature scalar R is the only scalar of the pseudometric with these properties
except a constant! = Most general action

81(G cm
T 1.865.10727 —

. 1 .
S[g, matter fields] = o /d4$\/—g(R+A)+Smatter with k = 2 g

Variation leads to Einstein’s Equations (Einstein, Hilbert 1915)
1
R/,LI/ - ig,uz/R + Ag;w = _KJT,uI/

T,.. Belinfante energy-momentum tensor of the matter contribution to the action:

2 0Smatter
vV—g ogh¥

T/'LV —

Symmetric and gauge invariant for gauge fields!
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Cosmology

Cosmological principle: There exists a fundamental frame of reference where the
time slice (“3-space” of an observer defining this frame) which is homogeneous and
isotropic. Determines the metric uniquely (up to coordinate transformations):

dr?
1 — kr2

ds® = dt* — a?(t) + r2(d#? + sin? 6d¢?)

k € {—1,0, 1}, corresponding to a hyperbolical (open, infinite), a flat (open, infinite),
or a spherical (closed, without boundary) 3-space

Einstein’s equations = specialize to Friedmann’s equation

3 K a\?2 kE A &
iy N 3 : o - -
- 2(PM+ PM) <a> t o g =3PM

where pps and p,, are the density and pressure of matter (modelled as an ideal
fluid and/or radiation)
radiation: p, = p, /3, “dust” p,, =0

Cosmological constant can be positive: Then it leads to a “repulsion”, otherwise to
“attraction” like ordinary matter (p, p > 0).
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Problems with matter models

Fundamentals of local quantum field theory: “Quantization” of the free fields yields
infinite “vacuum energy”

Each bosonic field has positive vacuum energy density
each fermionic field has negative vacuum energy density

Regularized with a cut-off kmax:

Fmax 47rk?dk 1 1
01pl0) == [ TG SV T = o b+ mky + O(m )

No problem for elementary particle theory (without gravitation): Adjust the vacuum
energy to 0 due to the assumption of Poincaré invariance

only differences of total energy observable

General relativity: contribution to the Cosmological constant

(0]p|0) ~2-10"1GeV*
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Fine-tuning problem

Observations: Measurements of density parameter together with flatness of the
universe from inflation

Qot = Qs + Qu ~ 1, Q= pi, perit = (3.0 - 10~ 3eV)*n2
crit

Magnitude-redshift relation for distant type la supernovae (= standard candles)
Measurements from WMAP + HST:

Qot = 1.0240.02, Qp =0.734+0.04, h =0.714+0.03—0.04 = A = 4-10"4"GeV*

Vacuum energy of field degree of freedom by a factor of 10118 (!!!) too large
fine-tuning with 118 digits precision needed

in standard model of electroweak interactions: Higgs fields

V=Vo—u*¢'o+g(e'9)?, <0 ‘PHiggs 0> = Vinin = Vo — p*/(4g)

What'’s the “right” value for V? Again fine-tuning for the observed value of Al

Hubble expansion accelerated today. Why? The Cosmological Constant - p.7



The problem from a general perspective

Looking for field equations satisfying translational covariance =- all fields must be
constant and satisfy

8L /0p; =0 (i € {l,...,N}), 0.2/9gu =0

in GRT . is GL(4)-symmetric = for constant fields this means the theory must be
invariant under

Juv — ApMAU,/ng; Y — D'L'j (A)%, L — £ - det A with Ap/“ Dz’j = const.

If 0. /0, is fulfilled for constant v; then . is invariant under the global
GL(4)-transformation of ¢

¥ = c\/—g With ¢ = const.

0.2 /08g, = 0 only if by fine-tuning ¢ = 0

Ways out: symmetry principles that prevent the appearence of a cosmological
constant or “cosmo-dynamical” solutions that drive the cosmological constant
necessarily to 0 due to the dynamical evolution of the universe.
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Supersymmetry

Supersymmetry generators Q.

Qo Qb] | = PP[olap with o0 = 0, o; = Pauli matrices

Unbroken SUSY:
Qa [0) = QL 10) = 0= (0|P#|0) = 0.

Unbroken SUSY implies vanishing energy and momentum of the vacuum =-
cosmological constant vanishes without fine-tuning!

Field theoretical reason: For each boson there must be a fermionic partner and vice
versa = Vacuum energies cancel exactly

Quantum corrections: boson and fermion loops exactly cancel each other’s
contribution to the vacuum energy

But SUSY is broken =- positive definite vacuum energy

Also extension to a supersymmetric supergravity theory does not really help
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Dynamical solutions?

There seems to be no symmetry principle which prevents the necessity of
fine-tuning

Need to explain only why the cosmological constant is small now

|dea: Scalar field with
Lo o< Ty,

where TH" is the total energy momentum tensor including Agh" /(87 G)
Further assumption T'#,, vanishes for ¢ = ¢g

Then ¢ evolves to its equilibrium value ¢¢ and Einstein’s equations have the
flat-space solution

make ¢ weakly coupled, so that it is unobservable; then ¢q very large

Suppose ¢ has a small mass my. For small momenta of range |p| < m4 we get an
effective theory for the massless fields (e.g., gravitational and electromagnetical)

To cancel the vacuum energies of these fields, such that pyac < 10—48GeV*, we
must have my < 10~ 2GeV

Does such a model exist?
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Weinberg’s no-go theorem I

Look again for constant field solutions of Einstein’s + matter field equations

0L 0L
=0, — =0
09,“/ aw’n

To make A vanishing we must satisty g,,,0-2 /3¢, = 0

The natural way to do so for constant fields is to demand

__Z%fn

8guy

For fulfilled equations for v, the Lagrangian must be of the form . = c¢(y)/—g.
Symmetry of the Lagrangian:

5g,w = _25€guV7 0Yn = 5€fn(¢)
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Weinberg’s no-go theorem 11

can always redefine the fields v,, such that one has N — 1 fields o, and one scalar
¢ such that the symmetry transformation reads

0gury = —20€guv, 004 =0, ¢ =c¢
For constant fields . = Z[exp(2¢)guv, ]:

L =exp(4d)v/—9L (o) = % = -TH V—g, TFr = —g'” exp(4¢)Lo(0o).

All would be nice, if there was a stationary point of £ for some ¢, but exp(¢) has no
stationary points!
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Quintessence

Try to solve cosmological constant problem with non-constant g,,.

Uniform scalar field ¢(t) (see lectures about inflation)

.. : 3
3H+V'(¢) =0, H= \/ —
¢+3Ho+ V() 87TG(p¢+pM)
energy densities of scalar field and matter+radiation:
1.5 .
po = 59"+ V(¢), pm=—3H(pm +pum)
Potential V': ¢ approaches the value with V’/(¢g) = 0, near this value ¢ changes

slowly with time

py decreasing with time (H > 0). Then slowly varying Hubble parameter
H =~ /87GV (¢)/3 (exponential expansion)

Problem: Why should V' (¢) be small (zero) where V' (¢) = 07

Coincidence problem: Need very carefully set initial conditions
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Tracker solutions

Special choice of V' (tracker solutions):
V()= M* ¢~ o >0, M =const.

¢ starts with value < Mpianek and ¢? < prm, then ¢(t) ~ t2/2=2)  p, ~ =20/ (2+a),
pam ~ t—2 decreasing faster = good for cosmological nucleosynthesis, because
pa dominates at temperatures of 10°K - 1010 K

Later ps dominates over pyr, py ~ t=2/ 4+ [ ~ \/V($) ~ t—/(4F)
pe-dominance today! pps and pg both contribute to cosmic expansion rate
Good thing: no fine-tuning for cross-over from p,,-domination to p4-domination

Doesn’t solve the A-problem, because why shouldn’t there be an additional
constant ~ m3,., 10 V(¢), i.e., no naturalness of above choice = fine-tuning
necessary again

Even if V(¢) chosen as above, need fine-tuning for M such that p, ~ ps close to
the present critical density p.o:

M4—|—Oé ~ PcO H(%

Y

T 8rG)/2 T (8nG)— 1@

(1)
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K-Essence

|ldea: Modify the kinetic energy of the scalar field

L= R+p(6,X), X =(0,0)0"9), p=KBHX)

p = pressure, energy density
py = K(¢)[2X0xp(X) — p(X)]

Depending on K (¢) and p(X) we can have trackers, i.e., k-essence mimics the
e.0.s. of the matter and/or radiaton content of the universe

or attractors: k-essence is driven to a e.o.s. different from matter or radiation
Insensitive to initial conditions

Provides negative pressure after some time of matter domination (w = p/p ~ —1)
and today, acts like an effective positive cosmological constant

Only a tracking solution if radiation dominated epoch

Further behavior after overtaking matter energy density depends on the details of
the model: It can be w < —1/3 (forever accelerating universe) or —1/3 < w <0
(decelerating or dust-like)

The Cosmological Constant — p.15



o o000 b

L I

Summary

Existence of cosmological constant from geomtry of space time
Fields, describing matter+radiation: Contribute to (effective) A
Quantization of fields = vacuum energy = “1st fine-tuning problem”
Data: Flat universe Qit ~ 1 = Inflation

Weinberg’s no-go theorem: No “natural” model with g, = 7.
Quintessence, tracker solutions = Always “dynamical universe”

2nd fine-tuning problem: make Q;, and Q2 and Qit = 1 as observed and
accelerating expansion

K-essence: Looks like the only so far found solution to both problems

Is that true? What about quantization?
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