The Cosmological Constant

One of the problems in modern physics

Hendrik van Hees

Fakultät für Physik Universität Bielefeld

Contents

- Fundamentals from General relativity:
 - The Einstein-Hilbert Action
 - Cosmology
- The problem(s)
 - Data
 - The fine-tuning problem(s)
- Ideas out of the problem(s)
 - Supersymmetry, (Supergravity, Superstrings)
 - Quintessence and a no-go theorem
 - Tracker solutions
 - K-Essence
- Summary

Space-time geometry

As I was going up the stair, I met a man who wasn't there. He wasn't there again today, I wish, I wish he'd stay away

Hughes Mearns (Cited from [7]).

- In a sense it was always there. Principle of general relativity (invariance under local $GL(4, \mathbb{R}^4)$) and equivalence principle (gravity locally equal to accelerated frame of reference)
- ⇒ Gravity = curvature of space time, which is a pseudo-Riemannian manifold
- Look for $GL(4, \mathbb{R}^4)$ -invariant Lagrangian of as a function of $g_{\mu\nu}$ and $g_{\mu\nu,\rho}$.
- Such a Lagrangian doesn't exist, but from the curvature tensor

$$\Gamma_{\mu\nu\rho} = (g_{\mu\nu,\rho} + g_{\mu\rho,\nu} - g_{\nu\rho,\mu}), \quad \Gamma^{\rho}{}_{\mu\nu} = g^{\rho\alpha}\Gamma_{\alpha\mu\nu},$$

$$R^{\rho}{}_{\mu\nu\sigma} = \Gamma^{\rho}{}_{\mu\sigma,\nu} - \Gamma^{\rho}{}_{\mu\nu,\sigma} + \Gamma^{\rho}{}_{\alpha\nu}\Gamma^{\alpha}{}_{\mu\sigma} - \Gamma^{\rho}{}_{\alpha\sigma}\Gamma^{\alpha}{}_{\mu\nu}$$

we get the Ricci tensor and the curvature scalar

$$R_{\mu\nu} = R^{\rho}{}_{\mu\nu\rho}, \quad R = R_{\mu\nu}g^{\mu\nu}.$$

Einstein-Hilbert action

- \blacksquare R contains derivatives of $g_{\mu\nu}$ to second order, but only linear with coefficients independent of derivatives
- The curvature scalar R is the only scalar of the pseudometric with these properties except a constant! \Rightarrow Most general action

$$S[g, \text{matter fields}] = \frac{1}{2\kappa} \int \mathrm{d}^4 x \sqrt{-g} (R + {\color{red}\Lambda}) + S_{\text{matter}} \text{ with } \kappa = \frac{8\pi G}{c^2} = 1.865 \cdot 10^{-27} \frac{\text{cm}}{\text{g}}$$

Variation leads to Einstein's Equations (Einstein, Hilbert 1915)

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = -\kappa T_{\mu\nu}$$

 \blacksquare $T_{\mu\nu}$ Belinfante energy-momentum tensor of the matter contribution to the action:

$$T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S_{\text{matter}}}{\delta g^{\mu\nu}}$$

Symmetric and gauge invariant for gauge fields!

Cosmology

Cosmological principle: There exists a fundamental frame of reference where the time slice ("3-space" of an observer defining this frame) which is homogeneous and isotropic. Determines the metric uniquely (up to coordinate transformations):

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

- $m{P}$ $k \in \{-1,0,1\}$, corresponding to a hyperbolical (open, infinite), a flat (open, infinite), or a spherical (closed, without boundary) 3-space
- \blacksquare Einstein's equations \Rightarrow specialize to Friedmann's equation

$$\frac{3\ddot{a}}{a} = \Lambda - \frac{\kappa}{2}(\rho_M + 3p_M), \quad \left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2} - \frac{\Lambda}{3} = \frac{\kappa}{3}\rho_M$$

where ρ_M and p_M are the density and pressure of matter (modelled as an ideal fluid and/or radiation)

- radiation: $p_r = \rho_r/3$, "dust" $p_m = 0$
- Cosmological constant can be positive: Then it leads to a "repulsion", otherwise to "attraction" like ordinary matter $(\rho, p > 0)$.

Problems with matter models

- Fundamentals of local quantum field theory: "Quantization" of the free fields yields infinite "vacuum energy"
- Each bosonic field has positive vacuum energy density
- each fermionic field has negative vacuum energy density
- Pegularized with a cut-off k_{max} :

$$\langle 0 \, | \boldsymbol{\rho} | \, 0 \rangle = \pm \int_0^{k_{\text{max}}} \frac{4\pi k^2 \mathrm{d}k}{(2\pi)^3} \frac{1}{2} \sqrt{k^2 + m^2} = \frac{1}{16\pi^2} [k_{\text{max}}^4 + m^2 k_{\text{max}}^2 + O(m^4)]$$

- No problem for elementary particle theory (without gravitation): Adjust the vacuum energy to 0 due to the assumption of Poincaré invariance
- only differences of total energy observable
- General relativity: contribution to the Cosmological constant
- Setting $k_{\text{max}} = M_{\text{Planck}} = (8\pi G)^{-1/2}$:

$$\langle 0 | \boldsymbol{\rho} | 0 \rangle \approx 2 \cdot 10^{71} \text{GeV}^4$$

Fine-tuning problem

Observations: Measurements of density parameter together with flatness of the universe from inflation

$$\Omega_{\mathrm{tot}} = \Omega_M + \Omega_{\Lambda} \approx 1, \quad \Omega := \frac{\rho}{\rho_{\mathrm{crit}}}, \quad \rho_{\mathrm{crit}} = (3.0 \cdot 10^{-3} \mathrm{eV})^4 h^2$$

- \blacksquare Magnitude-redshift relation for distant type la supernovae (\Rightarrow standard candles)
- Measurements from WMAP + HST:

$$\Omega_{\text{tot}} = 1.02 \pm 0.02, \quad \Omega_{\Lambda} = 0.73 \pm 0.04, \quad h = 0.71 + 0.03 - 0.04 \Rightarrow \Lambda = 4 \cdot 10^{-47} \text{GeV}^4$$

- ightharpoonup Vacuum energy of field degree of freedom by a factor of 10^{118} (!!!) too large
- fine-tuning with 118 digits precision needed
- in standard model of electroweak interactions: Higgs fields

$$V = V_0 - \mu^2 \phi^{\dagger} \phi + g(\phi^{\dagger} \phi)^2, \quad \left\langle 0 \left| \boldsymbol{\rho}_{\mathsf{Higgs}} \right| 0 \right\rangle = V_{\mathsf{min}} = V_0 - \mu^4 / (4g)$$

- ullet What's the "right" value for V_0 ? Again fine-tuning for the observed value of $\Lambda!$
- Hubble expansion accelerated today. Why?

The problem from a general perspective

Looking for field equations satisfying translational covariance ⇒ all fields must be constant and satisfy

$$\partial \mathcal{L}/\partial \psi_i = 0 \ (i \in \{1, \dots, N\}), \quad \partial \mathcal{L}/\partial g_{\mu\nu} = 0$$

• in GRT \mathscr{L} is GL(4)-symmetric \Rightarrow for constant fields this means the theory must be invariant under

$$g_{\mu\nu} \to A^{\rho}{}_{\mu}A^{\sigma}{}_{\nu}g_{\rho\sigma}; \quad \psi_i \to D_{ij}(A)\psi_j, \quad \mathscr{L} \to \mathscr{L} \cdot \det A \text{ with } A^{\rho}{}_{\mu}, D_{ij} = \text{const.}$$

If $\partial \mathcal{L}/\partial \psi_i$ is fulfilled for constant ψ_i then \mathcal{L} is invariant under the global GL(4)-transformation of g

$$\mathscr{L} = c\sqrt{-g}$$
 with $c = \text{const.}$

- Ways out: symmetry principles that prevent the appearence of a cosmological constant or "cosmo-dynamical" solutions that drive the cosmological constant necessarily to 0 due to the dynamical evolution of the universe.

Supersymmetry

• Supersymmetry generators Q_{α}

$$\left[Q_{\alpha},Q_{\beta}^{\dagger}\right]_{+}=\mathbf{P}^{\mu}[\sigma_{\mu}]_{\alpha\beta}$$
 with $\sigma_{0}=0,\;\sigma_{j}=$ Pauli matrices

Unbroken SUSY:

$$Q_{\alpha} |0\rangle = Q_{\alpha}^{\dagger} |0\rangle = 0 \Rightarrow \langle 0 | \mathbf{P}^{\mu} | 0\rangle = 0.$$

Unbroken SUSY implies vanishing energy and momentum of the vacuum ⇒ cosmological constant vanishes without fine-tuning!

- Field theoretical reason: For each boson there must be a fermionic partner and vice versa ⇒ Vacuum energies cancel exactly
- Quantum corrections: boson and fermion loops exactly cancel each other's contribution to the vacuum energy
- But SUSY is broken ⇒ positive definite vacuum energy
- Also extension to a supersymmetric supergravity theory does not really help

Dynamical solutions?

- There seems to be no symmetry principle which prevents the necessity of fine-tuning
- Need to explain only why the cosmological constant is small now
- Idea: Scalar field with

$$\Box \phi \propto T_{\mu}{}^{\mu},$$

where $T^{\mu\nu}$ is the total energy momentum tensor including $\Lambda g^{\mu\nu}/(8\pi G)$

- Further assumption $T^{\mu}{}_{\mu}$ vanishes for $\phi=\phi_0$
- **Proof** Then ϕ evolves to its equilibrium value ϕ_0 and Einstein's equations have the flat-space solution
- \blacksquare make ϕ weakly coupled, so that it is unobservable; then ϕ_0 very large
- Suppose ϕ has a small mass m_{ϕ} . For small momenta of range $|p| \ll m_{\phi}$ we get an effective theory for the massless fields (e.g., gravitational and electromagnetical)
- To cancel the vacuum energies of these fields, such that $\rho_{\rm vac} < 10^{-48} {\rm GeV}^4$, we must have $m_\phi < 10^{-12} {\rm GeV}$
- Does such a model exist?

Weinberg's no-go theorem I

Look again for constant field solutions of Einstein's + matter field equations

$$\frac{\partial \mathcal{L}}{\partial g_{\mu\nu}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \psi_n} = 0$$

- **9** To make Λ vanishing we must satisfy $g_{\mu\nu}\partial\mathscr{L}/\partial g_{\mu\nu}=0$
- The natural way to do so for constant fields is to demand

$$g_{\mu\nu}\frac{\partial\mathcal{L}}{\partial g_{\mu\nu}} = -\sum_{n} \frac{\partial\mathcal{L}}{\partial \psi_{n}} f_{n}(\psi)$$

For fulfilled equations for ψ_n the Lagrangian must be of the form $\mathcal{L}=c(\psi)\sqrt{-g}$. Symmetry of the Lagrangian:

$$\delta g_{\mu\nu} = -2\delta \epsilon g_{\mu\nu}, \quad \delta \psi_n = \delta \epsilon f_n(\psi)$$

Weinberg's no-go theorem II

• can always redefine the fields ψ_n such that one has N-1 fields σ_a and one scalar ϕ such that the symmetry transformation reads

$$\delta g_{\mu\nu} = -2\delta \epsilon g_{\mu\nu}, \quad \delta \sigma_a = 0, \quad \delta \phi = \epsilon$$

• For constant fields $\mathscr{L} = \mathscr{L}[\exp(2\phi)g_{\mu\nu}, \sigma]$:

$$\mathscr{L} = \exp(4\phi)\sqrt{-g}\mathscr{L}_0(\sigma) \Rightarrow \frac{\partial\mathscr{L}}{\partial\phi} = -T^{\mu}{}_{\mu}\sqrt{-g}, \quad T^{\mu\nu} = -g^{\mu\nu}\exp(4\phi)\mathscr{L}_0(\sigma).$$

All would be nice, if there was a stationary point of \mathcal{L} for some ϕ , but $\exp(\phi)$ has no stationary points!

Quintessence

- ullet Try to solve cosmological constant problem with non-constant $g_{\mu\nu}$
- Uniform scalar field $\phi(t)$ (see lectures about inflation)

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0, \quad H = \sqrt{\frac{3}{8\pi G}(\rho_{\phi} + \rho_{M})}$$

energy densities of scalar field and matter+radiation:

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi), \quad \dot{\rho}_M = -3H(\rho_M + p_M)$$

- Potential V: ϕ approaches the value with $V'(\phi_0)=0$, near this value ϕ changes slowly with time
- ρ_M decreasing with time (H>0). Then slowly varying Hubble parameter $H \approx \sqrt{8\pi GV(\phi)/3}$ (exponential expansion)
- Problem: Why should $V(\phi)$ be small (zero) where $V'(\phi) = 0$?
- Coincidence problem: Need very carefully set initial conditions

Tracker solutions

 \blacksquare Special choice of V (tracker solutions):

$$V(\phi) = M^{4+\alpha}\phi^{-\alpha}, \quad \alpha > 0, \quad M = \text{const.}$$

- $m{m{\phi}}$ starts with value $\ll M_{
 m Planck}$ and $\dot{\phi}^2 \ll
 ho_m$ then $\phi(t) \sim t^{2/(2-lpha)}$, $ho_\phi \sim t^{-2lpha/(2+lpha)}$, $ho_M \sim t^{-2}$ decreasing faster \Rightarrow good for cosmological nucleosynthesis, because ho_M dominates at temperatures of $10^9 K$ $10^{10} K$
- **_** Later ρ_{ϕ} dominates over ρ_{M} , $\rho_{\phi} \sim t^{-2/(4+\alpha)}$, $H \sim \sqrt{V(\phi)} \sim t^{-\alpha/(4+\alpha)}$
- ρ_{ϕ} -dominance today! ρ_{M} and ρ_{ϕ} both contribute to cosmic expansion rate
- Good thing: no fine-tuning for cross-over from ρ_M -domination to ρ_ϕ -domination
- Doesn't solve the Λ-problem, because why shouldn't there be an additional constant $\sim m_{\rm Planck}^4$ to $V(\phi)$, i.e., no naturalness of above choice \Rightarrow fine-tuning necessary again
- Even if $V(\phi)$ chosen as above, need fine-tuning for M such that $\rho_{\phi} \approx \rho_{M}$ close to the present critical density ρ_{c0} :

$$M^{4+\alpha} \approx \frac{\rho_{c0}}{(8\pi G)^{\alpha/2}} \approx \frac{H_0^2}{(8\pi G)^{-1-\alpha}} \tag{1}$$

K-Essence

Idea: Modify the kinetic energy of the scalar field

$$\mathscr{L} = -\frac{1}{6}R + p(\phi, X), \quad X = \frac{1}{2}(\partial_{\mu}\phi)(\partial^{\mu}\phi), \quad p = K(\phi)\tilde{p}(X)$$

p = pressure, energy density

$$\rho_{\phi} = K(\phi)[2X\partial_X \tilde{p}(X) - \tilde{p}(X)]$$

- Depending on $K(\phi)$ and $\tilde{p}(X)$ we can have trackers, i.e., k-essence mimics the e.o.s. of the matter and/or radiaton content of the universe
- \blacksquare or attractors: k-essence is driven to a e.o.s. different from matter or radiation
- Insensitive to initial conditions
- Provides negative pressure after some time of matter domination ($w=p/\rho \sim -1$) and today, acts like an effective positive cosmological constant
- Only a tracking solution if radiation dominated epoch
- Further behavior after overtaking matter energy density depends on the details of the model: It can be w<-1/3 (forever accelerating universe) or $-1/3 < w \le 0$ (decelerating or dust-like)

Summary

- Existence of cosmological constant from geomtry of space time
- Fields, describing matter+radiation: Contribute to (effective) \(\Lambda \)
- Quantization of fields \Rightarrow vacuum energy \Rightarrow "1st fine-tuning problem"
- **Data:** Flat universe $\Omega_{\text{tot}} \approx 1 \Rightarrow \text{Inflation}$
- ullet Weinberg's no-go theorem: No "natural" model with $g_{\mu
 u} = \eta_{\mu
 u}$
- Quintessence, tracker solutions ⇒ Always "dynamical universe"
- **2nd fine-tuning problem**: make Ω_M and Ω_Λ and $\Omega_{\rm tot}=1$ as observed and accelerating expansion
- K-essence: Looks like the only so far found solution to both problems
- Is that true? What about quantization?

Used Literature

References

- [1] C. Armendariz-Picon, V. Mukhanov, and Paul J. Steinhardt. Essentials of k-essence. *Phys. Rev. D*, 63:103510, 2001.
- [2] C. L. Bennet et al. First year wilkinson microwave anisotropy probe (wmap) observations: Preliminary maps and basic results. 2003.
- [3] Hubert Gönner. Einführung in die Kosmologie. Spektrum Akademischer Verlag, 1994.
- [4] Andrew R. Liddle and David H. Lyth. *Cosmological Inflation and Large-Scale Structure*. Cambridge University Press, 2000.
- [5] Roman U. Sexl and Helmuth K. Urbantke. *Gravitation und Kosmologie*. Spektrum Akademischer Verlag, 1995.
- [6] Paul J. Steinhardt, Limin Wang, and Zlatev Ivaylo. Cosmological tracking solutions. *Phys. Rev. D*, 59:123504, 1999.
- [7] Steven Weinberg. The cosmological constant problem. Rev. Mod. Phys., 61:1, 1989.
- [8] Steven Weinberg. The cosmological constant problems. 2000.
- [9] Hermann Weyl and Jürgen Ehlers. Raum, Zeit, Materie. Spinger Verlag, 1988.