Dilepton Production at SPS Energies

Hendrik van Hees

Texas A&M University

December 17, 2007

Outline

Introduction

Thermal Fireball

3 Sources of Dileptons

- In-medium vector mesons (thermal source)
- $q\bar{q}$ annihilation in the QGP (thermal source)
- Multi-pion processes (thermal source)
- Meson t-channel exchange (thermal source)
- ρ decay after thermal freezeout
- "Primordial" ρ mesons
- Drell-Yan Annihilation and correlated charm decays
- 4 Comparison to NA60 data
 - Invariant-mass spectra
 - m_T spectra
 - Sensitivity to T_c and hadro-chemistry
 - Inverse-slope analysis
 - Conclusions and Outlook
- 6 Backup Slides

Electromagnetic probes in heavy-ion collisions

DD

Intermediate-

> 1 fm2

 J/Ψ

3 M [GeV/c] Drell-Yan

High-Mass Region

< 0.1 fm

In-medium spectral functions and baryon effects

• baryon effects important $\leftrightarrow N_B + N_{\bar{B}}$ relevant (not $N_B - N_{\bar{B}}$)

- large contribution to broadening of the peak
- $\bullet\,$ responsible for most of the strength at small M

Fireball and Thermodynamics

- cylindrical fireball model: $V_{\mathsf{FB}} = \pi (z_0 + v_{z0}t + \frac{a_z}{2}t^2) \left(\frac{a_\perp}{2}t^2 + r_0\right)^2$
- thermodynamics:
 - isentropic expansion; S_{tot} fixed by N_{ch} ; $T_c = T_{\text{chem}} = 175 \text{ MeV}$
 - $T > T_c$: massless gas for QGP with $N_f^{\text{eff}} = 2.3$
 - mixed phase: $f_{\rm HG}(t) = [s_c^{\rm QGP} s(t)]/[s_c^{\rm QGP} s_c^{\rm HG}]$
 - $T < T_c$: hadron-resonance gas

•
$$\Rightarrow T(t), \mu_{\text{baryon,meson}}(t)$$

- chemical freezeout:
 - $\mu_N^{\text{chem}} = 232 \text{ MeV}$
 - hadron ratios fixed $\Rightarrow \mu_N, \mu_\pi, \mu_K, \mu_\eta$ at fixed $s/\varrho_B = 27$
- thermal freezeout: $(T_{\rm fo}, \mu_\pi^{\rm fo}) \simeq (120, 80) \text{ MeV}$

Flow and particle/resonance distributions

- assume local thermal equilibrium: T(t)
- collective radial flow: $u(t, \vec{x}) = 1/\sqrt{1 \vec{v}^2}(1, \vec{v})$
- $\vec{v}(t, \vec{x}) = a_{\perp} t \, \vec{x}_{\perp} / R(t)$
- phase-space distribution for hadrons

$$\frac{\mathrm{d}N_i}{\mathrm{d}^3\vec{p}\mathrm{d}^3\vec{x}} = \frac{g_i}{(2\pi)^3} f_{B/F}\left(\frac{p\cdot u(t,\vec{x})}{T(t)}\right) \exp\left(\frac{\mu_i(t)}{T(t)}\right)$$

- NB:
 - covariant notation $d^3 \vec{x} d^3 \vec{p} = p_\mu d\sigma^\mu d^3 \vec{p} / \sqrt{\vec{p}^2 + m^2}$
 - $pu(t, \vec{x}) = \overline{p_0}$: energy of particle in rest frame of fluid cell
- phase-space distribution for bosonic resonances:

$$\frac{\mathrm{d}N_i}{\mathrm{d}^4 p \mathrm{d}^3 \vec{x}} = \frac{g_i}{(2\pi)^4} f_B\left(\frac{p \cdot u(t, \vec{x})}{T(t)}\right) \exp\left(\frac{\mu_i(t)}{T(t)}\right) \left[-2p_0 \mathrm{Im} \, D_i(p)\right]$$

• $D_i(p)$: propagator of resonance, $A_i(p) = -2 \operatorname{Im} D_i(p)$: spectral function

Radiation from thermal sources: ρ decays

• model assumption: vector-meson dominance

$$\frac{dN_{\rho \to l^+ l^-}^{(\mathsf{MT})}}{d^4 x d^4 q} = \frac{M}{q^0} \Gamma_{\rho \to l^+ l^-}(M) \frac{dN_{\rho}}{d^3 \vec{x} d^4 q}$$
$$= -\frac{\alpha^2}{3\pi^3} \frac{L(M^2)}{M^2} \frac{m_{\rho}^4}{g_{\rho}^2} g_{\mu\nu} \operatorname{Im} D_{\rho}^{\mu\nu}(M, \vec{q}) f_B\left(\frac{q \cdot u}{T(t)}\right) \exp\left(\frac{2\mu_{\pi}(t)}{T(t)}\right)$$

. 0-

- special case of McLerran-Toimela (MT) formula
- $M^2 = q^2$: invariant mass, M, of dilepton pair
- $L(M^2) = (1 + 2m_l^2/M^2)\sqrt{1 4m_l^2/M^2}$: dilepton phase-space factor
- $D^{\mu\nu}_{\rho}(M,\vec{q})$: (four-transverse part of) in-medium ρ propagator at given T(t), $\mu_{\text{meson/baryon}}(t)$
- \bullet analogous for ω and ϕ

Radiation from thermal sources: $q\bar{q}$ annihilation

• General: McLerran-Toimela formula

$$\frac{\mathrm{d}N_{l^+l^-}^{(\mathsf{MT})}}{\mathrm{d}^4 x \mathrm{d}^4 q} = -\frac{\alpha^2}{3\pi^3} \frac{L(M^2)}{M^2} g_{\mu\nu} \mathrm{Im} \sum_i \Pi_{\mathsf{em},i}^{\mu\nu} (M, \vec{q}) f_B\left(\frac{q \cdot u}{T(t)}\right) \exp\left(\frac{\mu_i(t)}{T(t)}\right)$$

- *i* enumerates partonic/hadronic sources of em. currents
- in-medium em. current-current correlation function $\Pi^{\mu\nu}_{\mathsf{em},i} = \mathrm{i} \int \mathrm{d}^4 x \exp(\mathrm{i} q x) \Theta(x^0) \left\langle \left[j^{\mu}_{\mathsf{em},i}(x), j^{\nu}_{\mathsf{em},i}(x) \right]_{-} \right\rangle$
- in QGP phase: $q\bar{q}$ annihilation
- HTL improved electromagnetic current correlator

$$-i\Pi_{\rm em,QGP} = \underbrace{\gamma^*}_{q} \underbrace{\overline{q}}_{q}$$

Radiation from thermal sources: multi- π processes

- use vector/axial-vector correlators from au-decay data
- Dey-Eletsky-loffe mixing: $\hat{\varepsilon}=1/2\varepsilon(T,\mu_{\pi})/\varepsilon(T_c,0)$

$$\Pi_{V} = (1 - \hat{\varepsilon}) z_{\pi}^{4} \Pi_{V,4\pi}^{\text{vac}} + \frac{\hat{\varepsilon}}{2} z_{\pi}^{3} \Pi_{A,3\pi}^{\text{vac}} + \frac{\hat{\varepsilon}}{2} (z_{\pi}^{4} + z_{\pi}^{5}) \Pi_{A,5\pi}^{\text{vac}}$$

• avoid double counting: leave out two-pion piece and $a_1 \rightarrow \rho + \pi$ (already contained in ρ spectral function)

Radiation from thermal sources: Meson t-channel exchange

- motivation: q_T spectra too soft compared to NA60 data
- thermal contributions not included in models so far

• also for π , a_1

ρ decay after thermal freezeout

- assume "sudden freezeout" at constant "lab time": $t = t_{fo}$
- then Cooper-Frye formula with $\mathrm{d}\sigma^{\mu}=(\mathrm{d}^{3}\vec{x},0,0,0)$

$$\frac{\mathrm{d}N_{\rho \to l^+ l^-}^{(\mathrm{fo})}}{\mathrm{d}^3 \vec{x} \mathrm{d}^4 \vec{q}} = \frac{\Gamma_{l^+ l^-}}{\Gamma_{\rho}^{\mathrm{tot}}} \frac{\mathrm{d}N_i}{\mathrm{d}^3 \vec{x} \mathrm{d}^4 q}$$
$$= \frac{q_0}{M} \frac{1}{\Gamma_{\rho}^{\mathrm{tot}}} \left[\frac{\mathrm{d}N_{\rho \to l^+ l^-}}{\mathrm{d}^4 x \mathrm{d}^4 q} \right]_{t=t_f}$$

- use vacuum ho shape with in-medium width $\Gamma_{
 ho}^{\rm tot}\simeq 260~{\rm MeV}$
- NB: Momentum dependence for dilepton spectra from ρ decays after thermal freezeout:

like hadron spectra!

• $\Leftrightarrow l^+l^-$ from thermal sources softer by Lorentz factor M/q^0 compared to l^+l^- from decay of freeze-out ρ 's

Decay of "primordial" ρ mesons

- $\bullet~\rho$ mesons, escaping from the fireball without thermalization
- pp data for initial ρ spectra; Cronin effect via "Gaussian smearing"
- Schematic jet-quenching model

2

qT (GeV)

3

4

75

2

0.7 0.5 0.2 0.1

0

 \mathbf{R}_{AA}

5

Drell-Yan Annihilation and correlated charm decays

• invariant-mass spectrum for DY pairs

$$\frac{\mathrm{d}N_{\mathsf{DY}}^{AA}}{\mathrm{d}M\mathrm{d}y}\Big|_{b=0} = \frac{3}{4\pi R_0^2} A^{4/3} \frac{\mathrm{d}\sigma_{\mathsf{DY}}^{NN}}{\mathrm{d}M\mathrm{d}y}$$
$$\frac{\mathrm{d}\sigma_{\mathsf{DY}}^{NN}}{\mathrm{d}M\mathrm{d}y} = K \frac{8\pi\alpha}{9sM} \sum_{q=u,d,s} e_q^2 \left[q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)\right]$$

- parton distribution functions: GRV94LO
- higher-order effects
 - K factor
 - non-zero pair q_T : for IMR and HMR fitted by Gaussian spectrum (NA50 procedure)
- $\bullet\,$ extrapolation to LMR: constrained by photon point $M\to 0$

Drell-Yan Annihilation and correlated charm decays

• invariant-mass spectrum for DY pairs

$$\frac{\mathrm{d}N_{\mathsf{DY}}^{AA}}{\mathrm{d}M\mathrm{d}y}\Big|_{b=0} = \frac{3}{4\pi R_0^2} A^{4/3} \frac{\mathrm{d}\sigma_{\mathsf{DY}}^{NN}}{\mathrm{d}M\mathrm{d}y}$$
$$\frac{\mathrm{d}\sigma_{\mathsf{DY}}^{NN}}{\mathrm{d}M\mathrm{d}y} = K \frac{8\pi\alpha}{9sM} \sum_{q=u,d,s} e_q^2 \left[q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)\right]$$

- parton distribution functions: GRV94LO
- higher-order effects
 - K factor
 - non-zero pair q_T : for IMR and HMR fitted by Gaussian spectrum (NA50 procedure)
- extrapolation to LMR: constrained by photon point $M \rightarrow 0$
- Correlated decays of D and \bar{D} mesons
 - use data (provided by NA60 collaboration)

Invariant-mass spectra

- Fireball with "standard" EoS-A ($T_c = T_{\text{chem}} = 175 \text{ MeV}$)
- overall normalization ⇔ total fireball lifetime
- relative normalization of thermal radiation fixed by rates
- rates integrated over time, volume, \vec{q} including NA60 acceptance

good description of data

Excess spectra: IMR and multi-pion contributions

• " 4π contributions" $(\pi + \omega, a_1 \rightarrow \mu^+ + \mu^-)$

• slightly enhanced by VA mixing

Excess spectra: baryon effects

• in-medium VM spectral functions without baryon effects

- not enough broadening around $M=m_{\rho}^{\rm vac}$
- lack of strength at low mass $M
 ightarrow m_{
 m thr} = 2 m_{\mu}$

Excess spectra: q_T binning

^{18 / 36}

m_T spectra (central)

- fixed normalization in $0 \le q_T \le 0.5 \text{ GeV}$ bin
- satisfactory description of data
- high-mass bin slightly overestimated
- hard probes important for $q_T \ge 1 \text{ GeV}$

m_T spectra (semicentral)

Sensitivity to meson *t*-channel exchange contributions

Sensitivity to T_c and hadro-chemistry

- recent lattice QCD: $T_c \simeq 190\text{-}200 \text{ MeV}$ or $T_c \simeq 150\text{-}160 \text{ MeV}$?
- thermal-model fits to hadron ratios: $T_{\rm chem} \simeq 150\text{-}160 \text{ MeV}$

- EoS-A: $T_c = T_{chem} = 175 \text{ MeV}$
- EoS-B: $T_c = T_{\text{chem}} = 160 \text{ MeV}$
- EoS-C: $T_c = 190$ MeV, $T_{\text{chem}} = 160$ MeV
 - $T_c \ge T \ge T_{\text{chem}}$: hadron gas in chemical equilibrium
- keep fireball parameters the same (including life time)

Sensitivity to T_c and hadro-chemistry

- recent lattice QCD: $T_c \simeq 190\text{-}200 \text{ MeV}$ or $T_c \simeq 150\text{-}160 \text{ MeV}$?
- thermal-model fits to hadron ratios: $T_{\rm chem} \simeq 150\text{-}160 \text{ MeV}$

- EoS-A: $T_c = T_{\text{chem}} = 175 \text{ MeV}$
- EoS-B: $T_c = T_{\text{chem}} = 160 \text{ MeV}$
- EoS-C: $T_c = 190$ MeV, $T_{\text{chem}} = 160$ MeV
 - $T_c \ge T \ge T_{\text{chem}}$: hadron gas in chemical equilibrium
- keep fireball parameters the same (including life time)

EoS-B

- $\bullet\,$ mass spectra comparable to EoS-A $\leftrightarrow\,$ slight enhancement of fireball lifetime
- in IMR QGP > multi-pion contribution
- higher hadronic temperatures \Rightarrow slightly harder q_T spectra
- not enough to resolve discrepancy with data

EoS-C

- mass spectra comparable to EoS-A ↔ slight reduction of fireball lifetime
- in IMR multi-pion \gg QGP contribution
- higher hadronic temperatures + high-density hadronic phase \Rightarrow harder q_T spectra
- better agreement with data

IMR: QGP vs. multi-pion radiation

- EoS-B: QGP dominates over multi-pion radiation
- opposite in EoS-A and EoS-C
- multi-pion radiation dominantly from high-density hadronic phase

reason: $dN_{ll}/dM dT \propto Im \Pi_{em}(M,T) \exp(-M/T) T^{-5.5}$

- radiation maximal for $T=T_{\max}=M/5.5$
- \bullet hadronic and partonic radiation "dual" for $T\sim T_c$

compatible with chiral-symmetry restoration!

Hendrik van Hees (Texas A&M University)

Inverse-slope analysis

• fit of theoretical q_T spectra: 1 GeV $< q_T < 1.8$ GeV

• standard fireball acceleration: too soft q_T spectra

• lower T_c in EoS-B and EoS-C helps (higher hadronic temperatures)

• NB: here, Drell Yan contribution taken out

Hendrik van Hees (Texas A&M University)

Medium Modifications of Hadrons

Inverse-slope analysis

- enhance fireball acceleration to $a_{\perp}=0.1c^2/{
 m fm}$
- effective at all stages of fireball evolution
- agreement in IMR not spoiled ⇔ dominated from earlier stages
- EoS-B harder ⇔ relative contribution of harder freezeout ρ decays vs. thermal ρ's larger

Inverse-slope analysis

• sensitivity to contributions from meson *t*-channel exchange

- hardens low-mass region
- using vacuum ρ in *t*-channel contribution: enhances slope in ρ region
- sensitivity to Drell-Yan contribution
 - for IMR: describes effect seen in data (open vs. solid square data point)
 - in LMR: too high around muon threshold ⇔ due to uncertainties in extrapolation to low M?!?

Slopes of thermal radiation

- use EoS-B with $a_{\perp}=0.1c^2/{
 m fm}$
- fit the dilepton slopes from thermal sources only

• freeze-out and primordial ho's crucial for $q_T > 1 \; {\rm GeV}$

hadron slopes extracted by fit to freeze-out contribution

- η , ω , and ϕ slopes described by EoS-A and smaller a_{\perp}
- ρ slope by EoS-B with larger a_{\perp}
- possible resolution: "successive freezeout" ⇔ vector mesons freeze out at different times, determined by interaction strength (i.e., width)

Conclusions and Outlook

- dilepton spectra ⇔ in-medium em. current correlator
- model for dilepton sources
 - radiation from thermal sources: QGP, $\rho,\,\omega,\,\phi$
 - ρ -decay after thermal freeze-out
 - decays of non-thermalized primordial $\rho{'}{\rm s}$
 - Drell-Yan annihilation, correlated $D\bar{D}$ decays

Conclusions and Outlook

- dilepton spectra ⇔ in-medium em. current correlator
- model for dilepton sources
 - radiation from thermal sources: QGP, $\rho,\,\omega,\,\phi$
 - ρ -decay after thermal freeze-out
 - decays of non-thermalized primordial $\rho{\rm 's}$
 - $\bullet\,$ Drell-Yan annihilation, correlated $D\bar{D}$ decays
- invariant-mass spectra and medium effects
 - excess yield dominated by radiation from thermal sources
 - baryons essential for in-medium properties of vector mesons
 - melting ρ with little mass shift robust signal! (independent of T_c)
 - IMR well described by scenarios with radiation dominated either by QGP or multi-pion processes (depending on EoS)
 - Reason: mostly from thermal radiation around $160~{\rm MeV} \leq T \leq 190~{\rm MeV}$
 - $\Leftrightarrow \text{``parton-hadron''} \text{ duality of rates}$
 - $\Leftrightarrow \mathsf{compatible} \text{ with chiral-symmetry restoration!}$
 - dimuons in In-In (NA60), Pb-Au (CERES/NA45), γ in Pb-Pb (WA98)

Conclusions and Outlook

- fireball/freeze-out dynamics $\Leftrightarrow m_T$ spectra and effective slopes
 - "non-thermal sources" important for $q_T\gtrsim 1~{\rm GeV}$
 - lower $T_c \Rightarrow$ higher hadronic temperatures \Rightarrow harder q_T spectra
 - to describe measured effective slopes $a_{\perp}=0.085c^2/{
 m fm}
 ightarrow 0.1c^2/{
 m fm}$
 - off-equilibrium effects (viscous hydro)?

• Further developments

- understand recent PHENIX results (large dilepton excess in LMR)
- vector- should be complemented with axial-vector-spectral functions $(a_1 \text{ as chiral partner of } \rho)$
- constrained with IQCD via in-medium Weinberg chiral sum rules
- direct connection to chiral phase transition!

Backup: parton-hadron duality of rates

- in-medium hadron gas matches with QGP
- $\bullet\,$ similar results also for $\gamma\,$ rates
- "quark-hadron duality" !?
- indirect evidence for chiral-symmetry restoration

Backup: CERES/NA45 dielectron spectra

- good agreement also for dielectron spectra in 158 GeV Pb-Au
- \bullet allows further check of low-mass tail from baryon effects down to $M \to 2 m_e$

Backup: Low- m_T rise

- observed low- q_T deviation from $\frac{\mathrm{d}N}{m_T\mathrm{d}m_T} \propto \exp\left(-\frac{m_T}{T_{\mathrm{eff}}}\right)$
- asymptotic limit for $M \gg T$ AND $q_T \gg M$ for ll from fo- ρ decays
- for hadrons or radiation from freeze-out ρ 's:

$$\frac{\mathrm{d}N^{(\text{fo})}}{m_T \mathrm{d}m_T} \propto \begin{cases} \exp\left(-\frac{m_T}{T_{\text{eff}}}\right) & \text{for } q_T \gg M \gg T \\ \sqrt{m_T} \exp\left(-\frac{m_T}{T_{\text{eff}}'}\right) & \text{for } q_T \ll T \ll M. \end{cases}$$

• for radiation from thermal source:

$$\frac{\mathrm{d}N^{(\mathsf{MT})}}{m_T\mathrm{d}m_T} \propto \begin{cases} \frac{1}{m_T} \exp\left(-\frac{m_T}{T_{\mathsf{eff}}}\right) & \text{for } q_T \gg M \gg T\\ \frac{1}{\sqrt{m_T}} \exp\left(-\frac{m_T}{T_{\mathsf{eff}}'}\right) & \text{for } q_T \ll T \ll M. \end{cases}$$

• with effective inverse slopes

$$T_{\rm eff} = T \sqrt{\frac{1+\xi\beta^B}{1-\xi\beta^B}} \ (0<\xi<1), \quad T_{\rm eff}' \simeq T + \frac{M}{2} \left<\beta^2(r)\right>_r = T + \frac{M}{4}\beta_B^2.$$

• possibly also effect of Bose Enhancement due to μ_{mesons}

Backup: Low- m_T rise

