The Dilepton Probe from SIS to RHIC

Hendrik van Hees

Justus-Liebig Universität Gießen

April 14, 2010

Hendrik van Hees (JLU Gießen)

1 Electromagnetic probes in heavy-ion collisions

- 2 Dileptons at SIS energies
- Oileptons at SPS and RHIC

Electromagnetic probes in heavy-ion collisions

Vector Mesons and electromagnetic Probes

• $\ell^+\ell^-$ thermal emission rates \Leftrightarrow em. current-correlation function, $\Pi_{\mu\nu}$

[L. McLerran, T. Toimela 85, H. A. Weldon 90, C. Gale, J.I. Kapusta 91]

$$\frac{\mathrm{d}N_{e^+e^-}}{\mathrm{d}^4x\mathrm{d}^4q} = -g^{\mu\nu}\frac{\alpha^2}{3q^2\pi^3} \operatorname{Im}\Pi^{(\mathrm{ret})}_{\mu\nu}(q)\Big|_{q^2 = M^2_{e^+e^-}} f_B(q_0)$$

• vector-meson dominance model:

$$\Pi_{\mu\nu} = \underbrace{\gamma^*}_{\gamma^*} \underbrace{\gamma^*}_{\gamma^*}$$

0

hadronic many-body theory for vector mesons

● elementary processes ⇔ cut self-energy diagrams

Relation to the QCD-phase diagram

- at high temperature/density: restoration of chiral symmetry
- Lattice QCD: $T_c^{\chi} \simeq T_c^{\text{deconf}}$

- Mechanism of chiral restoration?
- Two main theoretical ideas
 - "dropping masses": $m_{
 m had} \propto \left< ar{\psi} \psi \right>$
 - "melting resonances": broadening of spectra through medium effects
 - More theoretical question: Realization of chiral symmetry in nature?

Hendrik van Hees (JLU Gießen)

April 14, 2010

5 / 22

- dileptons from heavy-ion collisions at DLS at $E=1A~{
 m GeV}$ [Porter et al, PRL 79, 1229 (1997)]
- large enhancement at low invariant masses unexplained

DLS puzzle

Experimental solution

DLS measurement confirmed by HADES at GSI

[Sudol et al, EPJC 62, 81 (2009)]

Theoretical "HADES Puzzle"

- one-boson-exchange models by Kaptari/Kämpfer, Shyam/Mosel,... ⇒ importance of elementary pp- and pn-Bremsstrahlung cross section
- also Δ -Dalitz decays
- in CC collisions: little medium effects!

Theoretical "HADES Puzzle"

- one-boson-exchange model by Shyam/Mosel
- Bremsstrahlung in pp and pn collisions

Theoretical "HADES Puzzle"

• elementary pp- and pn-cross sections

- discrepancy between models (KK vs. SM); resolution work in progress only difference: pseudo-scalar vs. pseudo-vector couplings (should be on-shell equivalent!)
- discrepancy of between theory and experiment in pn bremsstrahlung

[Shyam, private comm.]

• pn: inclusion of Fermi motion (additional channels!)

GiBUU (preliminary)

- Gießen Boltzmann-Uehling-Uhlenbeck transport model
- describes pp data
- pn: similar problems as with OBE models (work in progress)

Hendrik van Hees (JLU Gießen)

Dileptons at SPS and RHIC

• radiation from thermal sources: Hadronic many-body theory

[R. Rapp, J. Wambach 99]

- baryon effects important
- $n_B + n_{\bar{B}}$ relevant quantity (not net-baryon density)!

Dilepton rates: Hadron gas \leftrightarrow QGP

- in-medium hadron gas matches with QGP
- $\bullet\,$ similar results also for $\gamma\,$ rates
- "quark-hadron duality" !?
- consistent with chiral-symmetry restoration
- "resonance melting" rather than "dropping masses"

Sources of dilepton emission in heavy-ion collisions

- initial hard processes: Drell Yan

$$\frac{1}{q_T} \frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}M \mathrm{d}q_T} = \int \mathrm{d}^4 x \int \mathrm{d}y \int M \mathrm{d}\varphi \frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}^4 x \mathrm{d}^4 q} \mathsf{Acc}(M, q_T, y)$$

use cylindrical thermal fireball with QGP, mixed and hadronic phase
"corona" ⇔ emission from "primordial" mesons (jet-quenching)
after thermal freeze-out ⇔ emission from "freeze-out" mesons
[Cooper, Frye 1975]

$$N^{\rm (fo)} = \int \frac{\mathrm{d}^3 q}{q_0} \int q_{\mu} \mathrm{d}\sigma^{\mu} f_B(u_{\mu}q^{\mu}/T) \frac{\Gamma_{\rm meson \to \ell^+ \ell^-}}{\Gamma_{\rm meson}} \mathrm{Acc}$$

1

CERES/NA45 dielectron spectra

- good agreement also for dielectron spectra in $158 \ {
 m GeV}$ Pb-Au
- low-mass tail from baryon effects

Hadron spectra

- NA60: Extracted hadronic p_T spectra from $\mu^+\mu^-$ "cocktail"
- analysis of "cocktail": hadron-m_T spectra
- comparison to fireball evolution ⇔ fixes radial acceleration
- "sequential freeze-out" due to different coupling strength

Hadron spectra

- NA60: Extracted hadronic p_T spectra from $\mu^+\mu^-$ "cocktail"
- analysis of "cocktail": hadron-m_T spectra
- comparison to fireball evolution ⇔ fixes radial acceleration
- "sequential freeze-out" due to different coupling strength

Hadron spectra

- NA60: Extracted hadronic p_T spectra from $\mu^+\mu^-$ "cocktail"
- analysis of "cocktail": hadron- m_T spectra
- comparison to fireball evolution \Leftrightarrow fixes radial acceleration
- "sequential freeze-out" due to different coupling strength

Importance of baryon effects

- baryonic interactions important!
- in-medium broadening
- Iow-mass tail!

IMR: QGP vs. multi-pion radiation

$$T = T_{\rm max} = M/5.5$$

- hadronic and partonic radiation "dual" for $T \sim T_c$ compatible with chiral-symmetry restoration!
- inconclusive whether hadronic or partonic emission in IMR!

Dileptons@RHIC: (Another) new Puzzle?

huge enhancement in the LMR unexplained yet!

[A. Adare et al (PHENIX), arXiv:0912.0244 [nucl-ex]]

[A. Adare et al (PHENIX), arXiv:0912.0244 [nucl-ex]]

Conclusions and Outlook

- dilepton spectra ⇔ in-medium em. current correlator
- SIS energies
 - dominated by bremsstrahlung and Dalitz decays
 - puzzle in OBE models: pp vs. pn bremsstrahlung
- SPS and RHIC energies
 - excess yield dominated by radiation from thermal sources
 - baryons essential for in-medium properties of vector mesons
 - melting vector mesons with little mass shift
 - IMR well described by scenarios with radiation dominated either by QGP or multi-pion processes (depending on EoS)
 - "quark-hadron duality" of $\ell^+\ell^-$ rates around T_c
 - compatible with chiral symmetry restoration!
 - new puzzle @ RHIC?!?
 - recent review:

R. Rapp, J. Wambach, HvH, Landolt-Börnstein, 1-23A arXiv: 0901.3289 [hep-ph]