Heavy flavor with CBM@FAIR

Hendrik van Hees

Goethe University Frankfurt and FIAS

April 21, 2015

- 2 Open-heavy-flavor observables
- 3 Charmonium observables

Motivation

• Open heavy-flavor mesons

- Fast equilibration of hot and dense matter in heavy-ion collisions
- Heavy quarks as calibrated probe of QGP properties
 - produced in early hard collisions: well-defined initial conditions
 - not fully equilibrated due to large masses
 - heavy-quark diffusion \Rightarrow QGP- and hadron-transport properties
 - drag and diffusion coefficients
- Questions at FAIR
 - importance of D and \overline{D} reactions in hadronic medium?
 - influence of high net-baryon density?
 - pp/pA baseline mandatory for theory!
- Charmonia
 - Matsui and Satz (1986): Melting of quarkonia in QGP
 - suppression \leftrightarrow regeneration in QGP
 - binding \longleftrightarrow color screening, dissociation through collisions
 - importance of hadronic processes?
 - Questions at FAIR
 - charmonia in medium at low energies?
 - again pp/pA baseline needed!

Open-heavy-flavor transport in Heavy-Ion collisions

hard production of HQs described by PDF's + pQCD (PYTHIA)

c,*b* quark

HQ rescattering in QGP: Langevin simulation drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP

Hadronization to *D*,*B* mesons via quark coalescence + fragmentation

semileptonic decay \Rightarrow "non-photonic" electron observables $R_{AA}^{e^+e^-}(p_T), v_2^{e^+e^-}(p_T)$

- Langevin process: friction force + Gaussian random force
- in the (local) rest frame of the heat bath

$$d\vec{x} = \frac{\vec{p}}{E_p} dt,$$

$$d\vec{p} = -A\vec{p} dt + \sqrt{2dt} \left[\sqrt{B_0}P_{\perp} + \sqrt{B_1}P_{\parallel}\right]\vec{w}$$

- \vec{w} : normal-distributed random variables
- A: friction (drag) coefficient
- $B_{0,1}$: diffusion coefficients

Non-perturbative interactions: Resonance Scattering

- General idea: Survival of *D* and *B*-meson like resonances above *T_c*
- model based on chiral symmetry (light quarks) HQ-effective theory
- elastic heavy-light-(anti-)quark scattering

• *D* - and *B*-meson like resonances in sQGP

parameters

- $m_D = 2 \text{ GeV}, \Gamma_D = 0.4...0.75 \text{ GeV}$
- $m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$

T-matrix

• Brueckner many-body approach for elastic Qq, $Q\bar{q}$ scattering

- *V*: static $q\bar{q}$ potential from lattice QCD (*F* and *U*)
- reduction scheme: 4D Bethe-Salpeter → 3D Lipmann-Schwinger
- S- and P waves

[HvH, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)]

T-matrix results

- resonance formation at lower temperatures $T \simeq T_c$
- melting of resonances at higher *T*
- model-independent assessment of elastic Qq, $Q\bar{q}$ scattering!

Nonphotonic electrons at RHIC

- UrQMD-hydro hybrid model for bulk evolution
- Langevin simulation for heavy quarks
- form D and B mesons via quark-antiquark coalescence
- use PYTHIA for semi-leptonic decays
- comparison to non-photonic electron data from PHENIX (200 AGeV Au-Au collisions)

D mesons at LHC

- UrQMD-hydro hybrid model for bulk evolution
- Langevin simulation for heavy quarks
- form D via quark-antiquark coalescence
- comparison to D-meson data from ALICE (2.76 *A*TeV Pb-Pb collisions)

D mesons at FAIR (Pb Pb at 25AGeV)

- UrQMD-hydro hybrid model for bulk evolution
- Langevin simulation for heavy quarks
- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)
- mandatory to get pp (and pA?) baseline from CBM!

Hendrik van Hees (GU Frankfurt/FIAS)

D mesons at FAIR (Pb Pb at 25AGeV)

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)

[T. Lang, HvH, J. Steinheimer, M. Bleicher, arXiv: 1305.1797 [hep-ph]]

D mesons at FAIR (Pb Pb at 25AGeV)

- form D via quark-antiquark coalescence
- large sensitivity to initial HQ distributions (use estimates from HSD and PYTHIA)
- large μ_B in resonance model: \overline{c} more dragged than c

[T. Lang, HvH, J. Steinheimer, M. Bleicher, arXiv: 1305.1797 [hep-ph]]

Dileptons from correlated $D\overline{D}$ decays

• for $m_{\phi} \lesssim M_{\ell^+ \ell^-} \lesssim m_{J/\psi}$:

dilepton emission from thermal QGP and from correlated $D\overline{D}$ decays

• medium modifications of D and \overline{D} destroy correlations

[T. Lang, HvH, J. Steinheimer, M. Bleicher, arXiv: 1305.7377 [hep-ph]]

Hendrik van Hees (GU Frankfurt/FIAS)

Charmonia in AA collisions

• $c \overline{c}$ bound states: non-relativistic Schrödinger eq.

$$\left[2m_c - \frac{\Delta}{m_c} + V(r)\right]\psi(\vec{r}) = m_{\psi}\psi(\vec{r})$$

• in vacuum: Cornell potential

$$V(r) = \sigma r - \frac{\alpha}{r}$$

- in the vacuum: good charmonia (bottomonia) spectroscopy
- potential in medium?
 - expect some (partial) screening
 - Matsui, Satz (1986): melting of charmonia in medium
 - newer developments: NRQCD methods in medium [N. Brambilla et al] ; thermal T-matrix approach with lQCD potentials

[S. Y. F. Liu, R. Rapp, arXiv:1501.07892 [hep-ph]]

• at low energies: hadronic interactions?

• production dominated by gluon fusion

[L. Kluberg, H. Satz, Landolt-Börnstein, arXiv:0901.3831 [hep-ph]]

Production of charmonia: pA

• in pA: cold nuclear-matter effects

• shadowing/anti-shadowing: nuclear modification of f_g :

[L. Kluberg, H. Satz, Landolt-Börnstein, arXiv:0901.3831 [hep-ph]]

Charmonia in AA: suppression \leftrightarrow regeneration

- at high energies: **QGP formation**
- suppression and regeneration of charmonia
- relative to formation in pp + CNM effects!
- gluon absorption; Bhanot + Peskin: strongly bound states; $g + J/\psi \rightarrow c + \overline{c}$
- suppressed for weak binding (higher temperatures!): quasifree dissociation; $g + J/\psi \rightarrow c + \overline{c} + g$

[R. Rapp, HvH, in HwaQuark Gluon Plasma IV, arXiv: 0903.1096 [hep-ph]]

• and inverse reaction (detailed balance!): regeneration

Charmonia in AA: suppression \leftrightarrow regeneration

- at low energies: reactions in hot/dense hadronic matter: $J/\psi + h \leftrightarrow D\overline{D}$
- gluo effect [Bhanot, Peskin 1979; Kharzeev, Satz 1995]
- comover quark exchange [Brodsky, Müller 1988; Martins, Blaschke, Quack 1994; Matinyan, Müller 1998]

Charmonia in AA: suppression \leftrightarrow regeneration

[[]H. Satz, talk at H4F Heavy-Quark Workshop 2014]

- want to learn about charmonia in dense/hot hadronic medium
- need to understand total charm-production cross sections at low energies for pp, pA, and AA
- need all this for both open and hidden charm
- if possible at same \sqrt{s}

Summary

- Open heavy flavor
 - non-perturbative interactions
 - mechanism for strong coupling: resonance formation at $T \gtrsim T_c$
 - lattice-QCD potentials parameter free
 - also provides "natural" mechanism for quark coalescence

[R. Ravagli, HvH, R. Rapp, Phys. Rev. C 79, 064902 (2009)]

• heavy-quark diffusion in hot/dense medium

- model calibrated by comparison to R_{AA} and v_2 of non-photonic electrons at RHIC, D mesons at LHC
- R_{AA} and v_2 for D mesons at FAIR (pp baseline mandatory!)
- impact of medium modifications on correlated DD decays to dileptons
- Charmonia
 - Charmonium production in pp and pA (CNM effects)
 - in partonic medium: gluo dissociation, quasi-free scattering
 - in hadronic medium: gluon effect, comover quark exchange
- FAIR has a chance to shed light on "terra incognita" of charmonia
 - production processes for open and hidden charm at low energies
 - hadron-charmonium processes in baryon rich matter