Electromagnetic probes: Messengers from the hot and dense fireball

Hendrik van Hees

Goethe University Frankfurt

November 5, 2014

Outline

Electromagnetic probes and hadron resonances

- Em. current correlation function and electromagnetic probes
- Sources of dilepton emission in heavy-ion collisions
- Thermal (effective hadronic) QFT approach
- Kinetic theory (transport) approach

Dileptons in pp, pn, pA, AA in pure transport (GiBUU with J. Weil)

- GiBUU
- Dalitz decays of hadron resonances
- Baryon-resonance model at SIS energies
- Dielectrons (SIS/HADES)

3 Dileptons at SPS and RHIC (with Ralf Rapp)

4 Conclusions

Em. current correlator in-medium approaches $\ell^+\ell^-$ and γ rates

Em. current correlation function and electromagnetic Probes

• photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f})$ [MT85, Wel90, GK91]

$$\Pi_{\mu\nu}^{<}(q) = \int d^{4}x \exp(iq \cdot x) \left\langle J_{\mu}(0)J_{\nu}(x) \right\rangle_{T} = -2f_{B}(q \cdot u) \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q)$$

$$q_{0} \frac{dN_{\gamma}}{d^{4}xd^{3}\vec{q}} = -\frac{\alpha}{2\pi^{2}}g^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q) \Big|_{q_{0} = |\vec{q}|} f_{B}(q \cdot u)$$

$$\frac{dN_{e^{+}e^{-}}}{d^{4}xd^{4}q} = -g^{\mu\nu} \frac{\alpha^{2}}{3q^{2}\pi^{3}} \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q) \Big|_{q^{2} = M_{e^{+}e^{-}}^{2}} f_{B}(q \cdot u)$$

- *u*: four-velocity of the fluid cell; $p \cdot u = p_0^{hb}$ energy in "heat-bath frame"
- to lowest order in α : $e^2 \Pi_{\mu\nu} \simeq \Sigma_{\mu\nu}^{(\gamma)}$
- vector-meson dominance model:

$$\Sigma^{\gamma}_{\mu\nu} =$$

 α

Sources of dilepton emission in heavy-ion collisions

- initial hard processes: Drell Yan
- 2 "core" \Leftrightarrow emission from thermal source

$$\frac{1}{q_T}\frac{\mathrm{d}N^{(\mathrm{thermal})}}{\mathrm{d}M\mathrm{d}q_T} = \int\mathrm{d}^4x\int\mathrm{d}y\int M\mathrm{d}\varphi\frac{\mathrm{d}N^{(\mathrm{thermal})}}{\mathrm{d}^4x\mathrm{d}^4q}$$

● "corona" ⇔ emission from "primordial" mesons (jet-quenching)
 ● after thermal freeze-out ⇔ emission from "freeze-out" mesons
 [CF74]

$$N^{(\text{fo})} = \int \frac{\mathrm{d}^3 q}{q_0} \int q_\mu \mathrm{d}\sigma^\mu f_B(u_\mu q^\mu/T) \frac{\Gamma_{\text{meson}\to\ell^+\ell^-}}{\Gamma_{\text{meson}}}$$

[HR08, HR06]

Hadronic many-body theory

- HMBT for vector mesons [Ko et al, Chanfray et al, Herrmann et al, Rapp et al, ...]
- $\pi\pi$ interactions and baryonic excitations

- +corresponding vertex corrections ⇔ gauge invariance
- Baryon (resonances) important, even at RHIC with low **net** baryon density $n_B n_{\bar{B}}$
- reason: $n_B + n_{\bar{B}}$ relevant (CP inv. of strong interactions)

Rapp-Wambach model

• pion cloud: dressing with baryon resonance excitations [RW00]

• direct ρ - N/Δ interactions \Rightarrow [RW00]

В	$l_{\rho N}$	$SI(\rho BN^{-1})$	$\Gamma^0_{\rho N}$ [MeV]	$\Gamma^{0,fit}_{\rho N}$ [MeV]	$\left(\frac{f_{\rho BN}^2}{4\pi}\right)$	$\Lambda_{\rho BN}$	Γ^{med} [MeV]
N(939)	P	4	_	_	6.0	1500	0
$\Delta(1232)$	P	16/9	_	_	16.2	700	25
N(1440)	P	4	$<\!28$	0.5	1.1	600	200
N(1520)	S	8/3	24	23.5	6.8	600	300
$\Delta(1620)$	S	8/3	24	36	1.5	700	200
$\Delta(1700)$	S	16/9	128	111	2.5	1000	200
N(1720)	P	8/3	115	100	8.5	600	100
$\Delta(1905)$	P	4/5	>210	315	14.5	1200	50
N(2000)	P	6/5	~ 300	75	1.0	1500	50

• direct *ρ*-heavy-meson interactions [GR99]

R	$I^G J^P$	$\Gamma_{tot} [\text{MeV}]$	ρh decay	$\Gamma^0_{ hoh}$ [MeV]	$\Gamma^0_{\gamma h} [{ m MeV}]$
ω(782)	0-1-	8.43	$ ho \pi$	~ 5	0.72
$h_1(1170)$	$0^{-}1^{+}$	~ 360	$ ho \pi$	seen	?
$a_1(1260)$	$1^{-}1^{+}$	~ 400	$ ho \pi$	dominant	0.64
$K_1(1270)$	$\frac{1}{2}1^+$	~ 90	ρK	~ 60	?
$f_1(1285)$	$0^{+}1^{+}$	25	ρρ	≤8	1.65
$\pi'(1300)$	$1^{-}0^{-}$	$\sim \! 400$	$ ho \pi$	seen	?

Photoabsorption on nucleons and nuclei

- important: fit of model parameters to data
- particle-data book: decay widths, branching rations,...
- photo-absorption on nucleons and nuclei [RW00]

Meson contributions to ρ -selfenergy

[GR99, RW00]

Hendrik van Hees (GU Frankfurt)

In-medium spectral functions and baryon effects

[GR99, RW00]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

In-medium spectral functions and baryon effects

[GR99, RW00]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

In-medium spectral functions and baryon effects

[GR99, RW00]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

Intermediate masses: hadronic " 4π contributions"

• e.m. current-current correlator $\Leftrightarrow \tau \rightarrow 2n\pi$

• " 4π contributions": $\pi + \omega, a_1 \rightarrow \mu^+ + \mu^-$

- leading-order virial expansion for "four-pion piece"
- additional strength through "chiral mixing"

[HR08, HR06]

- in QGP phase: $q\bar{q}$ annihilation
- HTL improved electromagnetic current correlator

- or em. current correlator from the lattice $[DFK^+11]$ (extrapolated to finite q)
- "quark-hadron duality" around T_c

[Rap13]

Dilepton rates: Hadron gas \leftrightarrow QGP

- in-medium hadron gas matches with QGP
- similar results also for γ rates
- "quark-hadron duality"?

[Rap13]

Kinetic theory (transport) approach

- cross sections in collision terms: same physics as in QFT approaches
- Fermi's golden rule: S-matrix amplitudes $\Leftrightarrow |\mathcal{M}_{ii}^2| \Leftrightarrow$ self-energy diagrams
- other way around: cut self-energy diagrams \Leftrightarrow S-matrix amplitudes

[FHK+11]

Dileptons in pp, pn, pA, AA pure transport: GiBUU (with Janus Weil)

The GiBUU Model

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

- Boltzmann-Uehling-Uhlenbeck (BUU) framework for hadronic transport
- reaction types: pA, π A, γ A, eA, ν A, AA
- open-source modular Fortran 95/2003 code
- version control via Subversion
- publicly available realeases: https://gibuu.hepforge.org
- Review on hadronic transport (GiBUU): [BGG⁺12]
- all calculations for dileptons: J. Weil

Resonance Model

- reactions dominated by resonance scattering: $ab \rightarrow R \rightarrow cd$
- Breit-Wigner cross-section formula

$$\sigma_{ab\to R\to cd} = \frac{2s_R + 1}{(2s_a + 1)(2s_b + 1)} \frac{4\pi}{p_{\text{lab}}^2} \frac{s\Gamma_{ab\to R}\Gamma_{R\to cd}}{(s - m_R^2)^2 + s\Gamma_{\text{tot}}^2}$$

- applicable for low-energy nuclear reactions $E_{\rm kin} \lesssim 1.1 \, {\rm GeV}$
- example: $\sigma_{\pi^- p \to \pi^- p}$ [Teis (PhD thesis 1996), data: Baldini et al, Landolt-Börnstein 12 (1987)]

Hendrik van Hees (GU Frankfurt)

[WHM12, WM13]

• keep same resonances (parameters from Manley analysis)

	$M_0 = \Gamma_0 = \mathcal{M}^2 /16\pi [\mathrm{mb}\mathrm{GeV}^2]$			branching ratio in %								
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70	_	69	_	22_P		9		_
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_{S}			
$D_{15}(1675)$	****	1676	159	17		47		53_D				_
$P_{13}(1720)$	*	1717	383	4	12	13			87_{P}			_
$F_{15}(1680)$	****	1684	139	4	12	70	_	$10_P + 1_F$	$5_P + 2_F$	12	_	_
$P_{33}(1232)$	****	1232	118	OBE	210	100	_			_	_	_
$S_{31}(1620)$	**	1672	154	7	21	9		62_{D}	$25_S + 4_D$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S			_
$P_{31}(1910)$	****	1882	239	14		23					67	10_{P}
$P_{33}(1600)$	***	1706	430	14		12		68_{P}			20	
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_{P}			
$F_{37}(1950)$	****	1945	300	14		38	_	18_{F}	_	_		44_F

• production channels in Teis: $NN \rightarrow N\Delta$, $NN \rightarrow NN^*$, $N\Delta^*$, $NN \rightarrow \Delta\Delta$

• extension to $NN \to \Delta N^*, \Delta \Delta^*, NN \to NN\pi, NN \to NN\rho, NN\omega, NN\pi\omega, NN\phi, NN \to BYK (B = N, \Delta, Y = \Lambda, \Sigma)$

[WHM12, WM13]

GiBUU Extension to HADES energies

• good description of total pp, pn (inelastic) cross section

dilepton sources

- Dalitz decays: $\pi^0, \eta \to \gamma \ell^+ \ell^-; \omega \to \pi^0 \ell^+ \ell^-, \Delta \to N \ell^+ \ell^-$
- ρ, ω, φ → ℓ⁺ℓ⁻: invariant mass ℓ⁺ℓ⁻ spectra ⇒ spectral properties of vector mesons
- for details, see [WHM12]

Exclusive pion production: p+p (3.5 GeV) (SIS/HADES)

- exclusive $p + p \rightarrow p + n + \pi^+$
- left: $M_{p\pi^+}$ spectrum; right: $M_{n\pi^+}$ spectrum
- model 1: GiBUU; model 2: UrQMD
- chance to refine resonance models further!

GiBUU: " ρ meson" in pp

• production through hadron resonances $NN \rightarrow NR \rightarrow NN\rho$, $NN \rightarrow N\Delta \rightarrow NN\pi\rho$

• " ρ "-line shape "modified" already in elementary hadronic reactions

• due to production mechanism via resonances

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model
- model for em. transition form factor

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model
- model for em. transition form factor

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model
- model for em. transition form factor

p + p at 1.25 GeV

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model
- model for em. transition form factor

d + p at 1.25 GeV

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model
- model for em. transition form factor

p + p at 2.2 GeV

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model
- model for em. transition form factor

p + p at 3.5 GeV

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

• with vacuum spectral functions:

Hendrik van Hees (GU Frankfurt)

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

• with medium modified spectral functions:

• no definite hint for medium modifications in p Nb

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

- medium effects built in transport model
 - binding effects, Fermi smearing, Pauli blocking
 - final-state interactions
 - production from secondary collisions
- sensitivity on medium effects of vector-meson spectral functions?

GiBUU: Ar+KCl (1.76AGeV) (SIS/HADES)

GiBUU: Ar+KCl (1.76AGeV) (SIS/HADES)

GiBUU (NEW!): Au+Au (1.23 AGeV) (SIS/HADES)

Au + Au @ 1.23 GeV

- caveat: pp/np acceptance filter with single-e cut, $p_t < 100 \text{ MeV}$
- correct filter urgently needed!
- comparison to preliminary HADES data [Gal14] ⇒ room for medium modifications (data points not shown here on request of the HADES collaboration)

GiBUU (NEW!): π +p (566 MeV) (SIS/HADES)

Hendrik van Hees (GU Frankfurt)

GiBUU (NEW!): π +p (566 MeV) (SIS/HADES)

GiBUU (NEW!): π +C (566 MeV) (SIS/HADES)

 π^{-} + C, E_{kin} = 0.566 GeV

Hendrik van Hees (GU Frankfurt)

GiBUU (NEW!): π +C (566 MeV) at (SIS/HADES)

Dileptons at SPS and RHIC thermal fireball model (with Ralf Rapp)

• NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

Hendrik van Hees (GU Frankfurt)

• NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

Hendrik van Hees (GU Frankfurt)

Importance of baryon effects

- baryonic interactions important!
- in-medium broadening
- low-mass tail!

Update: Using lattice equation of state

- use equation of state from lattice calculations (cross over!)
- use QGP rates adapted to recent lattice results
- IMR slope: true (average) temperature of source (no blue shift as in q_T spectra!): $T \simeq 205-230$ MeV (above $T_c \simeq 160$ MeV!)

• compatible with coarse-grained UrQMD calculation (see Stephan Endres's talk!)

RHIC beam-energy scan (STAR)

- dielectron spectra Au+Au collisions ($\sqrt{s_{NN}} = 200 \text{ GeV}$) at RHIC/STAR
- same model as before successful over wide range of beam energies [Rap13]
- NB: together with CG UrQMD also at SIS energies! (see S. Endres's talk)

Hendrik van Hees (GU Frankfurt)

RHIC beam-energy scan (STAR)

- dielectron spectra Au+Au collisions at RHIC
- same model as before successful over wide range of beam energies [Rap13]
- NB: together with CG UrQMD also at SIS energies! (see S. Endres's talk)

RHIC beam-energy scan (STAR)

- fireball model \Rightarrow lifetime, dilepton excess, temperature as fct. of $\sqrt{s_{NN}}$
- indications of phase transition???

Conclusions

- General ideas
 - em. probes \Leftrightarrow in-medium em. current-correlation function
 - effective QFT models for hadronic interactions and $\ell^+\ell^-$ (and γ !) production
 - HTL improved or lattice QGP $\ell^+\ell^-$ (and γ) rates
 - dual rates around T_c (compatible with χ symmetry restoration)
 - medium modifications of ρ , ω , ϕ
 - importance of hadron-resonance interactions
 - baryon resonances prevalent for medium effects
 - reliable input on resonance physics in elementary reactions crucial!
 - need to fix masses, couplings, form factors (including em. transition FFs)
- Application to dileptons in HICs
 - thermal fireball, (ideal) hydrodynamics, (coarse-grained) transport, hybrid...
 - equation of state ⇔ compatibility with QFT/transport models!?!
 - use of thermal-QFT spectral VM functions
 - successful description at HADES, SPS, and RHIC (STAR)
 - consistent description of M and m_T spectra!
 - not too sensitive to details of medium evolution
 - beam-energy scan at RHIC and FAIR \Rightarrow signature of phase transition?
 - sensitivity to equation of state?
 - signature of cross-over vs. 1st order (or even critical endpoint)?
 - effective slope of M spectra in higher IMR (1.5 GeV $< M < M_{J/\psi}$) provides $\langle T \rangle$

Bibliography I

[BGG⁺12] O. Buss, et al., Transport-theoretical Description of Nuclear Reactions, Phys. Rept. 512 (2012) 1. http://dx.doi.org/10.1016/j.physrep.2011.12.001

 [CF74] F. Cooper, G. Frye, Single-particle distribution in the hydrodynamic and statistical thermodynamics models of multiparticle production, Phys. Rev. D 10 (1974) 186. http://dx.doi.org/10.1103/PhysRevD.10.186

[DFK⁺11] H.-T. Ding, et al., Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504.

[FHK⁺11] B. Friman, et al. (eds.), The CBM Physics Book, vol. 814 of Lecture Notes in Physics, Springer-Verlag, Berlin, Heidelberg (2011). http://www.gsi.de/forschung/fair_experiments/CBM/ PhysicsBook.html

Bibliography II

- [Gal14] T. Galatyuk, HADES overview, Nucl. Phys. A (2014), published online; DOI:10.1016/j.nuclphysa.2014.10.044. http://dx.doi.org/10.1016/j.nuclphysa.2014.10.044
- [GK91] C. Gale, J. I. Kapusta, Vector Dominance Model at Finite Temperature, Nucl. Phys. B **357** (1991) 65. http://dx.doi.org/10.1016/0550-3213(91)90459-B
- [GR99] C. Gale, R. Rapp, Rho Properties in a hot Gas: Dynamics of Meson-Resonances, Phys. Rev. C 60 (1999) 024903. http://publish.aps.org/abstract/PRC/v60/e024903
- [HR06] H. van Hees, R. Rapp, Comprehensive interpretation of thermal dileptons at the SPS, Phys. Rev. Lett. 97 (2006) 102301. http://link.aps.org/abstract/PRL/V97/E102301
- [HR08] H. van Hees, R. Rapp, Dilepton Radiation at the CERN Super Proton Synchrotron, Nucl. Phys. A 806 (2008) 339. http://dx.doi.org/10.1016/j.nuclphysa.2008.03.009

Bibliography III

- [MT85] L. D. McLerran, T. Toimela, Photon and dilepton emission from the quark-gluon plasma: some general considerations, Phys. Rev. D 31 (1985) 545. http://link.aps.org/abstract/PRD/V31/P545
- [Rap13] R. Rapp, Dilepton Spectroscopy of QCD Matter at Collider Energies, Adv. High Energy Phys. 2013 (2013) 148253. http://dx.doi.org/10.1155/2013/148253
- [RW00] R. Rapp, J. Wambach, Chiral symmetry restoration and dileptons in relativistic heavy-ion collisions, Adv. Nucl. Phys. 25 (2000) 1. http://arxiv.org/abs/hep-ph/9909229
- [WEH⁺14] J. Weil, S. Endres, H. van Hees, M. Bleicher, U. Mosel, Dilepton Production in Transport-based Approaches (2014).
- [Wel90] H. A. Weldon, Reformulation of finite temperature dilepton production, Phys. Rev. D 42 (1990) 2384. http://link.aps.org/abstract/PRD/V42/P2384

- [WHM12] J. Weil, H. van Hees, U. Mosel, Dilepton production in proton-induced reactions at SIS energies with the GiBUU transport model, Eur. Phys. J. A 48 (2012) 111. http://dx.doi.org/10.1140/epja/i2012-12111-9,10.1140/ epja/i2012-12150-2
- [WM13] J. Weil, U. Mosel, Dilepton production at SIS energies with the GiBUU transport model, J. Phys. Conf. Ser. 426 (2013) 012035. http://dx.doi.org/10.1088/1742-6596/426/1/012035