Dileptons in heavy-ion collisions with transport models

Hendrik van Hees

Goethe University Frankfurt

October 29, 2014

Outline

Electromagnetic probes in heavy-ion collisions

- Em. current correlation function and electromagnetic probes
- Sources of dilepton emission in heavy-ion collisions
- Sources of thermal photons in heavy-ion collisions

Dileptons in pp, pn, pA, AA in pure transport (GiBUU with J. Weil)

- GiBUU
- Dalitz decays of hadron resonances
- Baryon-resonance model at SIS energies
- Dielectrons (SIS/HADES)

Dileptons in AA in coarse-grained transport (with S. Endres)

- Models for bulk-medium evolution
- Dielectrons (SIS/HADES)
- Dimuons (SPS/NA60)

Conclusions and Outlook

Em. current correlator $\ell^+\ell^-$ and γ rates

Electromagnetic probes in heavy-ion collisions

Drell-Yan

High-Mass Region

< 0.1 fm

 I/Ψ

Em. current correlation function and electromagnetic Probes

• photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f})$ [MT85, Wel90, GK91]

$$\Pi_{\mu\nu}^{<}(q) = \int d^{4}x \exp(iq \cdot x) \left\langle J_{\mu}(0)J_{\nu}(x) \right\rangle_{T} = -2f_{B}(q \cdot u) \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q)$$

$$q_{0} \frac{dN_{\gamma}}{d^{4}xd^{3}\vec{q}} = -\frac{\alpha}{2\pi^{2}}g^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q) \Big|_{q_{0} = |\vec{q}|} f_{B}(q \cdot u)$$

$$\frac{dN_{e^{+}e^{-}}}{d^{4}xd^{4}q} = -g^{\mu\nu} \frac{\alpha^{2}}{3q^{2}\pi^{3}} \operatorname{Im} \Pi_{\mu\nu}^{(\operatorname{ret})}(q) \Big|_{q^{2} = M_{e^{+}e^{-}}^{2}} f_{B}(q \cdot u)$$

- *u*: four-velocity of the fluid cell; $p \cdot u = p_0^{hb}$ energy in "heat-bath frame"
- to lowest order in α : $e^2 \Pi_{\mu\nu} \simeq \Sigma_{\mu\nu}^{(\gamma)}$
- vector-meson dominance model:

$$\Sigma^{\gamma}_{\mu\nu} =$$

 α

- initial hard processes: Drell Yan
- **2** "core" \Leftrightarrow emission from thermal source

$$\frac{1}{q_T}\frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}M\mathrm{d}q_T} = \int \mathrm{d}^4x \int \mathrm{d}y \int M\mathrm{d}\varphi \frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}^4x\mathrm{d}^4q}$$

● "corona" ⇔ emission from "primordial" mesons (jet-quenching)
 ● after thermal freeze-out ⇔ emission from "freeze-out" mesons

$$N^{(\text{fo})} = \int \frac{\mathrm{d}^3 q}{q_0} \int q_\mu \mathrm{d}\sigma^\mu f_B(u_\mu q^\mu/T) \frac{\Gamma_{\text{meson}\to\ell^+\ell^-}}{\Gamma_{\text{meson}}}$$

Hadronic many-body theory

- HMBT for vector mesons [Ko et al, Chanfray et al, Herrmann et al, Rapp et al, ...]
- $\pi\pi$ interactions and baryonic excitations

- +corresponding vertex corrections ⇔ gauge invariance
- Baryon (resonances) important, even at RHIC with low **net** baryon density $n_B n_{\bar{B}}$
- reason: $n_B + n_{\bar{B}}$ relevant (CP inv. of strong interactions)

In-medium spectral functions and baryon effects

[R. Rapp, J. Wambach 99]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

In-medium spectral functions and baryon effects

[R. Rapp, J. Wambach 99]

- baryon effects important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

In-medium spectral functions and baryon effects

[R. Rapp, J. Wambach 99]

• baryon effects important

- large contribution to broadening of the peak
- responsible for most of the strength at small M

Intermediate masses: hadronic " 4π contributions"

• e.m. current-current correlator $\Leftrightarrow \tau \rightarrow 2n\pi$

• " 4π contributions": $\pi + \omega, a_1 \rightarrow \mu^+ + \mu^-$

- leading-order virial expansion for "four-pion piece"
- additional strength through "chiral mixing"

Radiation from thermal sources: Meson t-channel exchange

- motivation: q_T spectra too soft compared to NA60 data
- thermal contributions not included in models so far

• also for π , a_1

- in QGP phase: $q\bar{q}$ annihilation
- HTL improved electromagnetic current correlator

- or electromagnetic current correlator from the lattice [H.-T. Ding, A. Francis et al (Bielefeld) 2011] (extrapolated to finite *q*)
- "quark-hadron duality" around T_c

Dilepton rates: Hadron gas \leftrightarrow QGP

- in-medium hadron gas matches with QGP
- similar results also for γ rates
- "quark-hadron duality"?

[R. Rapp, arXiv: 1304.2309 [hep-ph]]

Sources of thermal photons in heavy-ion collisions

- QGP: rates from [Arnold, Moore, Yaffe, JHEP 12, 009 (2001)]
 - $q\overline{q} \rightarrow \gamma g, qg \rightarrow \gamma q$

- resummation of soft-gluon bremsstrahlung contributions
- Landau-Pomeranchuk-Migdal effect

- hadronic matter from [Turbide, Rapp, Gale, PRC 69, 014903 (2004); Rapp, Wambach EPJ A 6, 415 (1999)]
 - pion-cloud dressing + vector meson-baryon/meson interactions

Dileptons in pp, pn, pA, AA pure transport: GiBUU (with Janus Weil)

The GiBUU Model

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

- Boltzmann-Uehling-Uhlenbeck (BUU) framework for hadronic transport
- reaction types: pA, πA , γA , eA, vA, AA
- open-source modular Fortran 95/2003 code
- version control via Subversion
- publicly available realeases: https://gibuu.hepforge.org
- Review on hadronic transport (GiBUU): [BGG⁺12]
- all calculations for dileptons: J. Weil

The Boltzmann-Uehling-Uhlenbeck Equation

• time evolution of phase-space distribution functions

$$[\partial_t + (\vec{\nabla}_p H_i) \cdot \vec{\nabla}_x - (\vec{\nabla}_x H_i) \cdot \vec{\nabla}_p] f_i(t, \vec{x}, \vec{p}) = I_{\text{coll}}[f_1, \dots, f_i, \dots, f_j]$$

- use Monte-Carlo simulation for test particles
- transition probability *W* in collision term used to define stochastic process ("random numbers" on the computer)
- Hamiltonian *H_i*
 - selfconsistent hadronic mean fields, Coulomb potential, "off-shell potential"
- collision term I_{coll}
 - two- and three-body decays/collisions
 - multiple coupled-channel problem
 - resonances described with relativistic Breit-Wigner distribution

$$\mathscr{A}(x,p) = -\frac{1}{\pi} \frac{\mathrm{Im}\,\Pi}{(p^2 - M^2 - \mathrm{Re}\,\Pi)^2 + (\mathrm{Im}\,\Pi)^2}; \quad \mathrm{Im}\,\Pi = -\sqrt{p^2}\Gamma$$

• off-shell propagation: test particles with off-shell potential

Dalitz decays

- Dalitz decay:
 - 1 particle \rightarrow 3 particles
- $V: \omega \to \pi + \gamma^* \to \pi + \ell^+ + \ell^-$
- $P, S: \pi, \eta \to \gamma + \gamma^* \to \gamma + \ell^+ + \ell^-$
- *R*: Baryon resonances $\Delta, N^* \to N + V \to N + \gamma^* \to N + \ell^+ + \ell^-$
- vector-meson dominance

- NB: vector-meson resonances "produced" from stable particles
- Fermi's golden rule: equivalent to self-energies for vector mesons!
- cutting self-energy diagrams \Rightarrow elementary processes

Resonance Model

- reactions dominated by resonance scattering: $ab \rightarrow R \rightarrow cd$
- Breit-Wigner cross-section formula

$$\sigma_{ab\to R\to cd} = \frac{2s_R + 1}{(2s_a + 1)(2s_b + 1)} \frac{4\pi}{p_{\text{lab}}^2} \frac{s\Gamma_{ab\to R}\Gamma_{R\to cd}}{(s - m_R^2)^2 + s\Gamma_{\text{tot}}^2}$$

- applicable for low-energy nuclear reactions $E_{\rm kin} \lesssim 1.1 \, {\rm GeV}$
- example: $\sigma_{\pi^- p \to \pi^- p}$ [Teis (PhD thesis 1996), data: Baldini et al, Landolt-Börnstein 12 (1987)]

- [WHM12, WM13]
- keep same resonances (parameters from Manley analysis)

		M_0	Γ_0	$ \mathcal{M}^2 /16\pi [\mathrm{mb}\mathrm{GeV}^2]$			branching ratio in %							
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$		
$P_{11}(1440)$	****	1462	391	70		69		22_P		9		_		
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2			
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1			
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_{S}			_		
$D_{15}(1675)$	****	1676	159	17		47		53_D				_		
$P_{13}(1720)$	*	1717	383	4	12	13			87_{P}		_			
$F_{15}(1680)$	****	1684	139	4	12	70	_	$10_P + 1_F$	$5_P + 2_F$	12	_	_		
$P_{33}(1232)$	****	1232	118	OBE	210	100				_	_	_		
$S_{31}(1620)$	**	1672	154	7	21	9		62_{D}	$25_S + 4_D$			_		
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	85			_		
$P_{31}(1910)$	****	1882	239	14		23					67	10_{P}		
$P_{33}(1600)$	***	1706	430	14		12		68_{P}			20			
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_{P}					
$F_{37}(1950)$	****	1945	300	14		38		18_{F}		—		44_F		

- production channels in Teis: $NN \rightarrow N\Delta$, $NN \rightarrow NN^*$, $N\Delta^*$, $NN \rightarrow \Delta\Delta$
- extension to $NN \to \Delta N^*, \Delta \Delta^*, NN \to NN\pi, NN \to NN\rho, NN\omega, NN\pi\omega, NN\phi, NN \to BYK (B = N, \Delta, Y = \Lambda, \Sigma)$

GiBUU Extension to HADES energies

• good description of total pp, pn (inelastic) cross section

dilepton sources

- Dalitz decays: $\pi^0, \eta \to \gamma \ell^+ \ell^-; \omega \to \pi^0 \ell^+ \ell^-, \Delta \to N \ell^+ \ell^-$
- ρ, ω, φ → ℓ⁺ℓ⁻: invariant mass ℓ⁺ℓ⁻ spectra ⇒ spectral properties of vector mesons
- for details, see [WHM12]

UrQMD: Baryon resonances

Resonance	Mass	Width	Νπ	Νη	Νω	Ne	Νππ	$\Delta_{1232}\pi$	$N^*_{1440}\pi$	ΛK	ΣK	f_0N	a_0N
N [*] ₁₄₄₀	1.440	350	0.65				0.10	0.25					
N [*] ₁₅₂₀	1.515	120	0.60			0.15	0.05	0.20					
N [*] ₁₅₃₅	1.550	140	0.60	0.30			0.05		0.05				
N_{1650}^{*}	1.645	160	0.60	0.06		0.06	0.04	0.10	0.05	0.07	0.02		
N [*] ₁₆₇₅	1.675	140	0.40					0.55	0.05				
N_{1680}^{*}	1.680	140	0.60			0.10	0.10	0.15	0.05				
N_{1700}^{*}	1.730	150	0.05			0.20	0.30	0.40	0.05				
N_{1710}^{*}	1.710	500	0.16	0.15		0.05	0.21	0.20	0.10	0.10	0.03		
N_{1720}^{*}	1.720	550	0.10			0.73	0.05			0.10	0.02		
N_{1900}^{*}	1.850	350	0.30	0.14	0.39	0.15				0.02			
N_{1990}^{*}	1.950	500	0.12			0.43	0.19	0.14	0.05	0.03		0.04	
N_{2080}^{*}	2.000	550	0.42	0.04	0.15	0.12	0.05	0.10		0.12			
N_{2190}^{*}	2.150	470	0.29			0.24	0.10	0.15	0.05	0.12			
N*2220	2.220	550	0.29		0.05	0.22	0.17	0.20		0.12			
N [*] ₂₂₅₀	2.250	470	0.18			0.25	0.20	0.20	0.05	0.12			
Δ_{1232}	1.232	115	1.00										
Δ_{1600}^{*}	1.700	350	0.10					0.65	0.25				
Δ_{1620}^{*}	1.675	160	0.15			0.05		0.65	0.15				
Δ_{1700}^{*}	1.750	350	0.20			0.25		0.55					
Δ_{1900}^{*}	1.840	260	0.25			0.25		0.25	0.25				
Δ_{1905}^{*}	1.880	350	0.18			0.80		0.02					
Δ_{1910}^{*}	1.900	250	0.30			0.10		0.35	0.25				
Δ_{1920}^{*}	1.920	200	0.27					0.40	0.30	0.03			
Δ_{1930}^{*}	1.970	350	0.15			0.22		0.20	0.28	0.15			
Δ_{1950}^{*}	1.990	350	0.38			0.08		0.20	0.18	0.12			0.04

UrQMD: Baryon resonances

Dileptons in pp, pA, and AA collisions at SIS energies

GiBUU: p+p (1.25 GeV) (SIS/HADES)

p + p at 1.25 GeV

d+p (1.25 GeV) (SIS/HADES)

d + p at 1.25 GeV

- triggered on forward protons → quasifree np scattering
 model uncertainties:
 - ρ production through $D_{13}(1525)$ (isospin symmetric?)
 - $S_{11}(1535)$ [enhanced in np; (from η production)]
 - d-wave function treatable as quasiclassical "distribution"?
 - bremsstrahlung contributions

GiBUU: p+p (3.5 GeV) (SIS/HADES)

p + p at 3.5 GeV

GiBUU: p+p (3.5 GeV) (SIS/HADES)

GiBUU: " ρ meson" in pp

• production through hadron resonances $NN \rightarrow NR \rightarrow NN\rho$, $NN \rightarrow N\Delta \rightarrow NN\pi\rho$

• " ρ "-line shape "modified" already in elementary hadronic reactions

• due to production mechanism via resonances

GiBUU: Comparison to old DLS data (pp)

- HADES data consistent with DLS data
- checked by comparing HADES data within DLS acceptance

GiBUU: Comparison to old DLS data (pd)

- HADES data consistent with DLS data
- checked by comparing HADES data within DLS acceptance

GiBUU: Δ meson in VMD model

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

p + p at 1.25 GeV

GiBUU: Δ meson in VMD model

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

d + p at 1.25 GeV

GiBUU: Δ meson in VMD model

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

p + p at 2.2 GeV
GiBUU: Δ meson in VMD model

- so far: Δ -Dalitz decay treated separately from other resonances
- now: treating Δ as all other resonances via VMD model

p + p at 3.5 GeV

GiBUU:

- medium effects built in transport model
 - binding effects, Fermi smearing, Pauli blocking
 - final-state interactions
 - production from secondary collisions
- sensitivity to additional in-medium modifications of vector mesons?

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

• with vacuum spectral functions:

Hendrik van Hees (GU Frankfurt)

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

• with medium modified spectral functions:

• no definite hint for medium modifications in p Nb

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

- medium effects built in transport model
 - binding effects, Fermi smearing, Pauli blocking
 - final-state interactions
 - production from secondary collisions
- sensitivity on medium effects of vector-meson spectral functions?

GiBUU: Ar+KCl (1.76AGeV) (SIS/HADES)

GiBUU: Ar+KCl (1.76AGeV) (SIS/HADES)

GiBUU (NEW!): Au+Au (1.23 AGeV) (SIS/HADES)

Au + Au @ 1.23 GeV

- caveat: pp/np acceptance filter with single-e cut, $p_t < 100 \text{ MeV}$
- correct filter urgently needed!
- comparison to preliminary HADES data [Gal14] ⇒ room for medium modifications (data points not shown here on request of the HADES collaboration)

Hendrik van Hees (GU Frankfurt)

Dileptons in HICs with transport models

GiBUU (NEW!): π +p (566 MeV) (SIS/HADES)

 π + p, E_{kin} = 0.566 GeV

GiBUU (NEW!): π +p (566 MeV) (SIS/HADES)

GiBUU (NEW!): π +C (566 MeV) (SIS/HADES)

Hendrik van Hees (GU Frankfurt)

GiBUU (NEW!): π +C (566 MeV) at (SIS/HADES)

Heavy-ion collisions and medium effects "Coarse grained UrQMD" (with Stephan Endres)

- problem with medium modifications of spectral functions/interactions
- only available in equilibrium many-body QFT models
- implementing "in-medium cross sections" naively: double counting?!?
- way out: map transport to local-equilibrium fluid
- Use ensemble of UrQMD runs with an equation of state
- fit temperature, chemical potentials, flow-velocity field from anisotropic energy-momentum tensor [W. Florkowski et al, NPA 904-905, 803c (2013)]

$$T^{\mu\nu} = (\varepsilon + P_{\perp})u^{\mu}u^{\nu} - P_{\perp}g^{\mu\nu} - (P_{\parallel} - P_{\perp})V^{\mu}V^{\nu}$$

- thermal rates from partonic/hadronic QFT become applicable
- here: extrapolated lattice QGP and Rapp-Wambach hadronic many-body theory
- caveat: consistency between EoS, matter content of QFT model/UrQMD!

• $T_c = 170 \text{ MeV}; T > T_c \Rightarrow \text{lattice EoS}; T < T_c \Rightarrow \text{HRG EoS}$

• pressure anisotropy (In-In collisions (NA60) at SIS)

- energy/baryon density $\Rightarrow T, \mu_B$ (for In+In @ SPS; NA60)
- central "fluid" cell!

• temperature/density profiles (for In+In@SPS; NA60)

Dielectrons (SIS/HADES)

- coarse-graining method works at low energies!
- UrQMD-medium evolution + RW-QFT rates

CGUrQMD: (NEW) Au+Au (1.23 AGeV) (SIS/HADES)

- caveat: pp/np acceptance filter with single-e cut, $p_t < 100 \text{ MeV}$
- correct filter urgently needed!
- excellent agreement with preliminary HADES data [Gal14] (data points not shown here on request of the HADES collaboration)

Hendrik van Hees (GU Frankfurt)

Dileptons in HICs with transport models

Dimuons (SPS/NA60)

- dimuon spectra from In + In(158AGeV) $\rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $In + In(158AGeV) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$
- higher IMR: provides averaged true temperature (no blueshifts in the invariant-mass spectra!)

- dimuon spectra from In + In(158AGeV) $\rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158\text{AGeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from $\text{In} + \text{In}(158A\text{GeV}) \rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from In + In(158AGeV) $\rightarrow \mu^+\mu^-$ (NA60)
- min-bias data $(dN_{ch}/dy = 120)$
- influence of baryon interactions in spectral function
- from previous calculation with thermal-fireball parametrization (compatible with course-grained UrQMD)

- dimuon spectra from In + In(158AGeV) $\rightarrow \mu^+\mu^-$ (NA60)
- min-bias data ($dN_{ch}/dy = 120$)

- dimuon spectra from In + In(158AGeV) $\rightarrow \mu^+\mu^-$ (NA60) • min bias data (dN / (du = 120))
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from In + In(158AGeV) $\rightarrow \mu^+\mu^-$ (NA60) • min bias data (dN / (du = 120))
- min-bias data $(dN_{ch}/dy = 120)$

- dimuon spectra from In + In(158AGeV) $\rightarrow \mu^+\mu^-$ (NA60) • min bias data ($dN_-/dy = 120$)
- min-bias data $(dN_{ch}/dy = 120)$

- General ideas
 - em. probes \Leftrightarrow in-medium em. current-correlation function
 - dual rates around T_c (compatible with χ symmetry restoration)
 - medium modifications of ρ , ω , ϕ
 - importance of baryon-resonance interactions
- Application to dileptons in HICs
 - need realistic bulk-medium evolution
 - thermal fireball, (ideal) hydrodynamics, transport
 - coarse-grained transport (here: CGUrQMD)
 - allows use of thermal-QFT spectral VM functions
 - applicable also at low collision energies
 - allows use of thermal-QFT models for em. current-correlation functions
 - successful description at HADES, SPS, and RHIC (STAR)
 - consistent description of M and m_T spectra!
- Outlook
 - effective slope of M spectra in higher IMR (1.5 GeV $< M < M_{J/\psi}$) provides $\langle T \rangle$
 - beam-energy scan at RHIC and FAIR \Rightarrow signature of phase transition?
 - signature of cross-over vs. 1st order (or even critical endpoint)?

- [BGG⁺12] O. Buss, et al., Transport-theoretical Description of Nuclear Reactions, Phys. Rept. 512 (2012) 1. http://dx.doi.org/10.1016/j.physrep.2011.12.001
- [CF74] F. Cooper, G. Frye, Single-particle distribution in the hydrodynamic and statistical thermodynamics models of multiparticle production, Phys. Rev. D 10 (1974) 186. http://dx.doi.org/10.1103/PhysRevD.10.186
- [Gal14] T. Galatyuk, HADES overview, Nucl. Phys. A (2014), published online; DOI:10.1016/j.nuclphysa.2014.10.044. http://dx.doi.org/10.1016/j.nuclphysa.2014.10.044
- [GK91] C. Gale, J. I. Kapusta, Vector Dominance Model at Finite Temperature, Nucl. Phys. B 357 (1991) 65. http://dx.doi.org/10.1016/0550-3213(91)90459-B

Bibliography II

- [MT85] L. D. McLerran, T. Toimela, Photon and dilepton emission from the quark-gluon plasma: some general considerations, Phys. Rev. D 31 (1985) 545. http://link.aps.org/abstract/PRD/V31/P545
- [Wel90] H. A. Weldon, Reformulation of finite temperature dilepton production, Phys. Rev. D 42 (1990) 2384. http://link.aps.org/abstract/PRD/V42/P2384
- [WHM12] J. Weil, H. van Hees, U. Mosel, Dilepton production in proton-induced reactions at SIS energies with the GiBUU transport model, Eur. Phys. J. A 48 (2012) 111. http://dx.doi.org/10.1140/epja/i2012-12111-9,10.1140/ epja/i2012-12150-2
- [WM13] J. Weil, U. Mosel, Dilepton production at SIS energies with the GiBUU transport model, J. Phys. Conf. Ser. 426 (2013) 012035. http://dx.doi.org/10.1088/1742-6596/426/1/012035