Heavy Quarks in the Quark-Gluon Plasma

Hendrik van Hees

Justus-Liebig Universität Gießen

December 2, 2008

with M. Mannarelli, V. Greco, L. Ravagli and R. Rapp

Outline

• Non-perturbative interactions: effective resonance model

2 Non-photonic electrons at RHIC

- 3 Microscopic model for non-pert. HQ interactions
 - Static heavy-quark potentials from lattice QCD
 - T-matrix approach
- 4 Resonance-Recombination Model
- 5 Summary and Outlook

Heavy Quarks in Heavy-Ion collisions

hard production of HQs described by PDF's + pQCD (PYTHIA)

C GOODO SQGP

HQ rescattering in QGP: Langevin simulation drag and diffusion coefficients from microscopic model for HQ interactions in the sQGP

Hadronization to D,B mesons via quark coalescence + fragmentation V. Greco, C. M. Ko, R. Rapp, PLB **595**, 202 (2004)

= semileptonic decay ⇒ "non-photonic" <mark>electron observables</mark>

Heavy-Quark diffusion

• Fokker-Planck Equation

$$\frac{\partial f(t,\vec{p})}{\partial t} = \frac{\partial}{\partial p_i} \left[p_i A(t,p) + \frac{\partial}{\partial p_j} B_{ij}(t,\vec{p}) \right] f(t,\vec{p})$$

• drag (friction) and diffusion coefficients

$$p_i A(t, \vec{p}) = \langle p_i - p'_i \rangle$$

$$B_{ij}(t, \vec{p}) = \frac{1}{2} \langle (p_i - p'_i)(p_j - p'_j) \rangle$$

$$= B_0(t, p) \left(\delta_{ij} - \frac{p_i p_j}{p^2} \right) + B_1(t, p) \frac{p_i p_j}{p^2}$$

 \bullet transport coefficients defined via ${\cal M}$

$$\langle X(\vec{p}') \rangle = \frac{1}{\gamma_c} \frac{1}{2E_p} \int \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3 2E_q} \int \frac{\mathrm{d}^3 \vec{q}'}{(2\pi)^3 2E_{q'}} \int \frac{\mathrm{d}^3 \vec{p}'}{(2\pi)^3 2E_{p'}} \\ \sum |\mathcal{M}|^2 (2\pi)^4 \delta^{(4)}(p+q-p'-q') \hat{f}(\vec{q}) X(\vec{p}')$$

• correct equil. lim. \Rightarrow Einstein relation: $B_1(t,p) = T(t)E_pA(t,p)$

Meaning of Fokker-Planck coefficients

• non-relativistic equation with constant $A = \gamma$ and $B_0 = D_1 = D$

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial}{\partial \vec{p}} (\vec{p}f) + D \frac{\partial^2 f}{\partial \vec{p}^2}$$

Green's function:

$$G(t, \vec{p}; \vec{p}_0) = \left\{ \frac{\gamma}{2\pi D [1 - \exp(-2\gamma t)]} \right\}^{3/2} \\ \times \exp\left\{ -\frac{\gamma}{2D} \frac{[\vec{p} - \vec{p}_0 \exp(-\gamma t)]^2}{1 - \exp(-2\gamma t)} \right\}$$

Gaussian with

$$\langle \vec{p}(t) \rangle = \vec{p}_0 \exp(-\gamma t),$$

$$\langle \vec{p}^2(t) \rangle - \langle \vec{p}(t) \rangle^2 = \frac{3D}{\gamma} [1 - \exp(-2\gamma t)] \underset{t \to 0}{\cong} 6Dt$$

- γ : friction (drag) coefficient; D: diffusion coefficient
- equilibrium limit for $t \to \infty$: $D = mT\gamma$ (Einstein's dissipation-fluctuation relation)

Hendrik van Hees (JLU Gießen)

Relativistic Langevin process

- Fokker-Planck equation equivalent to stochastic differential equation
- Langevin process: friction force + Gaussian random force
- in the (local) rest frame of the heat bath

$$\begin{split} \mathrm{d}\vec{x} &= \frac{\vec{p}}{E_p} \mathrm{d}t, \\ \mathrm{d}\vec{p} &= -A \, \vec{p} \, \mathrm{d}t + \sqrt{2} \mathrm{d}t [\sqrt{B_0} P_\perp + \sqrt{B_1} P_\parallel] \vec{w} \end{split}$$

- \vec{w} : normal-distributed random variable
- dependent on realization of stochastic process
- to guarantee correct equilibrium limit: Use Hänggi-Klimontovich calculus, i.e., use $B_{0/1}(t, \vec{p} + d\vec{p})$
- for constant coefficients: Einstein dissipation-fluctuation relation $B_0 = B_1 = E_p T A.$
- to implement flow of the medium
 - use Lorentz boost to change into local "heat-bath frame"
 - use update rule in heat-bath frame
 - boost back into "lab frame"

Elastic pQCD processes

• Lowest-order matrix elements [Combridge 79]

• Debye-screening mass for *t*-channel gluon exch. $\mu_g = gT$, $\alpha_s = 0.4$ • not sufficient to understand RHIC data on "non-photonic" electrons

Hendrik van Hees (JLU Gießen)

Heavy Quarks in the QGP

Non-perturbative interactions: effective resonance model

- General idea: Survival of D- and B-meson like resonances above T_c
- Chiral symmetry $SU_V(2) \otimes SU_A(2)$ in light-quark sector of QCD

$$\mathscr{L}_D^{(0)} = \sum_{i=1}^2 [(\partial_\mu \Phi_i^\dagger)(\partial^\mu \Phi_i) - m_D^2 \Phi_i^\dagger \Phi_i] + \text{massive (pseudo-)vectors } D^*$$

- Φ_i : two doublets: pseudo-scalar $\sim {D^0 \choose D^-}$ and scalar
- Φ_i^* : two doublets: vector $\sim \left(\frac{\overline{D^{0*}}}{D^{-*}}\right)$ and pseudo-vector $\mathscr{L}_{qc}^{(0)} = \bar{q}i\partial \!\!/ q + \bar{c}(i\partial \!\!/ - m_c)c$
- q: light-quark doublet $\sim {u \choose d}$
- c: singlet

- Interactions determined by chiral symmetry
- For transversality of vector mesons: heavy-quark effective theory vertices

$$\begin{aligned} \mathscr{L}_{\text{int}} &= -G_S \left(\bar{q} \frac{1+\not p}{2} \Phi_1 c_v + \bar{q} \frac{1+\not p}{2} i \gamma^5 \Phi_2 c_v + h.c. \right) \\ &- G_V \left(\bar{q} \frac{1+\not p}{2} \gamma^\mu \Phi_{1\mu}^* c_v + \bar{q} \frac{1+\not p}{2} i \gamma^\mu \gamma^5 \Phi_{2\mu}^* c_v + h.c. \right) \end{aligned}$$

- v: four velocity of heavy quark
- in HQET: spin symmetry $\Rightarrow G_S = G_V$

Resonance Scattering

• elastic heavy-light-(anti-)quark scattering

• D- and B-meson like resonances in sQGP

- o parameters
 - $m_D = 2 \text{ GeV}, \ \Gamma_D = 0.4 \dots 0.75 \text{ GeV}$
 - $m_B = 5 \text{ GeV}, \ \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$

• total pQCD and resonance cross sections: comparable in size

- BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion

• three-momentum dependence

• resonance contributions factor $\sim 2 \dots 3$ higher than pQCD!

Transport coefficients: pQCD vs. resonance scattering

• Temperature dependence

Time evolution of the fire ball

• Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb '00]

$$\begin{split} V(t) &= \pi(z_0 + v_z t) a(t) b(t), \quad a, b: \text{ half-axes of ellipse}, \\ v_{a,b} &= v_\infty [1 - \exp(-\alpha t)] \mp \Delta v [1 - \exp(-\beta t)] \end{split}$$

- Isentropic expansion: S = const (fixed from N_{ch})
- QGP Equation of state:

$$s = \frac{S}{V(t)} = \frac{4\pi^2}{90}T^3(16 + 10.5n_f^*), \quad n_f^* = 2.5$$

- obtain $T(t) \Rightarrow A(t,p)$, $B_0(t,p)$ and $B_1 = TEA$
- for semicentral collisions (b = 7 fm): $T_0 = 340$ MeV, QGP lifetime $\simeq 5$ fm/c.
- simulate FP equation as relativistic Langevin process

Initial conditions

- need initial p_T -spectra of charm and bottom quarks
 - (modified) PYTHIA to describe exp. D meson spectra, assuming $\delta\text{-function fragmentation}$
 - exp. non-photonic single- e^{\pm} spectra: Fix bottom/charm ratio

Spectra and elliptic flow for heavy quarks

•
$$\mu_D = gT$$
, $\alpha_s = g^2/(4\pi) = 0.4$

- resonances ⇒ c-quark thermalization without upscaling of cross sections
- Fireball parametrization consistent with hydro

• spatial diff. coefficient: $D = D_s = \frac{T}{mA}$ • $2\pi TD \simeq \frac{3}{2\alpha_s^2}$

Spectra and elliptic flow for heavy quarks

Observables: p_T -spectra (R_{AA}), v_2

- Hadronization: Coalescence with light quarks + fragmentation $\Leftrightarrow c\bar{c}, b\bar{b}$ conserved
- single electrons from decay of D- and B-mesons

 Without further adjustments: data quite well described [HvH, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)]

Hendrik van Hees (JLU Gießen)

Heavy Quarks in the QGP

December 2, 2008 18 / 30

Observables: p_T -spectra (R_{AA}), v_2

• Hadronization: Fragmentation only

• single electrons from decay of D- and B-mesons

Observables: p_T -spectra (R_{AA}), v_2

- Central Collisions
- single electrons from decay of D- and B-mesons

Comparison to newer data

Microscopic model: Static potentials from lattice QCD

- color-singlet free energy from lattice
- use internal energy

$$U_1(r,T) = F_1(r,T) - T \frac{\partial F_1(r,T)}{\partial T},$$

$$V_1(r,T) = U_1(r,T) - U_1(r \to \infty,T)$$

• Casimir scaling for other color channels [Nakamura et al 05; Döring et al 07]

$$V_{\overline{3}} = \frac{1}{2}V_1, \quad V_6 = -\frac{1}{4}V_1, \quad V_8 = -\frac{1}{8}V_1$$

Hendrik van Hees (JLU Gießen)

T-matrix

• Brueckner many-body approach for elastic Qq, $Q\bar{q}$ scattering

- reduction scheme: 4D Bethe-Salpeter \rightarrow 3D Lipmann-Schwinger
- S- and P waves
- same scheme for light quarks (self consistent!)
- Relation to invariant matrix elements

$$\sum |\mathcal{M}(s)|^2 \propto \sum_q d_a \left(|T_{a,l=0}(s)|^2 + 3|T_{a,l=1}(s)|^2 \cos \theta_{\mathsf{cm}} \right)$$

T-matrix

- resonance formation at lower temperatures $T \simeq T_c$
- melting of resonances at higher $T! \Rightarrow sQGP$
- P wave smaller
- resonances near T_c : natural connection to quark coalescence [Ravagli, Rapp 07]
- model-independent assessment of elastic Qq, $Q\bar{q}$ scattering
- problems: uncertainties in extracting potential from IQCD in-medium potential V vs. F?

Hendrik van Hees (JLU Gießen)

Heavy Quarks in the QGP

Transport coefficients

• from non-pert. interactions reach $A_{non-pert} \simeq 1/(7 \text{ fm}/c) \simeq 4A_{pQCD}$

- A decreases with higher temperature
- higher density (over)compensated by melting of resonances!
- spatial diffusion coefficient

$$D_s = \frac{T}{mA}$$

increases with temperature

Hendrik van Hees (JLU Gießen)

Non-photonic electrons at RHIC

- same model for bottom
- quark coalescence+fragmentation $\rightarrow D/B \rightarrow e + X$

coalescence crucial for explanation of data

• increases both, R_{AA} and $v_2 \Leftrightarrow$ "momentum kick" from light quarks!

• "resonance formation" towards $T_c \Rightarrow$ coalescence natural [Ravagli, Rapp 07]

Hendrik van Hees (JLU Gießen)

Properties of the sQGP

- measure for coupling strength in plasma: η/s
- relation to spatial diffusion coefficient

• successes of quark-coalescence models in HI phenomenology

- $\bullet\,$ high baryon/meson ration in heavy-ion compared to pp collisions compared
- Constituent-quark number scaling of v_2

$$v_{2,\text{had}}(p_T) = n_q v_{2,q}(p_T/n_q)$$

- experiment: CQNS better for KE_T than p_t
- problems with "naive" coalescence models
 - violates conservation laws (energy, momentum!)
 - violates 2nd theorem of thermodynamics (entropy)
- Resonance structures close to T_c
 - transport process with $q\bar{q}(qq) \leftrightarrow R$

Resonance-Recombination Model

Meson spectra

- q- \bar{q} input: Langevin simulation
- meson output: resonance-recombination model

Constituent-quark number scaling

• usual coalescence models: factorization ansatz

$$f_q(p, x, \varphi) = f_q(p, x)[1 + 2v_2^q(p_T)\cos(2\varphi)]$$

CQNS usually not robust with more realistic parametrizations of v₂
here: q input from Langevin simulation

Hendrik van Hees (JLU Gießen)

Summary and Outlook

Summary

- Heavy quarks in the sQGP
- non-perturbative interactions
 - mechanism for strong coupling: resonance formation at $T\gtrsim T_c$
 - IQCD potentials parameter free
 - res. melt at higher temperatures \Leftrightarrow consistency betw. R_{AA} and $v_2!$
- also provides "natural" mechanism for quark coalescence
- resonance-recombination model
- problems
 - extraction of \boldsymbol{V} from lattice data
 - potential approach at finite T: F, V or combination?
- Outlook
 - include inelastic heavy-quark processes (gluon-radiation processes)
 - other heavy-quark observables like charmonium suppression/regeneration