Schwerionenstöße und das stark wechselwirkende Quark-Gluon-Plasma

Hendrik van Hees

Texas A&M University

3. November 2005

Hendrik van Hees (Texas A&M)

Schwerionenstöße und das sQGP

3. November 2005

Das Standardmodell der Elementarteilchen

- 2 Das Quark-Gluon-Plasma
- 3 Schwerionenstöße
- 4 Elektromagnetische Observable
- 5 Schwere Quarks im Quark-Gluon-Plasma
- 6 Zusammenfassung

Teilchen und Kräfte im Standardmodell

und Higgsboson

- Grundprinzip des Standardmodells: Eichsymmetrie
- Eichbosonen "koppeln" an erhaltene Ströme

- Higgsboson: spontane Brechung der schwachen Eichsymmetrie
- m_a , m_ℓ , m_W , $m_Z \propto \langle H \rangle$
- $m_{\gamma}, m_a = 0$

Hendrik van Hees (Texas A&M)

Teilchen und Kräfte im Standardmodell

PROPERTIES OF THE INTERACTIONS						
Interaction Property		Gravitational	Weak	Electromagnetic	Strong	
			(Electroweak)		Fundamental	Residual
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:		Graviton (not yet observed)	W+ W ⁻ Z ⁰	γ	Gluons	Mesons
Strength relative to electromag for two u quarks at:	10 ⁻¹⁸ m	10 ⁻⁴¹	0.8	1	25	Not applicable
	3×10 ^{−17} m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
for two protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

- Starke Wechselwirkung: asymptotisch frei
- Kräfte groß bei großen Abständen von Teilchen mit Farbladung
- bei niedrigen Energien nur farbneutrale Teilchen frei beobachtbar ("Confinement")
- \Rightarrow "relevante Freiheitsgrade" Hadronen

Teilchen und Kräfte im Standardmodell

- Baryonen: drei Quarks
- Beispiele: Protonen, Neutronen, ...

- Mesonen: Quark+Antiquark
- Beispiele: Pionen, ρ -Mesonen, ...

Chirale Symmetrie

• Näherungsweise chirale Symmetrie der QCD

$$\mathscr{L}_{\mathsf{QCD}} = \bar{q}(\partial - \mathrm{i}gA - \hat{M})q - \frac{1}{4}G^a_{\mu
u}G^{a\mu
u}$$

- Im chiralen Limes $\hat{M} \to 0 \Rightarrow \text{Vektor-Axialvektorsymmetrien}$ $\psi \to \exp[-i(\vec{\alpha}_V + \gamma_5 \vec{\alpha}_A)\vec{T}]\psi, \ \vec{T} : SU(2)_{\text{flavor}} \text{ oder } SU(3)_{\text{flavor}}$ $G^a_\mu \to G^a_\mu$
- (Fast) erhaltene Ströme (Noether)

$$\vec{j}_V{}^\mu = \bar{\psi}\vec{T}\gamma^\mu\psi, \quad \vec{j}_A{}^\mu = \bar{\psi}\vec{T}\gamma_5\gamma^\mu\psi$$

Chirale Symmetrie

• Näherungsweise chirale Symmetrie der QCD

$$\mathscr{L}_{\mathsf{QCD}} = ar{q}(\partial - \mathrm{i}gA - \hat{M})q - rac{1}{4}G^a_{\mu
u}G^{a\mu
u}$$

- Im chiralen Limes $\hat{M} \to 0 \Rightarrow \text{Vektor-Axialvektorsymmetrien}$ $\psi \to \exp[-i(\vec{\alpha}_V + \gamma_5 \vec{\alpha}_A)\vec{T}]\psi, \ \vec{T} : \text{SU}(2)_{\text{flavor}} \text{ oder SU}(3)_{\text{flavor}}$ $G^a_\mu \to G^a_\mu$
- spontane Brechung der chiralen Symmetrie durch Quarkkondensat $\langle 0 \, | \bar{u} u | \, 0 \rangle \neq 0$
- explizite Brechung durch Quarkmassen \hat{M}
- Ward Identitäten

$$\left\langle 0 \left| \partial^{\mu} j_{A\mu}^{k} \right| \pi^{j}(\vec{k}) \right\rangle = \mathrm{i} F_{\pi} m_{\pi}^{2} \delta^{kj}$$

$$m_{\pi}^{2} F_{\pi}^{2} = -(\underline{m_{u}} + \underline{m_{d}}) \left\langle 0 \left| \bar{u}_{u} \right| 0 \right\rangle_{\pi}$$

• Pionen als Pseudo-Goldstonebosonen

• Unterschiede der Massen der chiralen Partnermesonen

QCD bei hohen Temperaturen und Dichten

• Asymptotische Freiheit

 Wechselwirkungen schwach bei hohen Energien oder geringen Teilchenabständen

• "Relevante Freiheitsgrade" Hadronen \rightarrow quarks + Gluonen

Das QCD-Phasendiagramm

Das QCD-Phasendiagramm

- Energiedichte \rightarrow für $T > T_c$ Gas aus masselosen Quarks und Gluonen
- Stefan-Boltzmann-Limes (noch?) nicht erreicht ⇒ Wechselwirkungen!
- Gitterrechnungen: "Deconfinementphasenübergang" ↔ Chiraler Phasenübergang

Schwerionenstöße

• Schwerpunktsenergie am RHIC: $\sqrt{s} = 200 \text{ GeV/Nukleon}$ (Gold-Goldstöße)

- Problem: Confinement ⇒ QGP nicht direkt beobachtbar
- In Detektor: Hadronen, Leptonen, Photonen
- Nachweis des QGP's?
- Eigenschaften des QGP's?

Schwerionenstöße

Au-Au (200 GeV)-Event im STAR-Detektor am RHIC

- Bewegung der erzeugten Teilchen: wird gut durch ideale Hydrodynamik beschrieben
 - Lokales thermisches Gleichgewicht (nach ~0.6 fm/c)
 - Geringe Viskosität
 - Große Streuquerschnitte!
 - Energiedichte $\epsilon \sim$ 20 GeV/fm³ $\gg \epsilon_c!$
- Halbzentrale Stöße: Elliptische Reaktionszone
- Druckgradienten ⇒ Anisotroper ("elliptischer") Fluß

 $\frac{\mathrm{d}N}{p_T \mathrm{d}p_T \mathrm{d}y \mathrm{d}\varphi} = \frac{\mathrm{d}N}{2\pi p_T \mathrm{d}p_T \mathrm{d}y} \left[1 + v_2(p_T)\cos(2\varphi) + \ldots\right]$

- Bewegung der erzeugten Teilchen: wird gut durch ideale Hydrodynamik beschrieben
 - Lokales thermisches Gleichgewicht (nach \sim 0.6 fm/c)
 - Geringe Viskosität
 - Große Streuquerschnitte!
 - Energiedichte $\epsilon\sim$ 20 GeV/fm^3 $\gg\epsilon_c!$
- Halbzentrale Stöße: Elliptische Reaktionszone
- Druckgradienten ⇒
 Anisotroper ("elliptischer") Fluß

 $\frac{\mathrm{d}N}{p_T \mathrm{d}p_T \mathrm{d}y \mathrm{d}\varphi} = \frac{\mathrm{d}N}{2\pi p_T \mathrm{d}p_T \mathrm{d}y} \left[1 + v_2(p_T)\cos(2\varphi) + \ldots\right]$

Kollektiver anisotroper Fluß beobachtet
 ⇒ Frühe (lokale) Equilibrierung

Elektromagnetische Observable

- γ, ℓ[±]: nur em. (und schwache)
 Wechselwirkungen
- können auch aus heißer, dichter Phase entkommen
- Wiederherstellung der chiralen Symmetrie beobachtbar?

Elektromagnetische Observable

- γ, ℓ[±]: nur em. (und schwache)
 Wechselwirkungen
- können auch aus heißer, dichter Phase entkommen
- Wiederherstellung der chiralen Symmetrie beobachtbar?

Thermische Photonen- und Dileptonenraten

• thermische Photonen- and Dileptonenrate \leftrightarrow Korrelationsfunktion für em. Strom $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \bar{\psi}_{f})$

Thermische Photonen- und Dileptonenraten

- thermische Photonen- and Dileptonenrate \leftrightarrow Korrelationsfunktion für em. Strom $(J_{\mu} = \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \bar{\psi}_{f})$ $\Pi_{\mu\nu}^{<}(q) = \int d^{4}x \exp(iq \cdot x) \langle J_{\mu}(0) J_{\nu}(x) \rangle_{T} = -2n_{B}(q_{0}) \operatorname{Im} \Pi_{\mu\nu}^{(\text{ret})}(q)$ $q_{0} \frac{dN_{\gamma}}{d^{4}x d^{3} \bar{q}^{*}} = \frac{\alpha_{\text{em}}}{2\pi^{2}} g^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}^{(\text{ret})}(q)|_{q_{0} = |\bar{q}|}$ $\frac{dN_{e^{+}e^{-}}}{d^{4}x d^{4}k} = -g^{\mu\nu} \frac{\alpha^{2}}{3q^{2}\pi^{3}} \operatorname{Im} \Pi_{\mu\nu}^{(\text{ret})}(q)|_{q^{2} = M_{e^{+}e^{-}}}$
- niedrigste Ordnung in α : $e^2 \Pi_{\mu\nu} \simeq \Sigma^{(\gamma)}_{\mu\nu}$

Vektormesonen und chirale Symmetrie

 Vektor- und Axialvektormesonen ↔ Korrelatoren der entsprechenden Ströme

$$\Pi^{\mu
u}_{V/A}(p):=\int \mathsf{d}^4x \exp(\mathsf{i} px) \left\langle J^{
u}_{V/A}(0) J^{\mu}_{V/A}(x)
ight
angle_{ ext{ret}}$$

 Vektor- und Axialvektormesonen ↔ Korrelatoren der entsprechenden Ströme

$$\Pi^{\mu
u}_{V/A}(p) := \int \mathsf{d}^4x \exp(\mathrm{i} p x) \left\langle J^{
u}_{V/A}(0) J^{\mu}_{V/A}(x)
ight
angle_{\mathsf{ret}}$$

• Wardidentitäten der chiralen Symmetrie \Rightarrow Weinberg-Summenregeln $f_{\pi}^2 = -\int_0^{\infty} \frac{\mathrm{d}p_0^2}{\pi p_0^2} [\operatorname{Im} \Pi_V(p_0, 0) - \operatorname{Im} \Pi_A(p_0, 0)]$ Vektor- und Axialvektormesonen ↔ Korrelatoren der entsprechenden Ströme

$$\Pi^{\mu
u}_{V/A}(p) := \int \mathsf{d}^4x \exp(\mathrm{i} p x) \left\langle J^{
u}_{V/A}(0) J^{\mu}_{V/A}(x)
ight
angle_{\mathsf{ret}}$$

- Wardidentitäten der chiralen Symmetrie \Rightarrow Weinberg-Summenregeln $f_{\pi}^2 = -\int_0^{\infty} \frac{\mathrm{d}p_0^2}{\pi p_0^2} [\operatorname{Im} \Pi_V(p_0, 0) - \operatorname{Im} \Pi_A(p_0, 0)]$
- Spektralfunktionen von Vektor- (z.B. ρ) und Axialvektormesonen (z.B. a_1) \leftrightarrow Ordnungsparameter der chiralen Symmetrie!

Vektormesonen und chirale Symmetrie

[R. Rapp]

Vektormesonen und chirale Symmetrie

Modelle

- Chirale Modelle: universell nur im Niederenergielimes
- Phänomenologische hadronische Modelle [Chanfray et al, Herrmann et all, Rapp et al,...]
- $\pi\pi$ -Wechselwirkungen und baryonische Anregungen

• Baryonen wichtig (auch am RHIC mit kleinen Nettobaryonendichten $n_B - n_{\bar{B}}$)

• $n_B + n_{\bar{B}}$ relevant (CP-Invarianz der starken Wechselwirkung)

Hendrik van Hees (Texas A&M)

Schwerionenstöße und das sQGP

3. November 2005

Modelle

- Chirale Modelle: universell nur im Niederenergielimes
- "Hidden local symmetry" und "Vektormanifestiation"
- longitudinaler Anteil des ρ -Mesons \leftrightarrow chiraler Partner des Pions
- "dropping mass"
- (noch) keine Baryonen

Dileptonen am SpS

35% Central Pb(158AGeV)+Au

Dileptonen am SpS

 4π und höhere Beiträge (einschließlich AV-Mischung!)

Theoretische Fragen

• Chirales Modell mit Baryonen

- (Axial-) Vektor Mesonen (Eichtheorie?)
- Näherungsverfahren für dynamische Eigenschaften (Spektralfunktionen) und thermodynamische Größen (Phasendiagramm)?
 - \Rightarrow Selbstkonsistente Näherungsverfahren

Schwere Quarks im Quark-Gluon-Plasma

- Charm- und Bottomquarks werden früh in primordialen Stößen erzeugt
- Anfangsverteilung \sim wie in pp-Stößen (imesZahl der Stöße)
- \bullet Modifikation von Observablen von Hadronen mit schweren Quarks \Rightarrow Eigenschaften des QGP
- "Klassische" Vorhersage: Unterdrückung von J/ψ -Mesonen ($\bar{c}c$) \Leftrightarrow Abschirmung der "Farbkräfte" im QGP [Matsui, Satz 1986]

Schwere Quarks im Quark-Gluon-Plasma

- Charm- und Bottomquarks werden fr
 üh in primordialen St
 ö
 ßen erzeugt
- Anfangsverteilung \sim wie in pp-Stößen (\times Zahl der Stöße)
- Modifikation von Observablen von Hadronen mit schweren Quarks \Rightarrow Eigenschaften des QGP
- "Klassische" Vorhersage: Unterdrückung von J/ψ -Mesonen ($\bar{c}c$) \Leftrightarrow Abschirmung der "Farbkräfte" im QGP [Matsui, Satz 1986]

Hendrik van Hees (Texas A&M)

3. November 2005

Thermalisierung und elliptischer Fluß schwerer Quarks

HvH, R. Rapp, Phys. Rev. C 71, 034907 (2005); HvH, V. Greco, R. Rapp, nucl-th/0508055, hep-ph/0510050

- am RHIC (BNL): Elektronen von *D* und *B*-Mesonzerfällen: *D*-Mesonen = $c\bar{u}/\bar{d}$ -Mesonen *B*-Mesonen = $b\bar{u}/\bar{d}$ -Mesonen
- Verteilungen geben D- und B-Mesonen-Spektren wieder
- großes v_2 und kleines kleines R_{AA}

$$R_{AA} = \frac{\left(\frac{\mathrm{d}N}{\mathrm{d}p_T}\right)_{AA-\mathsf{Stob}}}{\left(\frac{\mathrm{d}N}{\mathrm{d}p_T}\right)_{pp-\mathsf{Stob}}}$$

Nur erklärbar, wenn schwere Quarks thermalisieren
 ⇒ Starke Wechselwirkung mit leichten Konstituenten des QGP ⇒ sQGP

- Möglicher nicht-perturbativer Mechanismus: Existenz von "D- und B-mesonischen Resonanzen" bei $T>T_c$
- motiviert durch Gitter-QCD-Rechnungen (Umeda et al '02, Datta et al '03)
- führt zu elastischer Resonanzstreuung schwerer Quarks im QGP
- Effektives feldtheoretisches Modell
 - chirale Symmetrie
 - Spinsymmetrie von "heavy-quark effective theory"

Elastische Resonanzstreuung

- D-Mesonpropagatoren (mit Einschleifenselbstenergie "gedressed")
- Zwei Modellparameter:
 - Masse der Resonanzen: $m_D = 2 \text{ GeV}$
 - Kopplungskonstante $\Rightarrow \Gamma_D = 0.4 \dots 0.75$ GeV (\rightarrow von NJL-Modellrechnungen [Blaschke et al])
- Analoges Modell für B-mesonen

 $m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$

pQCD-Beiträge

Regularisierung des *t*-Kanal-Gluonaustauschdiagramms: Gluonen-Debye-Masse: $\mu_q = gT$, $\alpha_s = 0.4$

Streuquerschnitte

- pQCD- und Resonanz-Streuquerschnitte von vergleichbarer Größenordnung
- ABER pQCD vorwärtsgerichtet ↔ *s*-Kanal-Resonanzbeitrag isotrop
- Resonanzstreuung effektiver für Reibungs- und Diffusionskoeffizienten

Reibungs- und Diffusionskoeffizienten

- Fokker-Planck-Ansatz \Rightarrow Reibungs- und Diffusionskoeffizienten
- Reibungskoeffizient: $\gamma = 1/\tau_{eq}$ bestimmt Relaxationszeit (Thermalisierungszeit) des schweren Quarks mit Medium
- Diffusionskoeffizient: $D = m\gamma T$ bestimmt Breite der Impulsverteilung

• Resonanzbeiträge: Faktor $\sim 2...3$ größer als pQCD-Beitrag!

Hendrik van Hees (Texas A&M)

Reibungs- und Diffusionskoeffizienten

schwere Quarks im sQGP

- Beschreibe Medium durch Feuerballparametrisierung (gibt hydrodynamische Strömung wieder)
- isentrope Expansion $\Rightarrow T(t)$
- Fokker-Planck-Koeffizienten zeitabhängig
- Bewegung schwerer Quarks ⇒ relativistischer Langevinprozeß

Anfangsbedingungen

- benötige p_T -Spektren der Charm- and Bottomquarks
 - (modifiziertes) PYTHIA-Fit für D Meson Spektren (δ-Funktionsfragmentierung) in pp-Stößen
 - Bottom-Anteil über nichtphotonische-e[±]-Spektren ⇒ bottom/charm-Verhältnis

p_T -Spektren und elliptischer Fluß schwerer Quarks

Observablen: e^{\pm} - p_T -spectra (R_{AA}) und v_2

- Hadronisierung über Quark-Koaleszenz und Fragmentation
- Elektronen aus Zerfall der D- und B-Mesonen

(Daten vor Quark Matter '05)

Observablen: e^{\pm} - p_T -spectra (R_{AA}) und v_2

- Hadronisierung über Quark-Koaleszenz und Fragmentation
- Elektronen aus Zerfall der D- und B-Mesonen

(Daten: Quark Matter '05)

Observablen: e^{\pm} - p_T -spectra (R_{AA}) und v_2

• Hadronisierung: nur Fragmentation

• Elektronen aus Zerfall der D- und B-Mesonen

- Langevin für D (B)-Mesonen in hadronischer Phase?!
- realistischere Fragmentationsfunktionen
- Verhältnis Koaleszenz/Fragmentation?
- Berücksichtung von Gluonenbremsstrahlungsprozessen
- Erweiterung des Modells für Quarkonia $[J/\psi (\Upsilon)$ -Dissoziation \leftrightarrow Regenerierung]

J/ψ -Dissoziation vs. Regenerierung@RHIC

[Grandchamp et al]

• Für Υ : Dissoziation vorherrschender Prozeß [Grandchamp, HvH et al]

Zusammenfassung

- Standardmodell der Elementarteilchen
- QCD als Theorie der starken Wechselwirkung
- Asymptotische Freiheit ⇔ QGP
- schnelle Thermalisierung+kollektive Bewegung \Rightarrow s QGP

Zusammenfassung

- Standardmodell der Elementarteilchen
- QCD als Theorie der starken Wechselwirkung
- Asymptotische Freiheit ⇔ QGP
- schnelle Thermalisierung+kollektive Bewegung \Rightarrow s QGP
- Dileptonen und chirale Symmetrie
- Thermalisierung und Fluß schwerer Quarks

Zusammenfassung

- Standardmodell der Elementarteilchen
- QCD als Theorie der starken Wechselwirkung
- Asymptotische Freiheit ⇔ QGP
- schnelle Thermalisierung+kollektive Bewegung \Rightarrow s QGP
- Dileptonen und chirale Symmetrie
- Thermalisierung und Fluß schwerer Quarks
- Reichhaltiges und interessantes Anwendungsgebiet für
 - Relativistische Vielteilchenquantenfeldtheorie
 - Herausforderung: stark wechselwirkende Systeme
 - Nichtstörungstheoretische Methoden
 - ...