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The phenomenon of Bose-Einstein condensation is investigated in the context of the color-glass-condensate
description of the initial state of ultrarelativistic heavy-ion collisions. For the first time, in this paper we study the
influence of particle-number changing 2↔ 3 processes on the transient formation of a Bose-Einstein condensate
within an isotropic system of scalar bosons by including 2↔ 3 interactions of massive bosons with constant and
isotropic cross sections, following a Boltzmann equation. The one-particle distribution function is decomposed
in a condensate part and a nonzero momentum part of excited modes, leading to coupled integro-differential
equations for the time evolution of the condensate and phase-space distribution function, which are then solved
numerically. Our simulations converge to the expected equilibrium state, and only for σ23/σ22� 1 we find that
a Bose-Einstein condensate emerges and decays within a finite lifetime in contrast to the case where only binary
scattering processes are taken into account, and the condensate is stable due to particle-number conservation.
Our calculations demonstrate that Bose-Einstein condensates in the very early stage of heavy-ion collisions are
highly unlikely, if inelastic collisions are significantly participating in the dynamical gluonic evolution.
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INTRODUCTION

A deconfined system of quarks and gluons, under ex-
treme conditions of high temperatures and high densities,
can be produced and explored in experiments of ultrarel-
ativistic heavy-ion collisions. The experimental observ-
ables like elliptic-flow measurements strongly suggest an
early collective-fluid behavior of a medium close to local
thermal equilibrium. However, the description of the pre-
thermalization dynamics of the initial off-equilibrium many-
body system produced in heavy-ion collisions is still an out-
standing problem.

The early stage of heavy-ion collisions is well described
within the color-glass-condensate (CGC) effective field the-
ory [1, 2], where the heavy nuclei behave as very dense gluon
system with high energetic colored partons acting as sources
of soft dynamical gluon fields. In this picture, during the col-
lision the hard partons traverse each other while the highly
occupied soft gluon fields interact via non-Abelian interac-
tions resulting in the creation of longitudinal chromo-electric
and -magnetic fields, which leads to the so-called Glasma [2–
5] state of high gluon density, which runs through a very
short isotropization stage [6, 7]. Given the high particle den-
sity which is parametrically larger compared to the thermal-
equilibrium value, the system would possess a strongly in-
teracting nature due to coherently enhanced scattering even
though the coupling is weak. Thus the possible formation
of an off-equilibrium Bose-Einstein condensate (BEC) has
drawn stronger attention in recent years [8, 9]. Similar is-
sues about off-equilibrium BEC formations arise also in the
context of early universe reheating after inflation [10, 11] and
in systems of cold atoms [11, 12].

The formation of a BEC is a fundamental consequence of

quantum statistics, where above a certain critical density or
below a certain critical temperature any more added bosons
must occupy the ground state coherently. The condensation
dynamics, especially far from equilibrium, is an interesting is-
sue but still under debate. Many studies have been performed
to understand the nonequilibrium dynamics of BECs forma-
tion within either a kinetic approach or classical field theory,
if solely elastic processes are incorporated [8, 13–18].

Inelastic scattering may qualitatively change the picture, al-
lowing only for the formation of a transient BEC. In [19] it
is found that inelastic collisions will speed up the thermal-
ization in the infrared regime and may catalyze a faster on-
set of a BEC. The following study [20] suggested a complete
hindrance of BEC formation for massless gluons at vanish-
ing momentum. Within the description of a nonequilibrium
massive bosonic O(N) theory applying the 2PI formalism of
real-time Schwinger-Keldysh quantum field theory it has been
recently shown that the formation of a BEC is potentially pre-
vented by particle-number changing processes [21]. However,
a concrete kinetic simulation for a possible transient BEC has
not been included in these studies.

So far no kinetic description has been elaborated to describe
the expected transient formation and decay of a BEC, initially
possible in an off-equilibrium system, including both elastic
and inelastic processes. This paper addresses the dynamics of
the condensation and thermalization of massive bosons. For
this a coupled set of Boltzmann kinetic equations for a tran-
sient BEC and a phase-space distribution function is formu-
lated and includes 2→ 2 and particle-number changing 2↔ 3
reactions.
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FIG. 1. Differential fraction of the isotropic particle density with respect to the momentum and for four different regimes of the cross section
ratio, only binary scattering (a+e), elastically dominated scattering (b+f), balanced scattering (c+g) and inelastically dominated (d+h), with
m = 100 MeV at f0 = 0.45 at various times. The rows separate two sequential time periods. In (a+e) and (b+f) a condensate is present, but in
(f) it decays. The black dashed lines (bottom row) depicts the individual expected equilibrium states.

KINETIC EQUATIONS

In this work, we focus on an isotropic and homogeneous
system. If the evolution is dominated by two- and three-body

interactions, the corresponding Boltzmann equation for a
phase-space distribution function f (~p)= dgdN/(2π)3d3xd3 p,
where dg = 16 is the gluon degeneracy factor, taking two spin
and eight color states into account, reads [22]

ḟ1 =−
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2
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(1)

Thereby, the indices refer to the momentum phase space
of the participating particles (d~i := d3~pi/2(2π)3Ei) with Ei =√

p2
i +m2. Consequently, fi denotes the corresponding one-

particle distribution function f (t,~pi). The collision integrals
take into account quantum statistics via Bose enhancement
factors ( fi/dg + 1), leading to the correct long-time equilib-
rium solution for bosons. The matrix elements |M|2 are taken

as isotropic with a constant cross section [23, 24]

|M2↔2|2 = 32πsσ22,

|M2→3|2 = 192π
3
σ23,

|M3→2|2 =
1
dg
|M2→3|2

(2)

with s = (P1 + P2)
2 denoting the center-momentum energy
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squared. Here, we point out that the interesting quantity
for the simulations is the ratio of the elastic and inelas-
tic cross sections, σ23/σ22, determining the dominating pro-
cesses leading to full equilibration. Energy and particle den-
sities are respectively given by

εpart(t) =
∫ d3~p

(2π)3 E f (p) and npart(t) =
∫ d3~p

(2π)3 f (p).

The general argument for the emergence of a BEC is that if in
the case of the existence of conserved number of bosons the
chemical potential converges to the mass, the distribution can
no longer accommodate the particles in the IR regime (p�m)
although

lim
µ→m

fB.E.(p� m) = lim
µ→m

dg

exp(m−µ

T )−1
= ∞. (3)

In this case, a special treatment is necessary for the zero mode,
by decomposing f (|~p|) in a continuumlike part f (|~p|> 0) for
the higher modes and a discrete part (2π)3nc(t)δ (3)(~p) for the
zero mode [15, 16, 18, 25].

Given any initial nonequilibrium configuration of the gluon
system, one can always determine via the conservation laws
if condensation has to be expected in the equilibrium limit by
solving

εinit = εeq(T,µ) and ninit = neq(T,µ) (4)

and if one encounters µ > m as solution of Eqs. (4)

εinit = εeq(T,µ =m)+εc and ninit = neq(T,µ =m)+nc (5)

where εc and nc are the energy and particle density of the con-
densate. Those considerations only apply for number conserv-
ing scattering processes (2↔ 2). However, if one introduces
particle-number changing 2↔ 3 scattering processes, this ar-
gument breaks down for massive particles, because in thermal
equilibrium necessarily µ = 0, implying that a stable conden-
sate can not exist.

By inserting the ansatz f (p) = f|~p|>0 +(2π)3nc(t)δ (3)(~p)
into Eq. (1), we obtain the following evolution equation for
the nonzero momentum modes,
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FIG. 2. Time evolution of normalized particle (upper panel) and con-
densate (lower panel) densities for particles with m = 100 MeV and
f0 = 0.45. The bluish curves show runs without onset of condensa-
tion µeff < m. The scattered dots refer to the timestamps of Fig.1,
and the black lines mark the individual expected equilibrium values.

and a rate equation for the condensate density,

ṅc =
c
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+
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g
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(7)

Every possible diagrammatic contribution displayed in Eqs.
(6) and (7), is related to a specific collision integral, with c
(condensate) and g (gluon) denoting the participants of the
scattering process. The numerical factors relate to the com-
binatorial weight of the diagrams. Details are straightforward
but utmost lengthy.

For the isotropic case the scattering angles can be inte-
grated out analytically, leaving us with one-, two- and three-
dimensional collision integrals, which can be solved numer-
ically. The distribution function is discretized, with the grid
becoming finer in the low-momentum region. For the differ-
ential equations we employ an efficient high-order adaptive
Runge-Kutta method (Cash-Karp) [26], while the collision
integrals are treated with two different integration methods.
For the one- and two-dimensional integrals we use the simple
Simpson quadrature method, and for the three dimensional in-
tegrals we employ the Vegas Monte Carlo integration routine
from [27].

INITIAL CONDITION

In the context of the CGC framework, the two most rele-
vant quantities are given by the saturation scale Qs and the
coupling strength αs, which determines the initial population



4

density ∝ 1/αs of the initial state. As an initial nonequilib-
rium isotropic profile for gluons, formed at time scales of
approximately 1/Qs, one usually considers a step function
of the form finit(p) = dg f0Θ(1− p/Qs), whereby f0 ∼ 1/αs
[8, 15, 16, 18]. However, we use a similar function with a
smooth tail around p ≈ Qs. Fixing Qs at 1 GeV, the only
free parameter left is f0, the step height. Various studies
have shown that from this initialization two scenarios can
be observed, if equilibration dynamics are dominated by bi-
nary scattering. The first is the underpopulated case ( f0 < fc)
where the chemical potential never reaches the mass and the
second as the overpopulated case ( f0 > fc), where µ = m and
consequently a BEC must emerge. Our investigation is fo-
cused on particles with masses m = 100(300,500)MeV and a
cross section of σ22 = 1mb. These values are close to ex-
pected hard-thermal-loop effective pole masses of approxi-
mately gT [28]. The mass acts as an effective IR regulator
for the scattering or “emissions.”

In nature the initialization of the condensate is due to spon-
taneous fluctuations. Because we choose a deterministic ap-
proach, Eq. (7) implies ṅc ∼ nc, i.e., condensation does not
occur, if nc vanishes initially. To overcome this issue we ex-
tract effective values for the chemical potential µeff and the
temperature Teff by fitting the IR region ( fIR(p < m)) of the
distribution function to the Bose-Einstein distribution func-
tion. If now µeff approaches m (let us name this point in time
tonset), we manually insert a finite but negligibly small seed to
the zero mode nc(t = tonset) = 10−6ninit [15, 16, 18, 25].

In the following simulations, f0 = 0.45(2.0) has been cho-
sen such that the condensation criterion is generally fulfilled
and vary in detail the ratio σ23/σ22. Our simulations start in
time at t = 0 for solving Eqs. (6) and (7).

RESULTS

In Figs. 1 and 2, the main results are depicted and compared
to the known case of the evolution under solely binary scatter-
ing processes for several cross section ratios σ23/σ22. The
typical overpopulated evolution for 2↔ 2 interactions con-
sists of the particle cascade toward the soft modes (Fig. 1 (a))
followed by its decrease to the equilibrium distributions (e),
while generating a condensate until the equilibrium is reached.
The introduction of 2↔ 3 kinetics, will dramatically change
this picture. The first observation is that the influx of particles
toward the soft modes (Fig. 1 (b), σ23/σ22 = 0.0049) is decel-
erated compared to the previous case but still sufficient to hit
the onset condition somewhat later (Fig. 3), consequentially
generating a condensate. But once the Bose-Einstein shape
for µ = m is recovered [t ' 0.9 fm/c, Figs. 1 (f) and 2), we ob-
serve that the condensate decays, contrary to the case consid-
ering only particle-number conserving 2↔ 2 processes. For
gradually larger values of σ23/σ22, the characteristic particle
transport towards the soft modes is further damped and µeff
never reaches the onset of condensation. If σ23/σ22 & 0.01,
then no condensation into a BEC is observed.
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FIG. 3. Time evolution of the effective chemical potential, with
m = 100 MeV at f0 = 0.45. Bluish curves (inelastic) represents runs
where condensation was not feasible, contrary to the greenish (in-
elastic) curves and red dashed line (elastic). The black line relates
to the equilibrium condition for 2↔ 2 processes (µ = m) and the
dashed line to inelastic processes (µ = 0 GeV).

The situation for the chemical potential µeff can be seen
in Fig. 3. While for σ23 = 0, an equilibrium state with
µeff = m = 0.1GeV is reached, this is only the case for the
two smallest ratios σ23/σ22 = 0.002 and 0.0049, where µeff
reaches m, but finally decreases again to reach the equilibrium
state with µeff = 0, as it is expected, if particle number is not
conserved.

In Fig. 4 we show the time evolution of the effective chem-
ical potential, µeff in dependence of various masses, m = 100,
300 and 500 MeV. Please note for these calculations we em-
ploy a strongly overpopulated initial condition with f0 = 2.
Inspecting the calculations, only for σ23/σ22 = 0.0078 and
for masses m = 300 and 500MeV the chemical potential just
touches the mass limit µeff =m, although no condensation will
start. The effect of earlier times for the onset of BEC forma-
tion of heavier particles has also been found in a similar study
with only elastic collisions [29]. Still, taking into account in-
elastic 2↔ 3 collisions, either for smaller or larger masses
no condensation occurs for the strongly overpopulated initial
condition. Only if σ23/σ22 . 0.005 a momentary and tiny
BEC can develop.

CONCLUSIONS

In this paper we have investigated a complete Bose-Einstein
condensation of gluons within kinetic theory, explicitly in-
cluding number changing 2↔ 3 processes. In the presented
scenario of an overpopulated nonequilibrium bosonic system
akin to Glasma-type initial conditions has been considered.
The bosons have been taken with a small but finite mass. The
situation is similar to the scenario of [21]. The cross sec-
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equilibrium condition for 2↔ 2 processes, and the dashed lines correspond to inelastic processes.

tions are not those of perturbative QCD. On the other hand
binary scatterings in thermal QCD are regulated by finite
Debye-screening masses of order O(gT ). Radiative pertur-
bative QCD emissions are substantial for describing the ob-
served jet attenuation but also the significant lowering of the
shear-viscosity over entropy-density ratio [30, 31]. The latter
fact can be effectively rephrased by significant 2↔ 3 isotropic
collisions [23].

Our simulations have shown that a BEC may be formed for
some limited time if σ23/σ22 � 1. For present physical pa-
rameters of the masses and overpopulation parameter, f0, typ-
ically a BEC can only appear if σ23 is less than 1% of σ22. The
results suggest, that, as expected, particle-number conserving
and changing processes are counteracting mechanisms for the
formation and destruction of a BEC. We note that the individ-
ual collision integrals scale with the occupation density of the
system like f 3 (elastic) and f 4 (inelastic), which resembles a
sensitive scenario for possible formation but also immediate
decay of a BEC.

Summarizing, our calculations show that Bose-Einstein
condensates in the very early stage of heavy-ion collisions are
highly unlikely, if inelastic collisions are significantly partici-
pating in the dynamical gluonic evolution.
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