Meson and Baryon Spectral Functions and Dileptons

Hendrik van Hees

Johann Wolfgang Goethe University Frankfurt

March 07, 2012

Outline

- Motivation for electromagnetic probes \leftrightarrow hadron resonances
- Resonance model at SIS energies (with J. Weil, U. Mosel)
 - The Transport Model GiBUU
 - Baryon-resonance model at SIS energies
 - Dileptons in pp and pNb reactions at HADES
- 3 Dilepton production at the SPS (with R. Rapp)
 - Hadronic many-body theory
 - Dilepton emission from thermal and nonthermal sources
 - Comparison to NA60 data
- ${}_{igodol{\Phi}}$ Medium modfications of the Δ (with R. Rapp)
- 5 Conclusions and Outlook

Electromagnetic probes in heavy-ion collisions

[R. Rapp, J. Wambach, HvH, Landoldt-Börnstein, 1/23, 4-1 (2010), arXiv: 0901.3289 [hep-ph]]

Electromagnetic Probes and Vector Mesons

• $\ell^+\ell^-$ thermal emission rates \Leftrightarrow em. current-correlation function, $\Pi_{\mu\nu}$

[L. McLerran, T. Toimela 85, H. A. Weldon 90, C. Gale, J.I. Kapusta 91]

$$\frac{\mathrm{d}N_{e^+e^-}}{\mathrm{d}^4 \times \mathrm{d}^4 q} = -g^{\mu\nu} \frac{\alpha^2}{3q^2\pi^3} \, \mathrm{Im} \, \Pi^{(\mathrm{ret})}_{\mu\nu}(q) \Big|_{q^2 = M^2_{e^+e^-}} \, f_B(q_0)$$

• vector-meson dominance model:

$$\Pi_{\mu\nu} = \underbrace{\gamma^{*}}_{\gamma^{*}} \underbrace{\gamma^{*}}_{\gamma^{*}}$$

0

hadronic many-body theory for vector mesons

● elementary processes ⇔ cut self-energy diagrams

The GiBUU Model

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

- Boltzmann-Uehling-Uhlenbeck (BUU) framework for hadronic transport
- reaction types: pA, πA , γA , eA, νA , AA
- open-source modular Fortran 95/2003 code
- version control via Subversion
- publicly available realeases: http://gibuu.physik.uni-giessen.de
- Review: [O. Buss et al, Phys. Rept. 512, 1 (2012)]

The Boltzmann-Uehling-Uhlenbeck Equation

• time evolution of phase-space distribution functions

$$[\partial_t + (\vec{\nabla}_p H_i) \cdot \vec{\nabla}_x - (\vec{\nabla}_x H_i) \cdot \vec{\nabla}_p] f_i(t, \vec{x}, \vec{p}) = I_{\text{coll}}[f_1, \dots, f_i, \dots, f_j]$$

- Hamiltonian *H_i*
 - selfconsistent hadronic mean fields, Coulomb potential, "off-shell potential"
- collision term I_{coll}
 - two- and three-body decays/collisions
 - multiple coupled-channel problem
 - resonances described with relativistic Breit-Wigner distribution

$$\mathcal{A}(x,p) = -rac{1}{\pi} rac{\ln\Pi}{(p^2 - M^2 - \operatorname{Re}\Pi)^2 + (\operatorname{Im}\Pi)^2}; \quad \operatorname{Im}\Pi = -\sqrt{p^2}\Gamma$$

• off-shell propagation: test particles with off-shell potential

Resonance Model

- \bullet reactions dominated by resonance scattering: $ab \rightarrow R \rightarrow cd$
- Breit-Wigner cross-section formula

$$\sigma_{ab\to R\to cd} = \frac{2s_R + 1}{(2s_a + 1)(2s_b + 1)} \frac{4\pi}{p_{\mathsf{lab}}^2} \frac{\mathsf{s}\Gamma_{ab\to R}\Gamma_{R\to cd}}{(s - m_R^2)^2 + \mathsf{s}\Gamma_{\mathsf{tot}}^2}$$

- ullet applicable for low-energy nuclear reactions ${\it E_{kin}} \lesssim 1.1 \; {\rm GeV}$
- example: $\sigma_{\pi^ho o \pi^ho}$ [Teis (PhD thesis 1996), data: Baldini et al, Landolt-Börnstein 12 (1987)]

• further cross sections

Hendrik van Hees (GU Frankfurt)

Hadron resonances

Extension to HADES energies

• keep same resonances (parameters from Manley analysis)

	$M_0 = \Gamma_0 = \mathcal{M}^2 /16\pi [\text{mb GeV}^2]$				branching ratio in %							
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70	_	69	_	22_P		9	_	_
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_{S}			
$D_{15}(1675)$	****	1676	159	17		47		53_D				_
$P_{13}(1720)$	*	1717	383	4	12	13			87_P			_
$F_{15}(1680)$	****	1684	139	4	12	70	_	$10_P + 1_F$	$5_P + 2_F$	12		_
$P_{33}(1232)$	****	1232	118	OBE	210	100						_
$S_{31}(1620)$	**	1672	154	7	21	9		62_{D}	$25_S + 4_D$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	85			
$P_{31}(1910)$	****	1882	239	14		23					67	10_P
$P_{33}(1600)$	***	1706	430	14		12		68_P			20	
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_{P}			
$F_{37}(1950)$	****	1945	300	14		38	_	18_{F}		_		44_F

- production channels in Teis: $NN \to N\Delta$, $NN \to NN^*$, $N\Delta^*$, $NN \to \Delta\Delta$
- extension to $NN \rightarrow \Delta N^*, \Delta \Delta^*, NN \rightarrow NN\pi$, $NN \rightarrow NN\rho, NN\omega, NN\pi\omega, NN\phi$, $NN \rightarrow BYK (B = N, \Delta, Y = \Lambda, \Sigma)$

Extension to HADES energies

• good description of total pp, pn (inelastic) cross section

dilepton sources

- Dalitz decays: $\pi^0, \eta \to \gamma \ell^+ \ell^-$; $\omega \to \pi^0 \ell^+ \ell^-$, $\Delta \to N \ell^+ \ell^-$
- ρ, ω, φ → ℓ⁺ℓ⁻: invariant mass ℓ⁺ℓ⁻ spectra ⇒ spectral properties of vector mesons

Hendrik van Hees (GU Frankfurt)

p p at HADES ($E_{kin} = 3.5 \text{ GeV}$)

p + p at 3.5 GeV

p p at HADES ($E_{kin} = 3.5 \text{ GeV}$)

" ρ meson" in pp

• production through hadron resonances $NN \rightarrow NR \rightarrow NN\rho$, $NN \rightarrow N\Delta \rightarrow NN\pi\rho$

"ρ"-line shape "modified" already in elementary hadronic reactions
due to production mechanism via resonances

pNb at HADES (3.5 GeV)

- medium effects built in transport model
 - binding effects, Fermi smearing, Pauli blocking
 - final-state interactions
 - production from secondary collisions
- sensitivity on medium effects of vector-meson spectral functions?

Hendrik van Hees (GU Frankfurt)

Dileptons at the SPS: Hadronic many-body theory

• radiation from thermal sources: Hadronic many-body theory

[R. Rapp, J. Wambach 99]

- baryon effects important
- $n_B + n_{\bar{B}}$ relevant quantity (not net-baryon density)!

Sources of dilepton emission in heavy-ion collisions

- initial hard processes: Drell Yan

$$\frac{1}{q_{T}}\frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}M\mathrm{d}q_{T}} = \int \mathrm{d}^{4}x \int \mathrm{d}y \int M\mathrm{d}\varphi \frac{\mathrm{d}N^{(\text{thermal})}}{\mathrm{d}^{4}x\mathrm{d}^{4}q} \mathsf{Acc}(M,q_{T},y)$$

use cylindrical thermal fireball with QGP, mixed and hadronic phase
"corona" ⇔ emission from "primordial" mesons (jet-quenching)
after thermal freeze-out ⇔ emission from "freeze-out" mesons
[Cooper, Frye 1975]

$$N^{(fo)} = \int \frac{\mathrm{d}^3 q}{q_0} \int q_{\mu} \mathrm{d}\sigma^{\mu} f_B(u_{\mu}q^{\mu}/T) \frac{\Gamma_{\text{meson} \to \ell^+ \ell^-}}{\Gamma_{\text{meson}}} \mathrm{Acc}$$

Importance of baryon effects

- baryonic interactions important!
- in-medium broadening
- Iow-mass tail!

Dilepton rates: Hadron gas \leftrightarrow QGP

- in-medium hadron gas matches with QGP
- $\bullet\,$ similar results also for $\gamma\,$ rates
- "quark-hadron duality" !?
- consistent with chiral-symmetry restoration
- "resonance melting" rather than "dropping masses"

Medium modfications of the Δ

[HvH, R. Rapp, Phys. Lett. B 606, 59 (2005); J. Phys. G 31, S203 (2005)]

Medium modifications of pions and nucleons

• pions: nucleon and Δ -hole excitations • short-range correlations: Migdal resummation g'₁₂ g ---- 2 g', g

- nucleons: πN and πB , $B = \Delta(1232), N^*(1440), N^*(1535), \Delta^*(1600), \Delta^*(1620)$
- coupling constants fitted to partial decay widths $B \rightarrow \pi N$

Medium modifications of pions

Medium modifications of nucleons

 $T{=}180$ MeV, $\varrho_N{=}0.68 \varrho_0$, $\mu_\pi{=}0$

Hendrik van Hees (GU Frankfurt)

Medium Modifications of the Δ

- same diagram as in vacuum with dressed pion- and nucleon propagators
- vertex corrections: same resummed Migdal loops as for the pion
- 4-fermion vertices: same Migdal parameters as for the pion

• $B' = \Delta(1232), N^*(1440), N^*(1520), \Delta^*(1600), \Delta^*(1620), N^*(1700), \Delta^*(1700)$

Medium Modifications of the Δ

Medium Modifications of the Δ

Conclusions and Outlook

- dilepton spectra ⇔ in-medium em. current correlator
- SIS energies
 - GiBUU for pp, pn with resonance model for all HADES energies
 - np still a problem?
 - p Nb, AA work in progress
 - similar study within UrQMD in progress (with S. Endres, M. Bleicher)
- SPS and RHIC energies
 - excess yield dominated by radiation from thermal sources
 - baryons essential for in-medium properties of vector mesons
 - melting vector mesons with little mass shift
 - "quark-hadron duality" of $\ell^+\ell^-$ rates around T_c
 - compatible with chiral symmetry restoration!
 - studies in UrQMD(+hydro hybrid) model (with S. Endres, M. Bleicher)
 ⇒ see talk by Marcus Bleicher
- Medium modifications of the Δ