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This is a short summary of some aspects of out-of-equilibrium statistical physics and
quantum field theory. Specifically, I will focus on the Langevin description.

1 Introduction

Solving the microscopic equations in many-
body physics is considered practically impossi-
ble. Thus, one has to use some sort of effec-
tive description to describe macroscopic quanti-
ties of interest. Remarkably, these often obey
approrimately simple deterministic equations.
The approximate nature enters in the form
of fluctuation terms. Thus, one has stochas-
tic equations, i.e. the macroscopic quantities
are functions of random variables. In (out-of-
equilibrium) statistical physics there are roughly
speaking two approaches: The Boltzmann equa-
tion and the Langevin description, or equiva-
lently the Fokker-Planck equation.! The lat-
ter is an example of a stochastic differential
equation. These can be used to create phe-
nomenological models for a variety of processes
in physics, chemistry, biology and finance, see
e.g. [1]. As an example the velocity distribution
P for a Brownian particle of mass m is deter-
mined by a Fokker—Planck equation of the form
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where 7 is a friction constant and D is a spatial
diffusion constant. The amplitude of the ran-
dom white noise is given by 2D~2. Solving (1)
we get

m (T — 17067”/’”)2
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(2)
where N' = N(¢) is determined by the normal-
ization. For t — oo we recover the Maxwell—-
Boltzmann distribution. Furthermore, (2) tells

P(U,t) = Nexp (—

1 The exact equations in quantum-field theory are the
Kadanoff-Baym equations.
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Fig. 1: Plot of (2) for different times, with inital
values vo = kT = m = 1. For t = 0 the dis-
tribution is a delta function and for large t we ap-
proach the Maxwell-Boltzmann distribution centered
around v = 0.

us exactly how we approach equilibrium. This is
plotted in figure 1. In the following we shall dis-
cuss some ways to derive Fokker-Planck equa-
tions from fundamental microscopic dynamics
on various levels of sophistication.

2 Relativistic phase-space
distribution

The one-particle distribution of a gas of N par-
ticles is defined such that an observer at time ¢
finds N f(7,p,t)d3>rd3p particles in the volume
element d3r with momentum p within a range
d3p. It was shown by van Kampen only in 1969
that f is indeed a Lorentz scalar in the (¢, Z, p)
space [2].We can define a momentum distribu-
tion F(p,t) = [ f(7,p,t)d®r. For a gas of free,
non-interacting particles EzF'(p,t) is invariant,
whereas for an ideal gas in equilibrium contained
in a Volume V only g is invariant. Thus, the
average momentum (p®) = [p*F(p,t)d®p is a-
four vector only in the former case. Generically,



3 Stochastic Dynamics

it is a non-local quantity and thus observer de-
pendent. Nevertheless, upon fixing a spacelike
hyperplane in Minkowski space, the average mo-
mentum does transform like a four vector [3].
This has to be taken into account in simulations
involving relativistic particles.

2.1 The Boltzmann equation
The dynamics of f is governed by the
Boltzmann-equation
0
uﬂauf‘f'@(f(uf):c[f]’ (3)

where u# = da* /dr is the four-velocity, K* =
dp*/dr is an external force, and C[f] is the
collision integral. It can be written (non-
relativistically) as

/ fw(p + 4.9)f (0 + q) — w(p,0)f ()] &,

where w(p, q) is the rate of change from p’ to
p — ¢. If the collisions are dominated by low
momentum (soft) scattering, we can expand

w(p+ 0.0)f (0 + ) ~w(p,0) f(p) +q- a%(wf)
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Then the collision term can be approximated as

0
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A, = /d3kw(p, E)ks,

1
Bjj = i/d?’kzw(p,k)kik‘j.

Using this in (3) we have found a Fokker-Planck
equation for the phase-space distribution func-
tion as an approximation to the Boltzmann
equation.

3 Stochastic Dynamics

3.1 Langevin Description

The Langevin equation is a phenomenological
model for stochastic processes such as Brownian
motion. The equations read

(4a)
(4b)
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where the dot indicates proper-time deriva-
tives and &' is white noise. It is completely
determined by its moments () = 0 and
(€1(t1)& (t2)) = 6Y6(t; — ta). Due to the 6-
function there is an ambiguity in the equations.
To calculate expressions like

t+4ot
B= /t b(a(t))E(t)dt

one needs to employ some discretisation rule.
The three common ones are

t+5t£(t)dt

e Ito: B — b(z(1)) J,

e Stratonovich:

B — (b(x(t)) + b(a(t + 6t)) /2 [/ €(t)dt

t+5t€(t)dt

e Post-Ito: B — b(x(t + dt)) [,

Upon expansion in §t this can be summarized
as

. t+ot
B — (b(x(t)) + Ab(x(t))5t) /t £(t)dt,

for A € {0,1/2,1}. The right choice depends
on the physical context, see [1] for a discussion.
Keeping this in mind, we can determine the av-
erage displacement and correlations in phase-
space. We have

_ t+ot i
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assuming that the velocity is constant for small
§t. Obviously then (§x'6x7) = O(6t?). The mo-
mentum integration is slightly tricky. We have

) t+5t )
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t

The relevant part of the last equation is upon
discretesation

b t+4dt
+)\ <8plcij> pﬂ%/t fjdt

a t+ot
=+ A <8pl6ij> Clkfk(st/t fjdt.

Taking the average and using (£%(t1)&7(t2)) =
(Sij(S(tl — tg) we find

1
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3.2 Microscopic origin

Similarly we have
(5p'opT) = CikCjkOt.

Given these results one can derive a probability
distribution P(Z,p,t). The expectation value
of any phase space function g(&,p) is given by
— = N AP CIWE . o) _
(9)(t) = [ 9(&, p)P(Z, P, t)d>xd’p. Thus, T+ =
J 942, On the other hand
(0g)

dlg) _ ()0~ (9)(®) _ {d0)
dt 5t—0 ot ot -

To calculate (dg) we expand up to second order,
which will be justified further below. We get

89 = g(x + 0x,p + op) — g(x, p)
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As we have shown above, these are indeed all
terms of order O(dt). Thus,
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After partial integration in (5) and inserting the
results for the (dz;) etc., we get the Fokker—
Planck equation

(gt + ) p=2 (AiP + a.DijP> :
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The right hand side in (6) represents flow in mo-
mentum space. In equilibrium this must vanish,
which, together with the known equilibrium dis-
tribution (Maxwell, Jiittner, etc.), gives rise to
relations between the A* and D, known as fluc-
tuation dissipation theorems (FDT). For Brow-
nian motion (1) one obtains D = kBTT.

Dij = circjk.

3.2 Microscopic origin

Consider a density matrix p[¢4, ¢—] in a quan-
tum field theory, i.e. instead of the position the

field variables ¢(Z) are the degrees of freedom.
The time evolution is something like

Pto P24, 2]
:/D¢1+D¢1—Ut2,t1pt1[¢1+:¢1—]U21t27 9)

where the time evolution operator U depends on
b1+, P2y and UT is a functional of the other two
fields. We can express the time evolution as a
functional integral

U= / DgetSl0l Ut = / Dge= 14 (10)

Note that —iS*[¢(t, x)] = iS*[¢p(—t,z)]. Thus,
inserting (10) into (9) one gets a functional in-
tegral with an action with a forward and back-
ward path in time. This is known as Schwinger—
Keldysh double time path. Following [4] for the
rest of this section, consider now an harmonic
oscillator H = wpa'a. One obtains up to nor-
malization

Z = trpjmoe = / DéDge™,

where ¢ are coherent states and the action is
given by

S = / dtp(i0; — wo) . (11)
C

Here C denotes the contour going from +o0o —

—00 — +00. Let

o(t) = —

RV 2&)0

The action (11) then reads

1.
S = / dt {X2 - V(X)} ,
c 2

with the potential V' (X) = w3 X?/2. Let us now
decompose the field into a part X propagating
forward in time, and X~ propagating on the
backward path. Furthermore, we define classical
and quantum parts via

(P(t) — iwo X (1))

(12)

XI=(XT+X7)/2, X9=(XT-X")/2

Then (12) becomes

— 00

After expanding up to first order in X7 we get

S = / —2X1 {Xl + V’(XCI)} .

+m ..
/ dt [—2)(‘4)(01 V(X9 XY+ V(X - x9].
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The functional integral over X9 gives a J-
functional, thus the only configuration con-

tributing to Z satisfies
Xcl — 7V/(XC1).

Thus the name classical field. Now consider the
particle in a bath of harmonic oscillators, where
the interaction is taken as product of the coor-

dinates. Doing the same expansion one obtains
Xcl _ *VI(XCI) o ,YXCI

Obtaining the friction force would not be pos-
sible with one field, as it would be a boundary
term. Keeping also the thermal fluctuations one
gets

+oo
S = /_ dt{ —2X1 [XC1+7XC1 +V (Xd)}
+ 4iy T (X7)2 }

Using the identity

exp(—4’yT/dt (X9(t)?)

_ / Dee [l W-2e0x 0] (43

one finally obtains the Langevin equation
XCI _ _,chl —_v (Xcl) + f(t)

From (13) we see that £ is indeed white noise
since

e J Azt e (1)

This is consistent with the FDT we obtained for
Brownian motion.

3.8 Langevin equation with memory

The Langevin equation (4) gives rise to Marko-
vian processes, which is certainly only an ap-
proximation in most physical processes. The
generalized Langevin equation is given by
@' =p'/p° (14a)
t
Pl = / Dt —tp'(t)dt + F' + c7¢7, (14b)
to
where I' is a memory kernel and £ is specified by

<f> = 0, and <§(t1)§(t2)> = K(tl — tg), i.e. col-
ored noise. K is the autocorrelation function

and usually assumed to vanish for |t; —ta| > 7,
for some 7. > 0, e.g. the scattering time. In
principal, £ may also have higher non-vanishing
moments. The general fluctuation dissipation
theorem [5] relates K to I'. Note that (14) is no
longer a well defined initial value problem due to
the finite correlation time 7.. Instead, one has
to consider a time tg at which the noise is turned
on. The generalized Langevin equation (14) is a
nonlinear stochastic differential equation of the
form
Fi(”: t; 5)7
where u is the collection of variables. For a sin-
gle realization ¢ of the random functional ¢ we
can get a linear equation by passing to the Li-
ouville equation

Z 3; (

For such a linear equation, one can then
solve perturbatively in 7.. Taking the average
(p(u,t)) = P(u,t) we get a rather complicated
Fokker—Planck equation for the probability dis-
tribution [1], which could be used as a starting
point for numerical simulations.

iy =

Op(u,t) = Fi(u,t;€)p) . (15)
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