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We study the dynamics of the chiral phase transition in a linear quark-
meson σ model using a novel approach based on semiclassical wave-particle
duality. The quarks are treated as test particles in a Monte-Carlo simula-
tion of elastic collisions and the coupling to the σ meson, which is treated
as a classical field. The exchange of energy and momentum between parti-
cles and fields is described in terms of appropriate Gaussian wave packets.
It has been checked that energy-momentum conservation and the principle
of detailed balance are fulfilled, and that the dynamics leads to the cor-
rect equilibrium limit. First schematic studies of the dynamics of matter
produced in heavy-ion collisions are presented.

1. Introduction

One of the prime goals of contemporary heavy-ion experiments, as the
ongoing beam-energy scan at the Relativistic Heavy Ion Collider (RHIC) at
the Brookhaven National Laboratory (BNL) and in the future the Facility
for Anti-Proton and Ion Research (FAIR) in Darmstadt and the Nuclogron-
based Ion Collider Facility (NICA) in Dubna, is the exploration of the phase
diagram of strongly interacting matter [1]. In the low-energy regime QCD
is governed by the approximate chiral symmetry of the light-quark sector.
Due to the formation of a quark condensate

〈
ψ̄ψ
〉
6= 0 the symmetry is

spontaneously broken at low temperatures and densities and is expected to
be restored at high temperatures and densities. From effective chiral models
one expects that the cross-over nature of the phase transition at µB = 0 (as
known from lattice-QCD calculations) becomes of first order at µB 6= 0,
with the first-order transition line ending in a critical point (second-order
phase transition). One possible observable indicating a critical point in
the phase diagram are critical (grand-canonical) fluctuations of conserved
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charges (like baryon number or electric charge) and the divergence of the
corresponding susceptibilities [2–8].

The main challenge is to find experimental signatures for this structure of
the phase diagram, particularly the existence of a critical point, from obser-
vations of the quickly expanding and cooling “fireballs” of strong-interaction
matter created in heavy-ion collisions. Here we use a novel approach to nu-
merically simulate this dynamics in terms of kinetic theory, based on a linear
quark-meson σ model [9–11]. By adjusting the coupling constants and eval-
uating the model at finite temperature and baryo-chemical potential the
different kinds of phase transition (cross-over, 1st and 2nd order) can be
realized. In our kinetic simulation the σ meson is described as a classical
mean field and the quarks and antiquarks in terms of Monte-Carlo test par-
ticles. Besides the usual binary elastic collision term qq → qq also decay
and recombination processes, σ ↔ qq̄ have to be described. To this end we
employ a kind of “wave-particle duality” approach, which we describe in
the next Sec.

2. Wave-particle dynamics

The linear quark-meson σ model with the chiral SU(2)L × SU(2)R sym-
metry is defined by the Lagrangian

L =ψ[i/∂ − g(σ + iγ5p · τ )]ψ +
1

2
(∂µσ∂

µσ + ∂µ~π · ∂µ~π)− U(σ, ~π), (2.1)

where ψ denotes the two-flavor quark field (u, d), and (σ, ~π) the scalar and
pseudo-scalar meson fields, transforming according to the SO(4) represen-
tation of the chiral group. The meson-field potential is given by

U(σ, ~π) =
λ2

4
(σ2 + ~π2 − ν2)2 − fπm2

πσ − U0. (2.2)

With ν = f2π−m2
π/λ the minimum of the potential is given by σ0 = fπ, and

the approximate chiral symmetry is spontaneously broken to the SU(2)V

isospin symmetry. The mass of the σ meson becomes m
(0)
σ = 2λ2f2π + m2

π.

For λ ' 20 one obtains m
(0)
σ ' 600 MeV. Through the Yukawa couplings

of the quark fields to the mesons in (2.1) the quarks acquire a constituent-
quark mass mq = g2σ0. Varying g ∈ (3.3, 5.5) leads to a cross-over (g = 3.3),
a 2nd-order (g = 3.63), or a 1st order phase transition for µB = 0.

Schematically the kinetic theory is defined by a coupled system of stochas-
tic mean-field and Boltzmann-Vlasov transport equations,

2σ + λ(σ2 − ν2)σ − fπm2
π + g

〈
ψψ
〉

= I(σ ↔ qq), (2.3)[
∂t + p/Eq · ~∇~x − ~∇~xEψ · ~∇~p)

]
fq(t, ~x, ~p) = C(ψψ → ψψ, σ ↔ qq), (2.4)
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Fig. 1. (Color online) Left: The energy distribution of the quarks and anti-

quarks follow the expected relativistic Maxwell-Boltzmann distribution fq(E) ∝
exp(−E/T ), demonstrating the numerical stability of the kinetic equations as well

as the validity of the principle of detailed balance. Right: The spectrum of the

kinetic energy density of the mean field, φ̇2/2. For low k (long wavelenghts) the

distribution follows the expected equipartion theorem for a classical field. At higher

energies the finite interaction volume encoded in the finite width of the Gaussian

wave packets leads to an effective cut-off.

where I and C denote collision terms contributing in a stochastic way to the
time evolution of the mean field σ and the quark phase-space distribution
function f , respectively.

The decay and quark-annihilation processes σ ↔ qq̄ is described by the
quantum-field theoretical S-matrix element, via the Breit-Wigner cross sec-
tion with the corresponding on-shell decay width. The annihilation process
is described via Monte-Carlo simulation. To determine the local distribu-
tion of σ particles to describe the decay process, the local energy-momentum
densities are calculated from the σ field and mapped to a corresponding lo-
cal thermal-equilibrium relativistic Boltzmann-Jüttner distribution with the
σ-meson mass determined self-consistently with the temperature according
to the corresponding equilibrium value. In the decay and annihilation pro-
cesses the corresponding energy and momentum are transferred to the mean
field by adding an appropriate relativistic Gaussian wave packet, guaran-
teeing energy-momentum conservation in each local reaction process. We
have demonstrated that such a description also obeys the principle of de-
tailed balance and thus leads to the correct equilibrium limit for the quark
distribution function as well as the σ field (cf. Fig. 1).

3. Simulation of an expanding fireball

To study a situation more close to the rapidly expanding and cool-
ing medium produced in heavy-ion collisions, we initialize the system as
a spherically symmetric droplet with a Woods-Saxon like spherically sym-
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Fig. 2. (Color online) Left: Total quark number in the matter-droplet scenario.

Solid lines show the simulations with chemical processes, the dashed lines the sim-

ulations without the σ ↔ q̄q processes. In the scenario without chemical processes

the droplet radiates most of the quarks in shell-like structures, as reflected in the

quark-number plateaus which drop suddenly. In the calculations with chemical

processes the systems lose quarks in a steady and continuous way; the formation of

quark-number plateaus is washed out. Right: Angular power spectrum of quark-

density fluctuations. The qualitative features of the spectrum are independent of

the nature of the phase transition but their absolute size depends on the coupling

strength g.

metric temperature distribution, T (x) = T0{1 + exp[(|x| −R0)/α]}−1 with
R0 = 0.45 fm and α = 0.1 fm. The total system size has been chosen to
5 fm, and the boundary conditions have been adapted such as to allow for an
expanding-fireball scenario. For the quarks we have introduced a “distance
cutoff” rc = 2.75 fm from the center, where the particles are considered to
leave the system.

We have simulated this expanding-fireball scenario with and without
implementing the chemical processes, σ ↔ qq̄ (cf. Fig. 2). Neglecting these
processes leads to a rapidly oscillating σ-field in the beginning of the ex-
pansion, losing energy by radiating long-wavelength oscillations propagating
out of the system, and despite small spatial fluctuations the system stays
isotropic. For larger couplings, particularly at g = 5.5, according to a 1st-
order phase transition in equilibrium, the system can stay in a metastable
state where cold quarks are trapped in a potential well of the chiral field
for some time. Taking the chemical processes into account, the strong fluc-
tuations of the σ field are damped by the decay process, while the annihi-
lation process creates strong local fluctuations on the field, increasing with
stronger coupling constants g, which also leads to spatial anisotropies of the
fireball. In accordance with the findings using a Langevin approach to de-
scribe the fluctuations on a hydrodynamical background [12–14], one finds
the strongest fluctuations in quark density for the largest coupling corre-
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sponding to a 1st-order phase-transition rather than the expected maximum
at the 2nd-order critical point. However, here the exspected equilibrium
phenomena cannot be observed since the system size is in the order of the
scattering length and thus also of the correlation length of the fluctuations.
Also the total lifetime of the system is of the order of the equilibration time.

In an attempt to characterize the different phase-transition scenarios in
the expanding-fireball systems we evaluated the angular power spectrum of
the quarks leaving the fireball. As can be seen in the right panel of Fig.
2, the power spectra do not show qualitative differences for the different
phase-transition scenarios but just a strong dependence of their absolute
magnitude with the Yukawa coupling g, leading to the largest correlations
for the 1st-order scenario at g = 5.5.
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