Übungen zur Theoretischen Physik 3 für das Lehramt L3 Lösungen zu Blatt 9

Aufgabe 1: Geladenes Teilchen im homogenen Magnetfeld

Betrachten Sie ein geladenes Teilchen (Masse m, Ladung q, spin s=1/2) im homogenen Magnetfeld $\vec{B}=B\vec{e}_3=$ const. Wie in der Vorlesung und auf dem vorigen Aufgabenblatt besprochen, ist dann der Hamilton-Operator durch

$$\mathbf{H} = \frac{1}{2m} [\vec{\mathbf{p}} - q\vec{A}(\vec{\mathbf{x}})]^2 - \frac{gqB}{2m} \cdot \mathbf{s}_3 \tag{1}$$

gegeben. Dabei ist \vec{A} ein Vektorpotential für das Magnetfeld, d.h. $\vec{B} = \vec{\nabla} \times \vec{A}$.

Wir wollen das Energieeigenwertproblem lösen. Gehen Sie dazu wie folgt vor:

(a) Zeigen Sie, dass $\vec{A}(\vec{x}) = -Bx_2\vec{e}_1$ ein Vektorpotential für das homogene Magnetfeld ist, also $\vec{\nabla} \times \vec{A} = \vec{B} = B\vec{e}_3$ gilt.

Lösung: Es ist

$$\vec{\nabla} \times \vec{A} = \begin{pmatrix} \partial_2 A_3 - \partial_3 A_2 \\ \partial_3 A_1 - \partial_1 A_3 \\ \partial_1 A_2 - \partial_2 A_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix} = \vec{B}. \tag{2}$$

Folglich ist \vec{A} tatsächlich ein Vektorpotential für das vorgegebene homogene Magnetfeld $\vec{B} = B\vec{e}_3$.

(b) Zeigen Sie, dass mit diesem Vektorpotential **H**, **p**₁, **p**₃ und **s**₃ einen vollständigen Satz kompatibler Observabler bilden, indem Sie die Kommutativität dieser Operatoren untereinaner nachweisen.

Lösung: Da s_3 mit allen Komponenten \vec{x} und \vec{p} kommutiert, kommutiert s_3 mit allen angegebenen weiteren Observablen. Da weiter der Hamiltonoperator (1) mit dem angegebenen Vektorpotential

$$\mathbf{H} = \frac{1}{2m} \left[\mathbf{p}_2^2 + \mathbf{p}_3^2 + (\mathbf{p}_1 + qB\mathbf{x}_2)^2 \right] - \frac{gqB}{2m} \mathbf{s}_3$$
 (3)

nicht von den Ortskomponenten \mathbf{x}_1 und \mathbf{x}_3 abhängt, ist auch $[\mathbf{H}, \mathbf{p}_1] = [\mathbf{H}, \mathbf{p}_3] = 0$. Wegen $[\mathbf{p}_j, \mathbf{p}_k] = 0$ für alle $j, k \in \{1, 2, 3\}$ kommutieren also alle vier angegebenen selbstadjungierten Operatoren, und es existieren simultane Eigenfunktionen $u_{E, p_1, p_3, \sigma_3}(\vec{x})$.

(c) Zeigen Sie, dass sich das Eigenwertproblem für die simultanen Eigenzustände $u_{E,p_1,p_3,\sigma_3}(\vec{x})$ bzgl. der Eigenwertgleichung für **H** (Eigenwert E) auf einen harmonischen Oszillator reduziert, dessen Energieeigenwerte und -zustände aus der Vorlesung bekannt sind und geben Sie die entsprechenden Energieeigenwerte an. Dabei darf das aus der Vorlesung bekannte Resultat für die Energieeigenwerte eines harmonischen Oszillators verwendet werden.

Hinweis: Es darf verwendet werden, dass die Eigenwerte der übrigen Observablen $p_1, p_3 \in \mathbb{R}$ und $\sigma_3 \in \{1/2, -1/2\}$ sind.

Lösung: Das verbliebene Eigenwertproblem

Die Wellenfunktionen $u_{E,p_1,p_3,\sigma_3}(\vec{x}) \in \mathbb{C}^2$, d.h. Spinoren zum Spin s=1/2. Aus den Eigenwertgleichungen für die beiden Impulse und \hat{s}_3 folgt

$$u_{E,p_1,p_3,\sigma_3}(\vec{x}) = U_{E,p_1,p_3,\sigma_3}(x_2) \exp\left(\frac{ip_1x_1 + ip_3x_3}{\hbar}\right) \chi_{\sigma_3} \quad \text{mit} \quad \chi_{\hbar/2} = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad \chi_{-\hbar/2} = \begin{pmatrix} 0\\1 \end{pmatrix}. \quad (4)$$

Wir müssen mit diesem Ansatz nun noch das Eigenwertproblem für \mathbf{H} lösen, d.h. die möglichen Eigenwerte E und die Wellenfunktion U_{E,p_1,p_3,σ_3} finden. Dabei

$$\mathbf{H}u_{E,p_{1},p_{3},\sigma_{3}} = Eu_{E,p_{1},p_{3},\sigma_{3}} \tag{5}$$

reduziert sich auf das Energieeigenwertproblem für einen harmonischen Oszillator, denn in Answendung auf den Ansatz(4) können wir für die Operatoren \mathbf{p}_1 , \mathbf{p}_3 und \mathbf{s}_3 einfach die entsprechenden Eigenwerte einsetzen, d.h.

$$\mathbf{H}u_{E,p_1,p_3,\sigma_3} = \frac{1}{2m} \left[\mathbf{p}_2^2 + p_3^2 + (p_1 + qBx_2)^2 \right] gqB\sigma_3 \right] u_{E,p_1,p_3,\sigma_3}.$$
 (6)

Dies können wir auf die Form

$$\mathbf{H}u_{E,p_1,p_3,\sigma_3} = \left[\frac{1}{2m} \mathbf{p}_2^2 + \frac{m\omega^2}{2} (\mathbf{x}_2 - \mathbf{x}_{20})^2 + \frac{1}{2m} p_3^2 - \frac{gqB}{2m} \sigma_3 \right] u_{E,p_1,p_3,\sigma_3}$$
(7)

mit

$$x_{20} = -\frac{p_1}{qB}, \quad \omega = \frac{qB}{m} \tag{8}$$

bringen. Weiter lassen sich nach dem Einsetzen von (4) der Exponentialfaktor sowie χ_{σ_3} wegkürzen. Wir erhalten also als Gleichung für U_{E,p_1,p_3,σ_3}

$$\mathbf{H}_{\text{eff}} U_{E, p_1, p_3, \sigma_3} = \left[\frac{1}{2m} \mathbf{p}_2^2 + \frac{m\omega^2}{2} (\mathbf{x}_2 - \mathbf{x}_{20})^2 \right] u_{E, p_1, p_3, \sigma_3}$$

$$= \left(E - \frac{1}{2m} p_3^2 + \frac{g q B}{2m} \sigma_3 \right) U_{E, p_1, p_3, \sigma_3} = E_{\text{eff}} U_{E, p_1, p_3, \sigma_3}.$$

$$(9)$$

Der Hamiltonoperator \mathbf{H}_{eff} ist der Hamiltonoperator eines eindimensionalen in x_2 -Richtung um die Gleichgewichtslage bei x_{20} schwingenden harmonischen Oszillators. Die Energieeigenwerte (und auch die Eigenfunktionen) sind aus der Vorlesung bekannt. Hier begnügen wir und mit den Eigenwerten:

$$E_{\text{eff}} = E - \frac{1}{2m} p_3^2 + \frac{gqB}{2m} \sigma_3 = \hbar \omega \left(n + \frac{1}{2} \right), \quad n \in \mathbb{N}_0 = \{0, 1, \ldots\}.$$
 (10)

Die Energieeigenwerte für das Teilchen im Magnetfeld sind also

$$E = \hbar\omega \left(n + \frac{1}{2}\right) + \frac{1}{2m}p_3^2 - \frac{gqB}{2m}\sigma_3. \tag{11}$$

Da E nicht von dem Eigenwert $p_1 \in \mathbb{R}$ abhängt, ist jeder Energielevel unendlichfach entartet.

Bemerkung: Die für jeden Wert $p_3 \in \mathbb{R}$ und $\sigma_3 \in \{\hbar/2, -\hbar/2\}$ diskreten Energie-Level, die durch n durchnummeriert werden, nennt man **Landau-Niveaus**.

Dies entspricht der klassischen Bewegung des geladenen Teilchens im homogenen Magnetfeld. Da in Richtung des Magnetfeldes, also in unserem Fall \vec{e}_3 , keine Kraft wirkt, bewegt sich das Teilchen entlang dieser Richtung wie ein freies Teilchen. Die Projektion der Bewegung auf die zu \vec{B} senkrechte (x_1x_2) -Ebene ist hingegen eine mit der oben gefundenen **Zyklotronfrequenz** ω gleichförmig (für q>0 im Uhrzeigersinn, für q<0 entgegen dem Uhrzeigersinn) durchlaufenen Kreisbahn, also stets eine im Endlichen gebundene Bewegung. Dabei entspricht x_{20} der entsprechenden Komponente des auch beim klassischen Problem resultierenden Kreismittelpunkts.