H. van Hees Sommersemester 2023

Übungen zur Theoretischen Physik 2 für das Lehramt L3 – Blatt 8

Aufgabe 1 [10 Punkte]: Green-Funktion der Wellengleichung in 2 Dimensionen

In der Vorlesung haben wir die retardierte Greensche Funktion für den D'Alembert-Operator hergeleitet:

$$G_{\text{ret}}^{(3)}(t,\vec{x}) = \frac{\delta(t - r/c)}{4\pi r}, \quad r = |\vec{x}|.$$
 (1)

Dabei haben wir den Index (3) eingeführt, um zu betonen, dass es sich um die Greensche Funktion für die Wellenausbreitung im dreidimensionalen Raum handelt, d.h. es gilt

$$\Box G_{\text{ret}}^{(3)}(t,\vec{x}) = \delta(t)\delta^{(3)}(\vec{x}), \quad \Box = \frac{1}{c^2}\partial_t^2 - \Delta = \frac{1}{c^2}\partial_t^2 - (\partial_1^2 + \partial_2^2 + \partial_3^2). \tag{2}$$

Wir können diese spezielle Lösung der inhomogenen Wellengleichung so interpretieren, dass auf der rechten Seite die Quellen für die Wellen stehen, d.h. für die Green-Funktionenlösungen haben wir eine idealisierte pulsartige Störung, die zur Zeit t=0 an dem einen Punkt $\vec{x}=0$ wirkt. Die Lösung (1) besagt, dass die Störung zu späteren Zeiten sich exakt auf der Kugelfläche r=ct ausbreitet, wobei die Amplitude proportional zum Abstand zwischen dem Quellpunkt $\vec{x}'=0$ und Beobachtungspunkt \vec{x} abnimmt. Zu jeder Zeit t>0 ist die Lösung außer auf dieser Kugelfläche exakt 0.

Hat man nun eine zeitlich und räumlich ausgedehnte Quelle $J(t, \vec{x})$, ist die Lösung der entsprechenden Wellengleichung

$$\Box \psi(t, \vec{x}) = J(t, \vec{x}) \Rightarrow \psi(t, \vec{x}) = \int_{\mathbb{R}} dt' \int_{\mathbb{R}^3} d^3 x' G_{\text{ret}}(t - t', \vec{x} - \vec{x}') J(t', \vec{x}') = \int_{\mathbb{R}^3} d^3 x' \frac{J(t - |\vec{x} - \vec{x}'|/c, \vec{x}')}{4\pi |\vec{x} - \vec{x}'|}.$$
 (3)

Das bedeutet, dass von jedem Punkt \vec{x}' aufgrund der Quelle zur retardierten Zeit $t - |\vec{x} - \vec{x}'|/c$ eine Kugelwelle ausgeht, die zur Zeit t am Beobachtungspunkt \vec{x} eintrifft. Entsprechend dem Superpositionsprinzip (Linearität der Wellengleichung) überlagern sich diese Kugelwellen zur Zeit t am Beobachtungspunkt \vec{x} gemäß der Lösung (3). Das ist eine Version des aus der Schule bekannten Huygensschen Prinzips.

Wir wollen nun zeigen, dass diese einfache Interpretation für die Wellenausbreitung in der Ebene (zweidimensionale Wellengleichung) nicht mehr gilt.

Berechnen Sie die entsprechende retardierten Green-Funktion

$$\frac{1}{c^2} \partial_t^2 G_{\text{ret}}^{(2)}(t, x_1, x_2) - (\partial_1^2 + \partial_2^2) G_{\text{ret}}^{(2)}(t, x_1, x_2) = \delta(t) \delta(x_1) \delta(x_2) = J^{(2)}(t, x_1, x_2), \tag{4}$$

indem Sie $J^{(2)}$ als Quelle für die dreidimensionale Wellengleichung interpretieren und (3) verwenden.

Interpretieren Sie die entsprechenden Lösungen physikalisch und argumentieren Sie, warum das Huygenssche Prinzip für die Wellenausbreitung in der Ebene und entlang einer Linie nicht mehr gilt. Welche Zeiten sind für die Lösungen mit einer beliebigen Quelle J jeweils maßgebend? Ist die Wellenausbreitung immer noch kausal?

Tipp: Bei der Berechnung des Integrals ist die Formel

$$\delta[f(z)] = \sum_{z_0} \frac{1}{|f'(z_0)|} \delta(z - z_0)$$
 (5)

nützlich. Dabei ist über $f(z_0) = 0$ zu bestimmen	alle Nullstellen z ₀ vo. 1.	n f zu summieren,	d.h. es sind alle Lösu	ngen der Gleichung
Homepage zu Vorlesun	g und Übungen:			